Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825681

RESUMO

Dysferlinopathies are muscle dystrophies caused by mutations in the gene encoding dysferlin, a relevant protein for membrane repair and trafficking. These diseases are untreatable, possibly due to the poor knowledge of relevant molecular targets. Previously, we have shown that human myofibers from patient biopsies as well as myotubes derived from immortalized human myoblasts carrying a mutated form of dysferlin express connexin proteins, but their relevance in myoblasts fate and function remained unknown. In the present work, we found that numerous myoblasts bearing a mutated dysferlin when induced to acquire myogenic commitment express PPARγ, revealing adipogenic instead of myogenic commitment. These cell cultures presented many mononucleated cells with fat accumulation and within 48 h of differentiation formed fewer multinucleated cells. In contrast, dysferlin deficient myoblasts treated with boldine, a connexin hemichannels blocker, neither expressed PPARγ, nor accumulated fat and formed similar amount of multinucleated cells as wild type precursor cells. We recently demonstrated that myofibers of skeletal muscles from blAJ mice (an animal model of dysferlinopathies) express three connexins (Cx39, Cx43, and Cx45) that form functional hemichannels (HCs) in the sarcolemma. In symptomatic blAJ mice, we now show that eight-week treatment with a daily dose of boldine showed a progressive recovery of motor activity reaching normality. At the end of this treatment, skeletal muscles were comparable to those of wild type mice and presented normal CK activity in serum. Myofibers of boldine-treated blAJ mice also showed strong dysferlin-like immunoreactivity. These findings reveal that muscle dysfunction results from a pathophysiologic mechanism triggered by mutated dysferlin and downstream connexin hemichannels expressed de novo lead to a drastic reduction of myogenesis and favor muscle damage. Thus, boldine could represent a therapeutic opportunity to treat dysfernilopathies.


Assuntos
Aporfinas/farmacologia , Conexinas/metabolismo , Disferlina/genética , Músculo Esquelético/patologia , Mioblastos/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Disferlina/deficiência , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/imunologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Mioblastos/efeitos dos fármacos , Fármacos Neuromusculares Despolarizantes/farmacologia , Teste de Desempenho do Rota-Rod , Sarcolema/efeitos dos fármacos
2.
Artigo em Inglês | MEDLINE | ID: mdl-35886632

RESUMO

Background: Little is known about the interaction between the nasopharyngeal bacterial profile and the nutritional status in children. In this study, our main goal was to evaluate the associations between overnutrition and the presence of four potentially pathogenic bacteria in the nasopharynx of infants with viral lower respiratory tract infections (LRTI). In addition, we determined whether changes in the nasopharyngeal bacterial profile were associated with mucosal and serum proinflammatory cytokines and with clinical disease severity. Methods: We enrolled 116 children less than 2 years old hospitalized for viral LRTI during two consecutive respiratory seasons (May 2016 to August 2017); their nutritional status was assessed, and nasopharyngeal and blood samples were obtained. S. aureus, S. pneumoniae, H. influenzae, M. catarrhalis, and respiratory viruses were identified in nasopharyngeal samples by qPCR. Cytokine concentrations were measured in nasopharyngeal and blood samples. Disease severity was assessed by the length of hospitalization and oxygen therapy. Results: Nasopharyngeal pathogenic bacteria were identified in 96.6% of the enrolled children, and 80% of them tested positive for two or more bacteria. The presence and loads of M. catarrhalis was higher (p = 0.001 and p = 0.022, respectively) in children with overnutrition (n = 47) compared with those with normal weights (n = 69). In addition, the detection of >2 bacteria was more frequent in children with overnutrition compared to those with normal weight (p = 0.02). Multivariate regression models showed that the presence and loads of S. pneumoniae and M. catarrhalis were associated with higher concentrations of IL-6 in plasma and TNF-α in mucosal samples in children with overnutrition. Conclusions: The nasopharyngeal profile of young children with overnutrition was characterized by an over representation of pathogenic bacteria and proinflammatory cytokines.


Assuntos
Hipernutrição , Infecções Respiratórias , Bactérias , Criança , Pré-Escolar , Citocinas , Haemophilus influenzae , Humanos , Lactente , Moraxella catarrhalis , Nasofaringe , Infecções Respiratórias/microbiologia , Staphylococcus aureus , Streptococcus pneumoniae
3.
Front Pediatr ; 8: 44, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133330

RESUMO

Objective: To investigate the relationship of overnutrition (obese and overweight) with severity of illness in children hospitalized with acute lower respiratory infections (ALRIs), frequency of viral coinfections and leptin levels. Methods: We studied 124 children <2 years old that were hospitalized for ALRI. Nutritional status was calculated by z-scores according to weight-for-age z-scores, length or height-for-age z-scores, and weight-for-height z-scores. Nasopharyngeal aspirates (NPAs) were obtained and viral respiratory pathogens were identified using reverse transcription polymerase chain reactions (RT-PCR). Respiratory syncytial virus (RSV) load was assessed using quantitative RT-PCR. NPA and plasma leptin level were measured. Clinical data and nutritional status were recorded, and patients were followed up until hospital discharge. Viral coinfection was defined as the presence of two or more viruses detected in the same respiratory sample. Severity of illness was determined by length of hospitalization and duration of oxygen therapy. Results: Children with overnutrition showed a greater frequency of viral coinfection than those with normal weight (71% obese vs. 37% normal weight p = 0.013; 68% overweight vs. 37% normal weight p = 0.004). A lower RSV load was found in obese (5.91 log10 copies/mL) and overweight children (6.49 log10 copies/mL) compared to normal weight children (8.06 log10 copies/mL; p = 0.021 in both cases). In multivariate analysis, obese, and overweight infants <6 months old were associated with longer hospital stays (RR = 1.68; CI: 1.30-2.15 and obese: RR = 1.68; CI: 1.01-2.71, respectively) as well as a greater duration of oxygen therapy (RR = 1.80; IC: 1.41-2.29 and obese: RR = 1.91; CI: 1.15-3.15, respectively). Obese children <6 months showed higher plasma leptin level than normal weight children (7.58 vs. 5.12 ng/µl; p <0.046). Conclusions: In infants younger than 6 months, overnutrition condition was related to increased severity of infections and high plasma leptin level. Also, children with overnutrition showed a greater frequency of viral coinfection and low RSV viral load compared to normal weights children. These findings further contribute to the already existent evidence supporting the importance of overnutrition prevention in pediatric populations.

4.
Biochim Biophys Acta Mol Basis Dis ; 1866(8): 165800, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32305450

RESUMO

Dysferlinopathy is a genetic human disease caused by mutations in the gene that encodes the dysferlin protein (DYSF). Dysferlin is believed to play a relevant role in cell membrane repair. However, in dysferlin-deficient (blAJ) mice (a model of dysferlinopathies) the recovery of the membrane resealing function by means of the expression of a mini-dysferlin does not arrest progressive muscular damage, suggesting the participation of other unknown pathogenic mechanisms. Here, we show that proteins called connexins 39, 43 and 45 (Cx39, Cx43 and Cx45, respectively) are expressed by blAJ myofibers and form functional hemichannels (Cx HCs) in the sarcolemma. At rest, Cx HCs increased the sarcolemma permeability to small molecules and the intracellular Ca2+ signal. In addition, skeletal muscles of blAJ mice showed lipid accumulation and lack of dysferlin immunoreactivity. As sign of extensive damage and atrophy, muscles of blAJ mice presented elevated numbers of myofibers with internal nuclei, increased number of myofibers with reduced cross-sectional area and elevated creatine kinase activity in serum. In agreement with the extense muscle damage, mice also showed significantly low motor performance. We generated blAJ mice with myofibers deficient in Cx43 and Cx45 expression and found that all above muscle and systemic alterations were absent, indicating that these two Cxs play a critical role in a novel pathogenic mechanism of dysfernolophaties, which is discussed herein. Therefore, Cx HCs could constitute an attractive target for pharmacologic treatment of dyferlinopathies.


Assuntos
Conexina 43/genética , Conexinas/genética , Disferlina/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/prevenção & controle , Miofibrilas/genética , Animais , Cálcio/metabolismo , Conexina 43/deficiência , Conexinas/deficiência , Creatina Quinase/sangue , Creatina Quinase/genética , Modelos Animais de Doenças , Disferlina/deficiência , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/patologia , Mutação , Miofibrilas/metabolismo , Miofibrilas/patologia , Permeabilidade , Condicionamento Físico Animal , Teste de Desempenho do Rota-Rod , Sarcolema/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa