Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(6): 1348-1358, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38105531

RESUMO

Neurodegenerative diseases impact the structure and operation of the nervous system, causing progressive and irreparable harm. Efforts for distinguishing neurodegenerative diseases in their early stages are continuing. Despite several biomarkers being identified, there is always search for more accurate and abundant ones. Additionally, it can be difficult to pinpoint the precise neurodegenerative disorder affecting a patient as the symptoms of these conditions frequently overlap. Numerous studies have shown that pathological changes occur years before clinical signs appear. Therefore, it is crucial to discover blood-based biomarkers for neurodegenerative diseases for easier and earlier diagnosis. Proximity extension assay is a unique proteomics method that uses antibodies linked to oligonucleotides for quantifying proteins with real-time PCR. Proximity extension assay can identify even low-quantity proteins using a small volume of specimens with increased sensitivity compared to conventional methods. In this article, we reviewed the employment of proximity extension assay technology to detect biomarkers or protein profiles for several neurodegenerative diseases.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Humanos , Proteômica/métodos , Esclerose Múltipla/diagnóstico , Doenças Neurodegenerativas/metabolismo , Biomarcadores/metabolismo , Diagnóstico Precoce
2.
Neurochem Res ; 47(10): 3202-3211, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35842554

RESUMO

Systemic inflammation can have devastating effects on the central nervous system via its resident immune cells, the microglia. One of the primary mediators of this inflammation is inflammasomes, multiprotein complexes that trigger a release of inflammatory proteins when activated. Melatonin, a hormone with anti-inflammatory effects, is an attractive candidate for suppressing such inflammation. In this study, we have investigated how melatonin alters the microRNA (miRNA) transcriptome of microglial cells. For that purpose, we have performed RNA sequencing on a lipopolysaccharide and adenosine triphosphate (LPS + ATP) induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation model in the N9 mouse microglial cell line, with and without melatonin pre-treatment. We have identified 136 differentially expressed miRNAs in cells exposed to LPS + ATP compared to controls and 10 differentially expressed miRNAs in melatonin pre-treated cells compared to the inflammasome group. We have identified miR-155-3p as a miRNA that is upregulated with inflammasome activation and downregulated with melatonin treatment. We further confirmed this pattern of miR-155-3p expression in the brains of mice injected intraperitoneally with LPS. Moreover, an overexpression study with miRNA-155-3p mimic supported the idea that the protective effects of melatonin in NLRP3 inflammasome activation are partly associated with miRNA-155-3p inhibition.


Assuntos
Melatonina , MicroRNAs , Trifosfato de Adenosina/metabolismo , Animais , Inflamassomos/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Melatonina/metabolismo , Melatonina/farmacologia , Camundongos , MicroRNAs/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transcriptoma
3.
Heredity (Edinb) ; 122(3): 294-304, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29955170

RESUMO

The equal probability of transmission of alleles from either parent during sexual reproduction is a central tenet of genetics and evolutionary biology. Yet, there are many cases where this rule is violated. The preferential transmission of alleles or genotypes is termed transmission ratio distortion (TRD). Examples of TRD have been identified in many species, implying that they are universal, but the resolution of species-wide studies of TRD are limited. We have performed a species-wide screen for TRD in over 500 segregating F2 populations of Arabidopsis thaliana using pooled reduced-representation genome sequencing. TRD was evident in up to a quarter of surveyed populations. Most populations exhibited distortion at only one genomic region, with some regions being repeatedly affected in multiple populations. Our results begin to elucidate the species-level architecture of biased transmission of genetic material in A. thaliana, and serve as a springboard for future studies into the biological basis of TRD in this species.


Assuntos
Arabidopsis/genética , Cruzamentos Genéticos , Padrões de Herança , Modelos Genéticos , Alelos , Frequência do Gene , Loci Gênicos , Genética Populacional , Genoma de Planta , Genômica/métodos , Genótipo , Plantas/genética , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
4.
Redox Biol ; 72: 103134, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643749

RESUMO

The cytoprotective transcription factor NRF2 regulates the expression of several hundred genes in mammalian cells and is a promising therapeutic target in a number of diseases associated with oxidative stress and inflammation. Hence, an ability to monitor basal and inducible NRF2 signalling is vital for mechanistic understanding in translational studies. Due to some caveats related to the direct measurement of NRF2 levels, the modulation of NRF2 activity is typically determined by measuring changes in the expression of one or more of its target genes and/or the associated protein products. However, there is a lack of consensus regarding the most relevant set of these genes/proteins that best represents NRF2 activity across cell types and species. We present the findings of a comprehensive literature search that according to stringent criteria identifies GCLC, GCLM, HMOX1, NQO1, SRXN1 and TXNRD1 as a robust panel of markers that are directly regulated by NRF2 in multiple cell and tissue types. We assess the relevance of these markers in clinically accessible biofluids and highlight future challenges in the development and use of NRF2 biomarkers in humans.


Assuntos
Biomarcadores , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Humanos , Animais , Regulação da Expressão Gênica
5.
Front Immunol ; 13: 865772, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418995

RESUMO

The NLRP3 inflammasome is an intracellular multiprotein complex that plays an essential role in the innate immune system by identifying and eliminating a plethora of endogenous and exogenous threats to the host. Upon activation of the NLRP3 complex, pro-inflammatory cytokines are processed and released. Furthermore, activation of the NLRP3 inflammasome complex can induce pyroptotic cell death, thereby propagating the inflammatory response. The aberrant activity and detrimental effects of NLRP3 inflammasome activation have been associated with cardiovascular, neurodegenerative, metabolic, and inflammatory diseases. Therefore, clinical strategies targeting the inhibition of the self-propelled NLRP3 inflammasome activation are required. The transcription factor Nrf2 regulates cellular stress response, controlling the redox equilibrium, metabolic programming, and inflammation. The Nrf2 pathway participates in anti-oxidative, cytoprotective, and anti-inflammatory activities. This prominent regulator, through pharmacologic activation, could provide a therapeutic strategy for the diseases to the etiology and pathogenesis of which NLRP3 inflammasome contributes. In this review, current knowledge on NLRP3 inflammasome activation and Nrf2 pathways is presented; the relationship between NLRP3 inflammasome signaling and Nrf2 pathway, as well as the pre/clinical use of Nrf2 activators against NLRP3 inflammasome activation in disorders of the central nervous system, are thoroughly described. Cumulative evidence points out therapeutic use of Nrf2 activators against NLRP3 inflammasome activation or diseases that NLRP3 inflammasome contributes to would be advantageous to prevent inflammatory conditions; however, the side effects of these molecules should be kept in mind before applying them to clinical practice.


Assuntos
Doenças do Sistema Nervoso Central , Inflamassomos , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
6.
Front Immunol ; 12: 737065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858398

RESUMO

NLRP3 inflammasome activation contributes to several pathogenic conditions, including lipopolysaccharide (LPS)-induced sickness behavior characterized by reduced mobility and depressive behaviors. Dimethyl fumarate (DMF) is an immunomodulatory and anti-oxidative molecule commonly used for the symptomatic treatment of multiple sclerosis and psoriasis. In this study, we investigated the potential use of DMF against microglial NLRP3 inflammasome activation both in vitro and in vivo. For in vitro studies, LPS- and ATP-stimulated N9 microglial cells were used to induce NLRP3 inflammasome activation. DMF's effects on inflammasome markers, pyroptotic cell death, ROS formation, and Nrf2/NF-κB pathways were assessed. For in vivo studies, 12-14 weeks-old male BALB/c mice were treated with LPS, DMF + LPS and ML385 + DMF + LPS. Behavioral tests including open field, forced swim test, and tail suspension test were carried out to see changes in lipopolysaccharide-induced sickness behavior. Furthermore, NLRP3 and Caspase-1 expression in isolated microglia were determined by immunostaining. Here we demonstrated that DMF ameliorated LPS and ATP-induced NLRP3 inflammasome activation by reducing IL-1ß, IL-18, caspase-1, and NLRP3 levels, reactive oxygen species formation and damage, and inhibiting pyroptotic cell death in N9 murine microglia via Nrf2/NF-κB pathways. DMF also improved LPS-induced sickness behavior in male mice and decreased caspase-1/NLRP3 levels via Nrf2 activation. Additionally, we showed that DMF pretreatment decreased miR-146a and miR-155 both in vivo and in vitro. Our results proved the effectiveness of DMF on the amelioration of microglial NLRP3 inflammasome activation. We anticipate that this study will provide the foundation consideration for further studies aiming to suppress NLRP3 inflammasome activation associated with in many diseases and a better understanding of its underlying mechanisms.


Assuntos
Fumarato de Dimetilo/uso terapêutico , Comportamento de Doença/fisiologia , Fatores Imunológicos/uso terapêutico , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Microglia/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Esclerose Múltipla/tratamento farmacológico , Psoríase/tratamento farmacológico , Transdução de Sinais
7.
Front Immunol ; 10: 1511, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31327964

RESUMO

Inflammation is a crucial component of various stress-induced responses that contributes to the pathogenesis of major depressive disorder (MDD). Depressive-like behavior (DLB) is characterized by decreased mobility and depressive behavior that occurs in systemic infection induced by Lipopolysaccharide (LPS) in experimental animals and is considered as a model of exacerbation of MDD. We assessed the effects of melatonin on behavioral changes and inflammatory cytokine expression in hippocampus of mice in LPS-induced DLB, as well as its effects on NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation, oxidative stress and pyroptotic cell death in murine microglia in vitro. Intraperitoneal 5 mg/kg dose of LPS was used to mimic depressive-like behaviors and melatonin was given at a dose of 500 mg/kg for 4 times with 6 h intervals, starting at 2 h before LPS administration. Behavioral assessment was carried out at 24 h post-LPS injection by tail suspension and forced swimming tests. Additionally, hippocampal cytokine and NLRP3 protein levels were estimated. Melatonin increased mobility time of LPS-induced DLB mice and suppressed NLRP3 expression and interleukin-1ß (IL-1ß) cleavage in the hippocampus. Immunofluorescence staining of hippocampal tissue showed that NLRP3 is mainly expressed in ionized calcium-binding adapter molecule 1 (Iba1) -positive microglia. Our results show that melatonin prevents LPS and Adenosine triphosphate (ATP) induced NLRP3 inflammasome activation in murine microglia in vitro, evidenced by inhibition of NLRP3 expression, Apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, caspase-1 cleavage and interleukin-1ß (IL-1ß) maturation and secretion. Additionally, melatonin inhibits pyroptosis, production of mitochondrial and cytosolic reactive oxygen species (ROS) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling. The beneficial effects of melatonin on NLRP3 inflammasome activation were associated with nuclear factor erythroid 2-related factor 2 (Nrf2) and Silent information regulator 2 homolog 1 (SIRT1) activation, which were reversed by Nrf2 siRNA and SIRT1 inhibitor treatment.


Assuntos
Depressão/tratamento farmacológico , Inflamassomos/metabolismo , Melatonina/farmacologia , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sirtuína 1/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Depressão/induzido quimicamente , Feminino , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Microglia/citologia , Microglia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa