Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361736

RESUMO

How specific interactions between plant and pathogenic, commensal, or mutualistic microorganisms are mediated and how bacteria are selected by a plant are important questions to address. Here, an Arabidopsis thaliana mutant called chs5 partially deficient in the biogenesis of isoprenoid precursors was shown to extend its metabolic remodeling to phenylpropanoids and lipids in addition to carotenoids, chlorophylls, and terpenoids. Such a metabolic profile was concomitant to increased colonization of the phyllosphere by the pathogenic strain Pseudomonas syringae pv. tomato DC3000. A thorough microbiome analysis by 16S sequencing revealed that Streptomyces had a reduced colonization potential in chs5. This study revealed that the bacteria-Arabidopsis interaction implies molecular processes impaired in the chs5 mutant. Interestingly, our results revealed that the metabolic status of A. thaliana was crucial for the specific recruitment of Streptomyces into the microbiota. More generally, this study highlights specific as well as complex molecular interactions that shape the plant microbiota.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Streptomyces , Arabidopsis/metabolismo , Streptomyces/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/metabolismo , Proteínas de Arabidopsis/metabolismo
2.
Environ Microbiol ; 18(4): 1289-300, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26769162

RESUMO

Arsenic is a toxic metalloid known to generate an important oxidative stress in cells. In the present study, we focused our attention on an alga related to the genus Coccomyxa, exhibiting an extraordinary capacity to resist high concentrations of arsenite and arsenate. The integrated analysis of high-throughput transcriptomic data and non-targeted metabolomic approaches highlighted multiple levels of protection against arsenite. Indeed, Coccomyxa sp. Carn induced a set of transporters potentially preventing the accumulation of this metalloid in the cells and presented a distinct arsenic metabolism in comparison to another species more sensitive to that compound, i.e. Euglena gracilis, especially in regard to arsenic methylation. Interestingly, Coccomyxa sp. Carn was characterized by a remarkable accumulation of the strong antioxidant glutathione (GSH). Such observation could explain the apparent low oxidative stress in the intracellular compartment, as suggested by the transcriptomic analysis. In particular, the high amount of GSH in the cell could play an important role for the tolerance to arsenate, as suggested by its partial oxidation into oxidized glutathione in presence of this metalloid. Our results therefore reveal that this alga has acquired multiple and original defence mechanisms allowing the colonization of extreme ecosystems such as acid mine drainages.


Assuntos
Arseniatos/metabolismo , Arsenitos/metabolismo , Clorófitas/metabolismo , Glutationa/metabolismo , Metabolômica , Proteínas de Membrana Transportadoras/metabolismo , Metilação , Oxirredução
3.
Mol Cell ; 32(3): 347-58, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18995833

RESUMO

Central to the transcriptional control of the Escherichia coli heat shock regulon is the stress-dependent inhibition of the sigma(32) subunit of RNA polymerase by reversible association with the DnaK chaperone, mediated by the DnaJ cochaperone. Here we identified two distinct sites in sigma(32) as binding sites for DnaK and DnaJ. DnaJ binding destabilizes a distant region of sigma(32) in close spatial vicinity of the DnaK-binding site, and DnaK destabilizes a region in the N-terminal domain, the primary target for the FtsH protease, which degrades sigma(32) in vivo. Our findings suggest a molecular mechanism for the DnaK- and DnaJ-mediated inactivation of sigma(32) as part of the heat shock response. They furthermore demonstrate that DnaK and DnaJ binding can induce conformational changes in a native protein substrate even at distant sites, a feature that we propose to be of general relevance for the action of Hsp70 chaperone systems.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Fator sigma/genética , Sequência de Aminoácidos , Sítios de Ligação , Cromatografia em Gel , Estabilidade de Medicamentos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico , Cinética , Modelos Moleculares , Fragmentos de Peptídeos/química , Conformação Proteica , Dobramento de Proteína , Fator sigma/química , Fator sigma/metabolismo
4.
Environ Microbiol ; 17(6): 1941-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24698441

RESUMO

Arsenic is a toxic metalloid known to cause multiple and severe cellular damages, including lipid peroxidation, protein misfolding, mutagenesis and double and single-stranded DNA breaks. Thus, exposure to this compound is lethal for most organisms but some species such as the photosynthetic protist Euglena mutabilis are able to cope with very high concentrations of this metalloid. Our comparative transcriptomic approaches performed on both an arsenic hypertolerant protist, i.e. E. mutabilis, and a more sensitive one, i.e. E. gracilis, revealed multiple mechanisms involved in arsenic tolerance. Indeed, E. mutabilis prevents efficiently the accumulation of arsenic in the cell through the expression of several transporters. More surprisingly, this protist induced the expression of active DNA reparation and protein turnover mechanisms, which allow E. mutabilis to maintain functional integrity of the cell under challenging conditions. Our observations suggest that this protist has acquired specific functions regarding arsenic and has developed an original metabolism to cope with acid mine drainages-related stresses.


Assuntos
Arsênio/metabolismo , Transporte Biológico/genética , Euglena/metabolismo , Proteínas de Membrana Transportadoras/genética , Transporte Biológico/fisiologia , Resistência a Medicamentos/genética , Resistência a Medicamentos/fisiologia , Euglena/efeitos dos fármacos , Euglena/genética , Proteínas de Membrana Transportadoras/metabolismo , Fotossíntese
5.
J Proteome Res ; 12(6): 3063-70, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23641718

RESUMO

In silico gene prediction has proven to be prone to errors, especially regarding precise localization of start codons that spread in subsequent biological studies. Therefore, the high throughput characterization of protein N-termini is becoming an emerging challenge in the proteomics and especially proteogenomics fields. The trimethoxyphenyl phosphonium (TMPP) labeling approach (N-TOP) is an efficient N-terminomic approach that allows the characterization of both N-terminal and internal peptides in a single experiment. Due to its permanent positive charge, TMPP labeling strongly affects MS/MS fragmentation resulting in unadapted scoring of TMPP-derivatized peptide spectra by classical search engines. This behavior has led to difficulties in validating TMPP-derivatized peptide identifications with usual score filtering and thus to low/underestimated numbers of identified N-termini. We present herein a new strategy (dN-TOP) that overwhelmed the previous limitation allowing a confident and automated N-terminal peptide validation thanks to a combined labeling with light and heavy TMPP reagents. We show how this double labeling allows increasing the number of validated N-terminal peptides. This strategy represents a considerable improvement to the well-established N-TOP method with an enhanced and accelerated data processing making it now fully compatible with high-throughput proteogenomics studies.


Assuntos
Proteínas de Bactérias/análise , Cromatografia Líquida/normas , Marcação por Isótopo/métodos , Fragmentos de Peptídeos/isolamento & purificação , Espectrometria de Massas em Tandem/normas , Sequência de Aminoácidos , Proteínas de Bactérias/química , Dados de Sequência Molecular , Compostos Organofosforados/química , Estrutura Terciária de Proteína , Proteobactérias/química , Proteobactérias/crescimento & desenvolvimento , Proteômica , Eletricidade Estática
6.
Appl Microbiol Biotechnol ; 97(9): 3827-41, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23546422

RESUMO

Arsenic causes threats for environmental and human health in numerous places around the world mainly due to its carcinogenic potential at low doses. Removing arsenic from contaminated sites is hampered by the occurrence of several oxidation states with different physicochemical properties. The actual state of arsenic strongly depends on its environment whereby microorganisms play important roles in its geochemical cycle. Due to its toxicity, nearly all organisms possess metabolic mechanisms to resist its hazardous effects, mainly by active extrusion, but also by extracellular precipitation, chelation, and intracellular sequestration. Some microbes are even able to actively use various arsenic compounds in their metabolism, either as an electron donor or as a terminal electron acceptor for anaerobic respiration. Some microorganisms can also methylate inorganic arsenic, probably as a resistance mechanism, or demethylate organic arsenicals. Bioavailability of arsenic in water and sediments is strongly influenced by such microbial activities. Therefore, understanding microbial reactions to arsenic is of importance for the development of technologies for improved bioremediation of arsenic-contaminated waters and environments. This review gives an overview of the current knowledge on bacterial interactions with arsenic and on biotechnologies for its detoxification and removal.


Assuntos
Arsênio/metabolismo , Bactérias/metabolismo , Biotecnologia/métodos , Biodegradação Ambiental , Reatores Biológicos/microbiologia
7.
PLoS Genet ; 6(2): e1000859, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20195515

RESUMO

Bacteria of the Thiomonas genus are ubiquitous in extreme environments, such as arsenic-rich acid mine drainage (AMD). The genome of one of these strains, Thiomonas sp. 3As, was sequenced, annotated, and examined, revealing specific adaptations allowing this bacterium to survive and grow in its highly toxic environment. In order to explore genomic diversity as well as genetic evolution in Thiomonas spp., a comparative genomic hybridization (CGH) approach was used on eight different strains of the Thiomonas genus, including five strains of the same species. Our results suggest that the Thiomonas genome has evolved through the gain or loss of genomic islands and that this evolution is influenced by the specific environmental conditions in which the strains live.


Assuntos
Betaproteobacteria/genética , Evolução Molecular , Genoma Bacteriano/genética , Adaptação Fisiológica/genética , Arsênio/metabolismo , Carbono/metabolismo , Hibridização Genômica Comparativa , Metabolismo Energético/genética , Meio Ambiente , Transferência Genética Horizontal/genética , Genes Bacterianos/genética , Genes Duplicados/genética , Variação Genética , Ilhas Genômicas/genética , Redes e Vias Metabólicas/genética , Plasmídeos/genética , Prófagos/genética
9.
Appl Microbiol Biotechnol ; 93(4): 1735-44, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21792588

RESUMO

Euglena mutabilis is a protist ubiquitously found in extreme environments such as acid mine drainages which are often rich in arsenic. The response of E. mutabilis to this metalloid was compared to that of Euglena gracilis, a protist not found in such environments. Membrane fatty acid composition, cell surface properties, arsenic accumulation kinetics, and intracellular arsenic speciation were determined. The results revealed a modification in fatty acid composition leading to an increased membrane fluidity in both Euglena species under sublethal arsenic concentrations exposure. This increased membrane fluidity correlated to an induced gliding motility observed in E. mutabilis in the presence of this metalloid but did not affect the flagellar dependent motility of E. gracilis. Moreover, when compared to E. gracilis, E. mutabilis showed highly hydrophobic cell surface properties and a higher tolerance to water-soluble arsenical compounds but not to hydrophobic ones. Finally, E. mutabilis showed a lower accumulation of total arsenic in the intracellular compartment and an absence of arsenic methylated species in contrast to E. gracilis. Taken together, our results revealed the existence of a specific arsenical response of E. mutabilis that may play a role in its hypertolerance to this toxic metalloid.


Assuntos
Adaptação Fisiológica , Arsênio/toxicidade , Euglena/efeitos dos fármacos , Poluentes do Solo/toxicidade , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Tolerância a Medicamentos , Euglena/química , Euglena/fisiologia , Ácidos Graxos/análise , Interações Hidrofóbicas e Hidrofílicas , Locomoção , Fluidez de Membrana/efeitos dos fármacos , Propriedades de Superfície
10.
Appl Environ Microbiol ; 77(13): 4685-92, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21571879

RESUMO

In this study, new strains were isolated from an environment with elevated arsenic levels, Sainte-Marie-aux-Mines (France), and the diversity of aoxB genes encoding the arsenite oxidase large subunit was investigated. The distribution of bacterial aoxB genes is wider than what was previously thought. AoxB subfamilies characterized by specific signatures were identified. An exhaustive analysis of AoxB sequences from this study and from public databases shows that horizontal gene transfer has likely played a role in the spreading of aoxB in prokaryotic communities.


Assuntos
Archaea/enzimologia , Archaea/metabolismo , Arsenitos/metabolismo , Bactérias/enzimologia , Bactérias/metabolismo , Microbiologia Ambiental , Oxirredutases/genética , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , França , Dados de Sequência Molecular , Oxirredução , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
11.
Microb Ecol ; 61(4): 793-810, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21318282

RESUMO

Acid mine drainage of the Carnoulès mine (France) is characterized by acid waters containing high concentrations of arsenic and iron. In the first 30 m along the Reigous, a small creek draining the site, more than 38% of the dissolved arsenic was removed by co-precipitation with Fe(III), in agreement with previous studies, which suggest a role of microbial activities in the co-precipitation of As(III) and As(V) with Fe(III) and sulfate. To investigate how this particular ecosystem functions, the bacterial community was characterized in water and sediments by 16S rRNA encoding gene library analysis. Based on the results obtained using a metaproteomic approach on sediments combined with high-sensitivity HPLC-chip spectrometry, several GroEL orthologs expressed by the community were characterized, and the active members of the prokaryotic community inhabiting the creek sediments were identified. Many of these bacteria are ß-proteobacteria such as Gallionella and Thiomonas, but γ-proteobacteria such as Acidithiobacillus ferrooxidans and α-proteobacteria such as Acidiphilium, Actinobacteria, and Firmicutes were also detected.


Assuntos
Arsênio/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Arsênio/análise , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Sedimentos Geológicos/química , Dados de Sequência Molecular , Filogenia
12.
BMC Genomics ; 11: 709, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21167028

RESUMO

BACKGROUND: Arsenic is present in numerous ecosystems and microorganisms have developed various mechanisms to live in such hostile environments. Herminiimonas arsenicoxydans, a bacterium isolated from arsenic contaminated sludge, has acquired remarkable capabilities to cope with arsenic. In particular our previous studies have suggested the existence of a temporal induction of arsenite oxidase, a key enzyme in arsenic metabolism, in the presence of As(III). RESULTS: Microarrays were designed to compare gene transcription profiles under a temporal As(III) exposure. Transcriptome kinetic analysis demonstrated the existence of two phases in arsenic response. The expression of approximatively 14% of the whole genome was significantly affected by an As(III) early stress and 4% by an As(III) late exposure. The early response was characterized by arsenic resistance, oxidative stress, chaperone synthesis and sulfur metabolism. The late response was characterized by arsenic metabolism and associated mechanisms such as phosphate transport and motility. The major metabolic changes were confirmed by chemical, transcriptional, physiological and biochemical experiments. These early and late responses were defined as general stress response and specific response to As(III), respectively. CONCLUSION: Gene expression patterns suggest that the exposure to As(III) induces an acute response to rapidly minimize the immediate effects of As(III). Upon a longer arsenic exposure, a broad metabolic response was induced. These data allowed to propose for the first time a kinetic model of the As(III) response in bacteria.


Assuntos
Arsênio/toxicidade , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Oxalobacteraceae/efeitos dos fármacos , Oxalobacteraceae/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Análise por Conglomerados , Cinética , Movimento/efeitos dos fármacos , Oxalobacteraceae/metabolismo , Oxirredução/efeitos dos fármacos , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
13.
BMC Microbiol ; 10: 53, 2010 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-20167112

RESUMO

BACKGROUND: Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III) to As(V) as a detoxification mechanism. RESULTS: In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III). To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (sigma54) of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE) and a putative -12/-24 sigma54-dependent promoter motif was identified upstream of aoxAB coding sequences. CONCLUSION: These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III) in this microorganism.


Assuntos
Regulação Bacteriana da Expressão Gênica , Oxalobacteraceae/genética , Oxalobacteraceae/metabolismo , Oxirredutases/genética , Sequência de Aminoácidos , Arsenitos/metabolismo , Arsenitos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sequência Conservada , Perfilação da Expressão Gênica/métodos , Genes Bacterianos , Redes e Vias Metabólicas , Dados de Sequência Molecular , Mutação , Óperon , Oxalobacteraceae/enzimologia , Oxirredutases/biossíntese , Oxirredutases/metabolismo , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Alinhamento de Sequência , Transcrição Gênica/efeitos dos fármacos
14.
PLoS Genet ; 3(4): e53, 2007 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-17432936

RESUMO

Microbial biotransformations have a major impact on contamination by toxic elements, which threatens public health in developing and industrial countries. Finding a means of preserving natural environments-including ground and surface waters-from arsenic constitutes a major challenge facing modern society. Although this metalloid is ubiquitous on Earth, thus far no bacterium thriving in arsenic-contaminated environments has been fully characterized. In-depth exploration of the genome of the beta-proteobacterium Herminiimonas arsenicoxydans with regard to physiology, genetics, and proteomics, revealed that it possesses heretofore unsuspected mechanisms for coping with arsenic. Aside from multiple biochemical processes such as arsenic oxidation, reduction, and efflux, H. arsenicoxydans also exhibits positive chemotaxis and motility towards arsenic and metalloid scavenging by exopolysaccharides. These observations demonstrate the existence of a novel strategy to efficiently colonize arsenic-rich environments, which extends beyond oxidoreduction reactions. Such a microbial mechanism of detoxification, which is possibly exploitable for bioremediation applications of contaminated sites, may have played a crucial role in the occupation of ancient ecological niches on earth.


Assuntos
Arsênio/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Bactérias/genética , Biodegradação Ambiental , Carbono/metabolismo , Farmacorresistência Bacteriana/genética , Metabolismo Energético , Genoma Bacteriano , Metais/farmacologia , Modelos Biológicos , Oxirredução , Filogenia
15.
Microb Genom ; 6(10)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33034553

RESUMO

Thiomonas bacteria are ubiquitous at acid mine drainage sites and play key roles in the remediation of water at these locations by oxidizing arsenite to arsenate, favouring the sorption of arsenic by iron oxides and their coprecipitation. Understanding the adaptive capacities of these bacteria is crucial to revealing how they persist and remain active in such extreme conditions. Interestingly, it was previously observed that after exposure to arsenite, when grown in a biofilm, some strains of Thiomonas bacteria develop variants that are more resistant to arsenic. Here, we identified the mechanisms involved in the emergence of such variants in biofilms. We found that the percentage of variants generated increased in the presence of high concentrations of arsenite (5.33 mM), especially in the detached cells after growth under biofilm-forming conditions. Analysis of gene expression in the parent strain CB2 revealed that genes involved in DNA repair were upregulated in the conditions where variants were observed. Finally, we assessed the phenotypes and genomes of the subsequent variants generated to evaluate the number of mutations compared to the parent strain. We determined that multiple point mutations accumulated after exposure to arsenite when cells were grown under biofilm conditions. Some of these mutations were found in what is referred to as ICE19, a genomic island (GI) carrying arsenic-resistance genes, also harbouring characteristics of an integrative and conjugative element (ICE). The mutations likely favoured the excision and duplication of this GI. This research aids in understanding how Thiomonas bacteria adapt to highly toxic environments, and, more generally, provides a window to bacterial genome evolution in extreme environments.


Assuntos
Arsenitos/metabolismo , Biofilmes/crescimento & desenvolvimento , Burkholderiales , Genoma Bacteriano/genética , Adaptação Fisiológica/genética , Arseniatos/metabolismo , Arsênio/metabolismo , Burkholderiales/genética , Burkholderiales/crescimento & desenvolvimento , Burkholderiales/metabolismo , Reparo do DNA/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Perfilação da Expressão Gênica , Variação Genética/genética , Ilhas Genômicas/genética , Mineração , Sequenciamento Completo do Genoma
16.
BMC Microbiol ; 9: 127, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19549320

RESUMO

BACKGROUND: Thiomonas strains are ubiquitous in arsenic-contaminated environments. Differences between Thiomonas strains in the way they have adapted and respond to arsenic have never been studied in detail. For this purpose, five Thiomonas strains, that are interesting in terms of arsenic metabolism were selected: T. arsenivorans, Thiomonas spp. WJ68 and 3As are able to oxidise As(III), while Thiomonas sp. Ynys1 and T. perometabolis are not. Moreover, T. arsenivorans and 3As present interesting physiological traits, in particular that these strains are able to use As(III) as an electron donor. RESULTS: The metabolism of carbon and arsenic was compared in the five Thiomonas strains belonging to two distinct phylogenetic groups. Greater physiological differences were found between these strains than might have been suggested by 16S rRNA/rpoA gene phylogeny, especially regarding arsenic metabolism. Physiologically, T. perometabolis and Ynys1 were unable to oxidise As(III) and were less arsenic-resistant than the other strains. Genetically, they appeared to lack the aox arsenic-oxidising genes and carried only a single ars arsenic resistance operon. Thiomonas arsenivorans belonged to a distinct phylogenetic group and increased its autotrophic metabolism when arsenic concentration increased. Differential proteomic analysis revealed that in T. arsenivorans, the rbc/cbb genes involved in the assimilation of inorganic carbon were induced in the presence of arsenic, whereas these genes were repressed in Thiomonas sp. 3As. CONCLUSION: Taken together, these results show that these closely related bacteria differ substantially in their response to arsenic, amongst other factors, and suggest different relationships between carbon assimilation and arsenic metabolism.


Assuntos
Adaptação Fisiológica , Arsênio/metabolismo , Betaproteobacteria/enzimologia , Carbono/metabolismo , Arsenitos/metabolismo , Betaproteobacteria/classificação , Betaproteobacteria/genética , Crescimento Quimioautotrófico/efeitos dos fármacos , Filogenia , Especificidade da Espécie
18.
Environ Sci Pollut Res Int ; 25(2): 1470-1483, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29090447

RESUMO

Several studies have suggested the existence of a close relationship between antibiotic-resistant phenotypes and resistance to other toxic compounds such as heavy metals, which involve co-resistance or cross-resistance mechanisms. A metagenomic library was previously constructed in Escherichia coli with DNA extracted from the bacterial community inhabiting an acid mine drainage (AMD) site highly contaminated with heavy metals. Here, we conducted a search for genes involved in antibiotic resistance using this previously constructed library. In particular, resistance to antibiotics was observed among five clones carrying four different loci originating from CARN5 and CARN2, two genomes reconstructed from the metagenomic data. Among the three CARN2 loci, two carry genes homologous to those previously proposed to be involved in antibiotic resistance. The third CARN2 locus carries a gene encoding a membrane transporter with an unknown function and was found to confer bacterial resistance to rifampicin, gentamycin, and kanamycin. The genome of Thiomonas delicata DSM 16361 and Thiomonas sp. X19 were sequenced in this study. Homologs of genes carried on these three CARN2 loci were found in these genomes, two of these loci were found in genomic islands. Together, these findings confirm that AMD environments contaminated with several toxic metals also constitute habitats for bacteria that function as reservoirs for antibiotic resistance genes.


Assuntos
Adaptação Biológica/genética , Resistência Microbiana a Medicamentos/genética , Genômica , Mineração , Águas Residuárias/microbiologia , Ácidos/farmacologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Bases de Dados Genéticas , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Metais Pesados/farmacologia
19.
Microb Biotechnol ; 10(4): 789-803, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169492

RESUMO

Bacteria of the genus Thiomonas are found ubiquitously in arsenic contaminated waters such as acid mine drainage (AMD), where they contribute to the precipitation and the natural bioremediation of arsenic. In these environments, these bacteria have developed a large range of resistance strategies among which the capacity to form particular biofilm structures. The biofilm formation is one of the most ubiquitous adaptive response observed in prokaryotes to various stresses, such as those induced in the presence of toxic compounds. This study focused on the process of biofilm formation in three Thiomonas strains (CB1, CB2 and CB3) isolated from the same AMD. The results obtained here show that these bacteria are all capable of forming biofilms, but the architecture and the kinetics of formation of these biofilms differ depending on whether arsenite is present in the environment and from one strain to another. Indeed, two strains favoured biofilm formation, whereas one favoured motility in the presence of arsenite. To identify the underlying mechanisms, the patterns of expression of some genes possibly involved in the process of biofilm formation were investigated in Thiomonas sp. CB2 in the presence and absence of arsenite, using a transcriptomic approach (RNA-seq). The findings obtained here shed interesting light on how the formation of biofilms, and the motility processes contribute to the adaptation of Thiomonas strains to extreme environments.


Assuntos
Arsenitos/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Burkholderiales/efeitos dos fármacos , Burkholderiales/fisiologia , Poluentes Ambientais/metabolismo , Locomoção/efeitos dos fármacos , Burkholderiales/genética , Farmacorresistência Bacteriana , Perfilação da Expressão Gênica
20.
Res Microbiol ; 167(3): 234-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26829305

RESUMO

Acidithiobacillus ferrooxidans is an acidophile that thrives in metal-contaminated environments and tolerates high levels of uranium. To gain a better understanding of the processes involved in U(VI) resistance, comparative proteomics was used. The proteome of A. ferrooxidans was grown in the presence and absence of 0.5 mM U(VI); expression of 17 proteins was upregulated and one was downregulated. Most proteins with increased expression are part of the general stress response or are involved in reactive oxygen species detoxification. Four novel proteins showed increased expression in the presence of U(VI) and may contribute to U(VI) resistance via thiol homoeostasis and U(VI) binding.


Assuntos
Acidithiobacillus/química , Acidithiobacillus/crescimento & desenvolvimento , Proteoma/análise , Urânio/metabolismo , Acidithiobacillus/efeitos dos fármacos , Acidithiobacillus/metabolismo , Tolerância a Medicamentos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa