Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Future Oncol ; 18(5): 597-611, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35034477

RESUMO

Purpose: The present study was designed to understand the role of expression variations of mitochondrial imported sirtuins in brain tumorigenesis. The expression levels of mitochondrial imported sirtuins were further analyzed for biomarker potential. Methods: Samples from 200 brain tumors and 200 healthy control tissues were used for expression analysis using quantitative PCR and for DNA damage using LORD-Q analysis. Results: Significant deregulation of SIRT3 (p = 0.002), SIRT4 (p = 0.03) and SIRT5 (p = 0.006) was observed in brain tumors versus controls. Co-expression analysis showed a significant correlation between the mitochondrial imported sirtuins versus apoptotic genes. LORD-Q analysis showed a significantly increased frequency of lesions/10 kb of mitochondrial imported sirtuins (p < 0.0001) in brain tumor tissue versus controls. Conclusion: The present study showed a correlation between variations of mitochondrial imported sirtuins and increased brain tumor risk.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Carcinogênese/metabolismo , Mitocôndrias/metabolismo , Sirtuínas/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Neoplasias Encefálicas/genética , Carcinogênese/genética , Estudos de Casos e Controles , Bases de Dados Factuais , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Sirtuínas/genética
2.
J Chem Inf Model ; 59(7): 3229-3239, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31244092

RESUMO

Juvenile myelomonocytic leukemia (JMML) is an invasive myeloproliferative neoplasm and is a childhood disease with very high clinical lethality. The SHP2 is encoded by the PTPN11 gene, which is a nonreceptor (pY)-phosphatase and mutation causes JMML. The structural hierarchy of SHP2 includes protein tyrosine phosphatase domain (PTP) and Src-homology 2 domain (N-SH2 and C-SH2). Somatic mutation (E76Q) in the interface of SH2-PTP domain is the most commonly identified mutation found in up to 35% of patients with JMML. The mechanism of this mutant associated with JMML is poorly understood. Here, molecular dynamics simulation was performed on wild-type and mutant (E76Q) of SHP2 to explore the precise impact of gain-of-function on PTP's activity. Consequently, such impact rescues the SHP2 protein from autoinhibition state through losing the interface interactions of Q256/F7 and S502/Q76 or weakening interactions of Q256/R4, Q510/G60, and Q506/A72 between N-SH2 and PTP domains. The consequences of these interactions further relieve the D'E loop away from the PTP catalytic site. The following study would provide a mechanistic insight for better understanding of how individual SHP2 mutations alter the PTP's activity at the atomic level.


Assuntos
Mutação com Ganho de Função , Leucemia Mielomonocítica Juvenil/genética , Simulação de Dinâmica Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Conformação Proteica
3.
Adv Exp Med Biol ; 1163: 335-357, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31707710

RESUMO

The allosteric property of globular proteins is applauded as their intrinsic ability to regulate distant sites, and this property further plays a critical role in a wide variety of cellular regulatory mechanisms. Recent advancements and studies have revealed the manifestation of allostery in intrinsically disordered proteins or regions as allosteric sites present within or mediated by IDP/IDRs facilitates the signaling interactions for various biological mechanisms which would otherwise be impossible for globular proteins to regulate. This thematic review has highlighted the biological outcomes that can be achieved by the mechanism of allosteric regulation of intrinsically disordered proteins or regions. The similar mechanism has been implemented on Adenovirus 5 early region 1A and tumor apoptosis protein p53 in correspondence with other partners in binary and ternary complexes, which are the subject of the current review. Both these proteins regulate once they bind to their partners, consequently, forming either a binary or a ternary complex. Allosteric regulation by IDPs is currently a subject undergoing intense study, and the ongoing research work will ensure a better understanding of precision and efficiency of cellular regulation by them. Allosteric regulation mechanism can also be researched by intrinsically disordered protein-specific force field.


Assuntos
Proteínas Intrinsicamente Desordenadas , Regulação Alostérica , Proteínas Intrinsicamente Desordenadas/química , Ligação Proteica , Transdução de Sinais
4.
Int J Biol Macromol ; 176: 510-519, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607137

RESUMO

The aggregation of amyloid has been an important event in the pathology of amyloidogenicity. A number of small molecules have been designed for Amyloidosis treatment. Molecular tweezer CLR01, a potential drug for misfolded ß-amyloids inhibition, was reportedly bind directly to Lysine residues and interrupt oligomerization. However, the disaggregation mechanism of amyloid for this inhibitor is unclear. Here we used long timescale of molecular dynamic simulation to reveal the mechanism of disaggregation for pentamer prion amyloid. Molecular docking and molecular dynamics simulation demonstrate that CLR01 is attached with Lysine222 nitrogen by π-cation interaction of its nine aromatic rings and formation of salt bridge/hydrogen bond of one of the two rotatable peripheral anionic phosphate groups. Upon CLR01 binding, we found a major shifting occurs in initial conformation of the oligomer and stretch out the N-terminal chain A from the rest of the amyloid which seems to be the first stage of disaggregated the fibrils slowly yet efficiently. Moreover, the CLR01 remodelled the pentamer Prion220-272 into a compact structure which might be the resistant conformation for further oligomerization. Our work will contribute to better understand the interaction and deterioration mechanism of molecular tweezer for prions and similar amyloids, and offer significant insights into therapeutic development for Amyloidosis treatment.


Assuntos
Amiloide/química , Hidrocarbonetos Aromáticos com Pontes/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Organofosfatos/química , Príons/química , Agregados Proteicos , Humanos
5.
Int J Biol Macromol ; 149: 70-80, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31987943

RESUMO

In bacteria, protein lysine acetylation circuits can control core processes such as carbon metabolism. In E. coli, cyclic adenosine monophosphate (cAMP) controls the transcription level and activity of protein lysine acetyltransferase (PAT). The M. tuberculosis PatA (Mt-PatA) resides in two different conformations; the activated state and autoinhibited state. However, the mechanism of cAMP allosteric regulation of Mt-PatA remains mysterious. Here, we performed extensive all-atom molecular dynamics (MD) simulations (three independent run for each system) and built a residue-residue dynamic correlation network to show how cAMP mediates allosteric activation. cAMP binds at the regulatory site in the regulatory domain, which is 32 Å away from the catalytic site. An extensive conformational restructuring relieves autoinhibition caused by a molecular Lid (residues 161-203) that shelters the substrate-binding surface. In the activated state, the regulatory domain rotates (~40°) around Ser144, which links both domains. Rotation removes the C-terminus from the cAMP site and relieves the autoinhibited state. Also, the molecular Lid refolds and creates an activator binding site. A conserved residue, His173, was mutated into Lys in the Lid, and during an MD trajectory of the activated state, positioned itself near an acetyl donor molecule in the catalytic domain, suggesting a direct mechanism for acetylation. This study describes the allosteric framework for Mt-PatA and prerequisite intermediate states that permit long-distance signal transmission.


Assuntos
Proteínas de Bactérias/química , Lisina Acetiltransferases/química , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/enzimologia , Regulação Alostérica , Proteínas de Bactérias/genética , Domínio Catalítico , Lisina Acetiltransferases/genética , Mycobacterium tuberculosis/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa