RESUMO
The relationship between the human placenta-the extraembryonic organ made by the fetus, and the decidua-the mucosal layer of the uterus, is essential to nurture and protect the fetus during pregnancy. Extravillous trophoblast cells (EVTs) derived from placental villi infiltrate the decidua, transforming the maternal arteries into high-conductance vessels1. Defects in trophoblast invasion and arterial transformation established during early pregnancy underlie common pregnancy disorders such as pre-eclampsia2. Here we have generated a spatially resolved multiomics single-cell atlas of the entire human maternal-fetal interface including the myometrium, which enables us to resolve the full trajectory of trophoblast differentiation. We have used this cellular map to infer the possible transcription factors mediating EVT invasion and show that they are preserved in in vitro models of EVT differentiation from primary trophoblast organoids3,4 and trophoblast stem cells5. We define the transcriptomes of the final cell states of trophoblast invasion: placental bed giant cells (fused multinucleated EVTs) and endovascular EVTs (which form plugs inside the maternal arteries). We predict the cell-cell communication events contributing to trophoblast invasion and placental bed giant cell formation, and model the dual role of interstitial EVTs and endovascular EVTs in mediating arterial transformation during early pregnancy. Together, our data provide a comprehensive analysis of postimplantation trophoblast differentiation that can be used to inform the design of experimental models of the human placenta in early pregnancy.
Assuntos
Multiômica , Primeiro Trimestre da Gravidez , Trofoblastos , Feminino , Humanos , Gravidez , Movimento Celular , Placenta/irrigação sanguínea , Placenta/citologia , Placenta/fisiologia , Primeiro Trimestre da Gravidez/fisiologia , Trofoblastos/citologia , Trofoblastos/metabolismo , Trofoblastos/fisiologia , Decídua/irrigação sanguínea , Decídua/citologia , Relações Materno-Fetais/fisiologia , Análise de Célula Única , Miométrio/citologia , Miométrio/fisiologia , Diferenciação Celular , Organoides/citologia , Organoides/fisiologia , Células-Tronco/citologia , Transcriptoma , Fatores de Transcrição/metabolismo , Comunicação CelularRESUMO
In COVID-19, hyperinflammatory and dysregulated immune responses contribute to severity. Patients with pre-existing autoimmune conditions can therefore be at increased risk of severe COVID-19 and/or associated sequelae, yet SARS-CoV-2 infection in this group has been little studied. Here, we performed single-cell analysis of peripheral blood mononuclear cells from patients with three major autoimmune diseases (rheumatoid arthritis, psoriasis, or multiple sclerosis) during SARS-CoV-2 infection. We observed compositional differences between the autoimmune disease groups coupled with altered patterns of gene expression, transcription factor activity, and cell-cell communication that substantially shape the immune response under SARS-CoV-2 infection. While enrichment of HLA-DRlow CD14+ monocytes was observed in all three autoimmune disease groups, type-I interferon signaling as well as inflammatory T cell and monocyte responses varied widely between the three groups of patients. Our results reveal disturbed immune responses to SARS-CoV-2 in patients with pre-existing autoimmunity, highlighting important considerations for disease treatment and follow-up.
Assuntos
Doenças Autoimunes , COVID-19 , Humanos , SARS-CoV-2 , Leucócitos Mononucleares , Multiômica , Autoimunidade , Análise de Célula ÚnicaRESUMO
Amyloid protein aggregates are pathological hallmarks of more than fifty human diseases including the most common neurodegenerative disorders. The atomic structures of amyloid fibrils have now been determined, but the process by which soluble proteins nucleate to form amyloids remains poorly characterised and difficult to study, even though this is the key step to understand to prevent the formation and spread of aggregates. Here we use massively parallel combinatorial mutagenesis, a kinetic selection assay, and machine learning to reveal the transition state of the nucleation reaction of amyloid beta, the protein that aggregates in Alzheimer's disease. By quantifying the nucleation of >140,000 proteins we infer the changes in activation energy for all 798 amino acid substitutions in amyloid beta and the energetic couplings between >600 pairs of mutations. This unprecedented dataset provides the first comprehensive view of the energy landscape and the first large-scale measurement of energetic couplings for a protein transition state. The energy landscape reveals that the amyloid beta nucleation transition state contains a short structured C-terminal hydrophobic core with a subset of interactions similar to mature fibrils. This study demonstrates the feasibility of using mutation-selection-sequencing experiments to study transition states and identifies the key molecular species that initiates amyloid beta aggregation and, potentially, Alzheimer's disease.
RESUMO
In humans, balanced invasion of trophoblast cells into the uterine mucosa, the decidua, is critical for successful pregnancy. Evidence suggests that this process is regulated by uterine natural killer (uNK) cells, but how they influence reproductive outcomes is unclear. Here, we used our trophoblast organoids and primary tissue samples to determine how uNK cells affect placentation. By locating potential interaction axes between trophoblast and uNK cells using single-cell transcriptomics and in vitro modeling of these interactions in organoids, we identify a uNK cell-derived cytokine signal that promotes trophoblast differentiation at the late stage of the invasive pathway. Moreover, it affects transcriptional programs involved in regulating blood flow, nutrients, and inflammatory and adaptive immune responses, as well as gene signatures associated with disorders of pregnancy such as pre-eclampsia. Our findings suggest mechanisms on how optimal immunological interactions between uNK cells and trophoblast enhance reproductive success.
Assuntos
Trofoblastos Extravilosos , Útero , Gravidez , Feminino , Humanos , Útero/metabolismo , Placentação/fisiologia , Trofoblastos , Células Matadoras NaturaisRESUMO
BACKGROUND: Acute lymphoblastic leukemia (ALL) cells treated with drugs can become drug-tolerant if co-cultured with protective stromal mouse embryonic fibroblasts (MEFs). RESULTS: We performed transcriptional profiling on these stromal fibroblasts to investigate if they were affected by the presence of drug-treated ALL cells. These mitotically inactivated MEFs showed few changes in gene expression, but a family of sequences of which transcription is significantly increased was identified. A sequence related to this family, which we named cassini, was selected for further characterization. We found that cassini was highly upregulated in drug-treated ALL cells. Analysis of RNAs from different normal mouse tissues showed that cassini expression is highest in spleen and thymus, and can be further enhanced in these organs by exposure of mice to bacterial endotoxin. Heat shock, but not other types of stress, significantly induced the transcription of this locus in ALL cells. Transient overexpression of cassini in human 293 embryonic kidney cells did not increase the cytotoxic or cytostatic effects of chemotherapeutic drugs but provided some protection. Database searches revealed that sequences highly homologous to cassini are present in rodents, apicomplexans, flatworms and primates, indicating that they are conserved in evolution. Moreover, CASSINI RNA was induced in human ALL cells treated with vincristine. Surprisingly, cassini belongs to the previously reported murine family of γ-satellite/major satellite DNA sequences, which were not known to be present in other species. CONCLUSIONS: Our results show that the transcription of at least one member of these sequences is regulated, suggesting that this has a function in normal and transformed immune cells. Expression of these sequences may protect cells when they are exposed to specific stress stimuli.
Assuntos
Proteínas/metabolismo , RNA/metabolismo , Animais , Antineoplásicos Fitogênicos/toxicidade , Apicomplexa , Evolução Biológica , Linhagem Celular Tumoral , Técnicas de Cocultura , Bases de Dados Genéticas , Endotoxinas/toxicidade , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Loci Gênicos , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Platelmintos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Células Precursoras de Linfócitos B/efeitos dos fármacos , Células Precursoras de Linfócitos B/metabolismo , Primatas , Proteínas/genética , Pirimidinas/toxicidade , RNA/análise , RNA/genética , Temperatura , Transfecção , Regulação para Cima/efeitos dos fármacos , Vincristina/toxicidadeRESUMO
Spatial transcriptomic technologies promise to resolve cellular wiring diagrams of tissues in health and disease, but comprehensive mapping of cell types in situ remains a challenge. Here we present Ñell2location, a Bayesian model that can resolve fine-grained cell types in spatial transcriptomic data and create comprehensive cellular maps of diverse tissues. Cell2location accounts for technical sources of variation and borrows statistical strength across locations, thereby enabling the integration of single-cell and spatial transcriptomics with higher sensitivity and resolution than existing tools. We assessed cell2location in three different tissues and show improved mapping of fine-grained cell types. In the mouse brain, we discovered fine regional astrocyte subtypes across the thalamus and hypothalamus. In the human lymph node, we spatially mapped a rare pre-germinal center B cell population. In the human gut, we resolved fine immune cell populations in lymphoid follicles. Collectively, our results present Ñell2location as a versatile analysis tool for mapping tissue architectures in a comprehensive manner.
Assuntos
Análise de Célula Única , Transcriptoma , Animais , Teorema de Bayes , Camundongos , Análise de Célula Única/métodos , Transcriptoma/genéticaRESUMO
Common variable immunodeficiency (CVID), the most prevalent symptomatic primary immunodeficiency, displays impaired terminal B-cell differentiation and defective antibody responses. Incomplete genetic penetrance and ample phenotypic expressivity in CVID suggest the participation of additional pathogenic mechanisms. Monozygotic (MZ) twins discordant for CVID are uniquely valuable for studying the contribution of epigenetics to the disease. Here, we generate a single-cell epigenomics and transcriptomics census of naïve-to-memory B cell differentiation in a CVID-discordant MZ twin pair. Our analysis identifies DNA methylation, chromatin accessibility and transcriptional defects in memory B-cells mirroring defective cell-cell communication upon activation. These findings are validated in a cohort of CVID patients and healthy donors. Our findings provide a comprehensive multi-omics map of alterations in naïve-to-memory B-cell transition in CVID and indicate links between the epigenome and immune cell cross-talk. Our resource, publicly available at the Human Cell Atlas, gives insight into future diagnosis and treatments of CVID patients.
Assuntos
Imunodeficiência de Variável Comum , Linfócitos B , Imunodeficiência de Variável Comum/diagnóstico , Imunodeficiência de Variável Comum/genética , Epigênese Genética , Epigenômica , Centro Germinativo , HumanosRESUMO
The endometrium, the mucosal lining of the uterus, undergoes dynamic changes throughout the menstrual cycle in response to ovarian hormones. We have generated dense single-cell and spatial reference maps of the human uterus and three-dimensional endometrial organoid cultures. We dissect the signaling pathways that determine cell fate of the epithelial lineages in the lumenal and glandular microenvironments. Our benchmark of the endometrial organoids reveals the pathways and cell states regulating differentiation of the secretory and ciliated lineages both in vivo and in vitro. In vitro downregulation of WNT or NOTCH pathways increases the differentiation efficiency along the secretory and ciliated lineages, respectively. We utilize our cellular maps to deconvolute bulk data from endometrial cancers and endometriotic lesions, illuminating the cell types dominating in each of these disorders. These mechanistic insights provide a platform for future development of treatments for common conditions including endometriosis and endometrial carcinoma.
Assuntos
Endométrio/fisiologia , Ciclo Menstrual , Diferenciação Celular , Linhagem da Célula , Microambiente Celular , Neoplasias do Endométrio/patologia , Endométrio/embriologia , Endométrio/patologia , Feminino , Hormônios Esteroides Gonadais/metabolismo , Humanos , Técnicas In Vitro , Organoides , Receptores Notch/metabolismo , Transdução de Sinais , Análise Espaço-Temporal , Técnicas de Cultura de Tecidos , Transcriptoma , Útero/patologia , Proteínas Wnt/metabolismoRESUMO
B-cell activating factor receptor (BAFF-R) is expressed on precursor B acute lymphoblastic leukemia (pre-B ALL) cells, but not on their pre-B normal counterparts. Thus, selective killing of ALL cells is possible by targeting this receptor. Here, we have further examined therapeutic targeting of pre-B ALL based on the presence of the BAFF-R. Mouse pre-B ALL cells lacking BAFF-R function had comparable viability and proliferation to wild-type cells, but were more sensitive to drug treatment in vitro. Viability of human pre-B ALL cells was further reduced when antibodies to the BAFF-R were combined with other drugs, even in the presence of stromal protection. This indicates that inhibition of BAFF-R function reduces fitness of stressed pre-B ALL cells. We tested a novel humanized anti-BAFF-R monoclonal antibody optimalized for FcRγIII-mediated, antibody-dependent cell killing by effector cells. Antibody binding to human ALL cells was inhibitable, in a dose-dependent manner, by recombinant human BAFF. There was no evidence for internalization of the antibodies. The antibodies significantly stimulated natural killer cell-mediated killing of different human patient-derived ALL cells. Moreover, incubation of such ALL cells with these antibodies stimulated phagocytosis by macrophages. When this was tested in an immunodeficient transplant model, mice that were treated with the antibody had a significantly decreased leukemia burden in bone marrow and spleen. In view of the restricted expression of the BAFF-R on normal cells and the multiple anti-pre-B ALL activities stimulated by this antibody, a further examination of its use for treatment of pre-B ALL is warranted.
Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Receptor do Fator Ativador de Células B/imunologia , Imunoterapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Animais , Receptor do Fator Ativador de Células B/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Fragmentos Fc das Imunoglobulinas/administração & dosagem , Fragmentos Fc das Imunoglobulinas/imunologia , Camundongos , Terapia de Alvo Molecular , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologiaRESUMO
The development of resistance to chemotherapy is a major cause of relapse in acute lymphoblastic leukemia (ALL). Though several mechanisms associated with drug resistance have been studied in detail, the role of carbohydrate modification remains unexplored. Here, we investigated the contribution of 9-O-acetylated N-acetylneuraminic acid (Neu5Ac) to survival and drug resistance development in ALL cells. A strong induction of 9-O-acetylated Neu5Ac including 9-O-acetyl GD3 was detected in ALL cells that developed resistance against vincristine or nilotinib, drugs with distinct cytotoxic mechanisms. Removal of 9-O-acetyl residues from Neu5Ac on the cell surface by an O-acetylesterase made ALL cells more vulnerable to such drugs. Moreover, removal of intracellular and cell surface-resident 9-O-acetyl Neu5Ac by lentiviral transduction of the esterase was lethal to ALL cells in vitro even in the presence of stromal protection. Interestingly, expression of the esterase in normal fibroblasts or endothelial cells had no effect on their survival. Transplanted mice induced for expression of the O-acetylesterase in the ALL cells exhibited a reduction of leukemia to minimal cell numbers and significantly increased survival. This demonstrates that Neu5Ac 9-O-acetylation is essential for survival of these cells and suggests that Neu5Ac de-O-acetylation could be used as therapy to eradicate drug-resistant ALL cells.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Ácido N-Acetilneuramínico/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Acetilação , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/urina , Sobrevivência Celular , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Camundongos , Ácido N-Acetilneuramínico/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Pirimidinas/uso terapêutico , Vincristina/uso terapêuticoRESUMO
BACKGROUND: Bcr and Abr are GTPase activating proteins that specifically downregulate activity of the small GTPase Rac in restricted cell types in vivo. Rac1 is expressed in smooth muscle cells, a critical cell type involved in the pathogenesis of pulmonary hypertension. The molecular mechanisms that underlie hypoxia-associated pulmonary hypertension are not well-defined. METHODOLOGY/PRINCIPAL FINDINGS: Bcr and abr null mutant mice were compared to wild type controls for the development of pulmonary hypertension after exposure to hypoxia. Also, pulmonary arterial smooth muscle cells from those mice were cultured in hypoxia and examined for proliferation, p38 activation and IL-6 production. Mice lacking Bcr or Abr exposed to hypoxia developed increased right ventricular pressure, hypertrophy and pulmonary vascular remodeling. Perivascular leukocyte infiltration in the lungs was increased, and under hypoxia bcr-/- and abr-/- macrophages generated more reactive oxygen species. Consistent with a contribution of inflammation and oxidative stress in pulmonary hypertension-associated vascular damage, Bcr and Abr-deficient animals showed elevated endothelial leakage after hypoxia exposure. Hypoxia-treated pulmonary arterial smooth muscle cells from Bcr- or Abr-deficient mice also proliferated faster than those of wild type mice. Moreover, activated Rac1, phosphorylated p38 and interleukin 6 were increased in these cells in the absence of Bcr or Abr. Inhibition of Rac1 activation with Z62954982, a novel Rac inhibitor, decreased proliferation, p38 phosphorylation and IL-6 levels in pulmonary arterial smooth muscle cells exposed to hypoxia. CONCLUSIONS: Bcr and Abr play a critical role in down-regulating hypoxia-induced pulmonary hypertension by deactivating Rac1 and, through this, reducing both oxidative stress generated by leukocytes as well as p38 phosphorylation, IL-6 production and proliferation of pulmonary arterial smooth muscle cells.
Assuntos
Proteínas Ativadoras de GTPase/deficiência , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Proteínas Proto-Oncogênicas c-bcr/deficiência , Animais , Proliferação de Células , Ativação Enzimática , Proteínas Ativadoras de GTPase/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Hipóxia/patologia , Hipóxia/fisiopatologia , Inflamação/patologia , Inflamação/fisiopatologia , Interleucina-6/metabolismo , Leucócitos/patologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Pulmão/fisiopatologia , Camundongos , Modelos Biológicos , Fosforilação , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rac de Ligação ao GTP/metabolismoRESUMO
Although cure rates for acute lymphoblastic leukemia (ALL) have increased, development of resistance to drugs and patient relapse are common. The environment in which the leukemia cells are present during the drug treatment is known to provide significant survival benefit. Here, we have modeled this process by culturing murine Bcr/Abl-positive acute lymphoblastic leukemia cells in the presence of stroma while treating them with a moderate dose of two unrelated drugs, the farnesyltransferase inhibitor lonafarnib and the tyrosine kinase inhibitor nilotinib. This results in an initial large reduction in cell viability of the culture and inhibition of cell proliferation. However, after a number of days, cell death ceases and the culture becomes drug-tolerant, enabling cell division to resume. Using gene expression profiling, we found that the development of drug resistance was accompanied by massive transcriptional upregulation of genes that are associated with general inflammatory responses such as the metalloproteinase MMP9. MMP9 protein levels and enzymatic activity were also increased in ALL cells that had become nilotinib-tolerant. Activation of p38, Akt and Erk correlated with the development of environment-mediated drug resistance (EMDR), and inhibitors of Akt and Erk in combination with nilotinib reduced the ability of the cells to develop resistance. However, inhibition of p38 promoted increased resistance to nilotinib. We conclude that development of EMDR by ALL cells involves changes in numerous intracellular pathways. Development of tolerance to drugs such as nilotinib may therefore be circumvented by simultaneous treatment with other drugs having divergent targets.
RESUMO
Obesity is associated with increased cancer incidence and mortality. We have previously found that obesity in children is associated with a 50% increased recurrence of acute lymphoblastic leukemia (ALL) in high-risk patients. We have therefore developed novel in vivo and in vitro preclinical models to study the mechanism(s) of this association. Obesity increased relapse after monotherapy with vincristine (P = 0.03) in obese mice injected with syngeneic ALL cells. This occurred although the drug was dosed proportionally to body weight, equalizing blood and tissue drug levels. In coculture, 3T3-L1 adipocytes significantly impaired the antileukemia efficacy of vincristine, as well as three other chemotherapies (P < 0.05). Interestingly, this protection was independent of cell-cell contact, and it extended to human leukemia cell lines as well. Adipocytes prevented chemotherapy-induced apoptosis, and this was associated with increased expression of the two prosurvival signals Bcl-2 and Pim-2. These findings highlight the role of the adipocyte in fostering leukemia chemotherapy resistance, and may help explain the increased leukemia relapse rate in obese children and adults. Given the growing prevalence of obesity worldwide, these effects are likely to have increasing importance to cancer treatment.