Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
PLoS Genet ; 15(12): e1008468, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31877123

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disease in which the dystrophin coding for a membrane stabilizing protein is mutated. Recently, the vasculature has also shown to be perturbed in DMD and DMD model mdx mice. Recent DMD transcriptomics revealed the defects were correlated to a vascular endothelial growth factor (VEGF) signaling pathway. To reveal the relationship between DMD and VEGF signaling, mdx mice were crossed with constitutive (CAGCreERTM:Flt1LoxP/LoxP) and endothelial cell-specific conditional gene knockout mice (Cdh5CreERT2:Flt1LoxP/LoxP) for Flt1 (VEGFR1) which is a decoy receptor for VEGF. Here, we showed that while constitutive deletion of Flt1 is detrimental to the skeletal muscle function, endothelial cell-specific Flt1 deletion resulted in increased vascular density, increased satellite cell number and improvement in the DMD-associated phenotype in the mdx mice. These decreases in pathology, including improved muscle histology and function, were recapitulated in mdx mice given anti-FLT1 peptides or monoclonal antibodies, which blocked VEGF-FLT1 binding. The histological and functional improvement of dystrophic muscle by FLT1 blockade provides a novel pharmacological strategy for the potential treatment of DMD.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Distrofia Muscular de Duchenne/tratamento farmacológico , Peptídeos/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Especificidade de Órgãos , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
2.
Muscle Nerve ; 59(5): 594-602, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30698289

RESUMO

INTRODUCTION: The vasculature and blood flow in muscle are perturbed in Duchenne muscular dystrophy (DMD) and its mdx mouse model. MicroRNA-92a (miR-92a) is enriched in endothelial cells, especially during ischemic injury. METHODS: Because antagonizing miR-92a was shown to result in increased proliferation and migration of endothelial cells and recovery from ischemia, we assessed the effects of Antagomir-92a in vitro in muscle stem cell culture and in vivo in mdx mice. RESULTS: miR-92a was found to be highly expressed in muscle endothelial cells and satellite cells. Treatment with Antagomir-92a increased capillary density and tissue perfusion, which was accompanied by an increase in satellite cells. However, Antagomir-92a-treated mdx mice showed no histological improvement and had worse muscle function. Antagomir-92a suppressed myogenic differentiation in satellite cell culture. DISCUSSION: AntagomiR-92a improves the vasculature but not the muscle in mdx mice, possibly due to its side effects on satellite cell differentiation. Muscle Nerve 59:594-594, 2019.


Assuntos
Antagomirs/farmacologia , MicroRNAs/antagonistas & inibidores , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Força da Mão , Fluxometria por Laser-Doppler , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Satélites de Músculo Esquelético/citologia
3.
Appl Microbiol Biotechnol ; 101(4): 1581-1592, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27915375

RESUMO

Alginate is a marine non-food-competing polysaccharide that has potential applications in biorefinery. Owing to its large size (molecular weight >300,000 Da), alginate cannot pass through the bacterial cell membrane. Therefore, bacteria that utilize alginate are presumed to have an enzyme that degrades extracellular alginate. Recently, Vibrio algivorus sp. SA2T was identified as a novel alginate-decomposing and alginate-utilizing species. However, little is known about the mechanism of alginate degradation and metabolism in this species. To address this issue, we screened the V. algivorus genomic DNA library for genes encoding polysaccharide-decomposing enzymes using a novel double-layer plate screening method and identified alyB as a candidate. Most identified alginate-decomposing enzymes (i.e., alginate lyases) must be concentrated and purified before extracellular alginate depolymerization. AlyB of V. algivorus heterologously expressed in Escherichia coli depolymerized extracellular alginate without requiring concentration or purification. We found seven homologues in the V. algivorus genome (alyB, alyD, oalA, oalB, oalC, dehR, and toaA) that are thought to encode enzymes responsible for alginate transport and metabolism. Introducing these genes into E. coli enabled the cells to assimilate soluble alginate depolymerized by V. algivorus AlyB as the sole carbon source. The alginate was bioconverted into L-lysine (43.3 mg/l) in E. coli strain AJIK01. These findings demonstrate a simple and novel screening method for identifying polysaccharide-degrading enzymes in bacteria and provide a simple alginate biocatalyst and fermentation system with potential applications in industrial biorefinery.


Assuntos
Alginatos/metabolismo , Polissacarídeo-Liases/metabolismo , Vibrio/enzimologia , Vibrio/metabolismo , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo
4.
Elife ; 132024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842166

RESUMO

Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs; satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here, we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNA-seq (scRNA-seq) to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.


Assuntos
Sobrevivência Celular , Células Endoteliais , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Animais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Camundongos Endogâmicos C57BL , Masculino
5.
Nucleic Acids Res ; 39(20): 9034-46, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21785135

RESUMO

Modification of complex microbial cellular processes is often necessary to obtain organisms with particularly favorable characteristics, but such experiments can take many generations to achieve. In the present article, we accelerated the experimental evolution of Escherichia coli populations under selection for improved growth using one of the restriction-modification systems, which have shaped bacterial genomes. This resulted in faster evolutionary changes in both the genome and bacterial growth. Transcriptome/genome analysis at various stages enabled prompt identification of sequential genome rearrangements and dynamic gene-expression changes associated with growth improvement. The changes were related to cell-to-cell communication, the cell death program, as well as mass production and energy consumption. These observed changes imply that improvements in microorganism population growth can be achieved by inactivating the cellular mechanisms regulating fraction of active cells in a population. Some of the mutations were shown to have additive effects on growth. These results open the way for the application of evolutionary genome engineering to generate organisms with desirable properties.


Assuntos
Enzimas de Restrição-Modificação do DNA/metabolismo , Escherichia coli/genética , Evolução Molecular , Engenharia Genética/métodos , Genoma Bacteriano , Adaptação Fisiológica/genética , Enzimas de Restrição-Modificação do DNA/genética , Escherichia coli/crescimento & desenvolvimento , Mutação , Fenótipo , Transcriptoma
6.
Methods Mol Biol ; 2640: 453-462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995613

RESUMO

Skeletal muscle is a highly ordered tissue composed of a complex network of a diverse variety of cells. The dynamic spatial and temporal interaction between these cells during homeostasis and during times of injury gives the skeletal muscle its regenerative capacity. To properly understand the process of regeneration, a three-dimensional (3-D) imaging process must be conducted. With the advancement of imaging and computing technology, it has become powerful to analyze spatial data from confocal microscope images. In order to prepare whole tissue skeletal muscle samples for confocal imaging, the muscle must be subjected to tissue clearing. With the use of an ideal optical clearing protocol - one that minimizes light scattering via refractive index mismatching - a more accurate 3-D image of the muscle can be produced as it does not involve the physical sectioning of the muscle. While there have been several protocols relating to the study of 3-D biology in whole tissue, these protocols have primarily been focused on the nervous system. In this chapter, we present a new method for skeletal muscle tissue clearing. In addition, this protocol aims to outline the specific parameters required for taking 3-D images of immunofluorescence-stained skeletal muscle samples using a confocal microscope.


Assuntos
Imageamento Tridimensional , Músculo Esquelético , Microscopia Confocal , Imunofluorescência , Imageamento Tridimensional/métodos
7.
Methods Mol Biol ; 2640: 463-477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995614

RESUMO

Skeletal muscle is a highly ordered tissue composed of a complex network of a diverse variety of cells. The dynamic spatial and temporal interaction between these cells during homeostasis and during times of injury gives the skeletal muscle its regenerative capacity. In order to properly understand the process of regeneration, a three-dimensional (3-D) imaging process must be conducted. While there have been several protocols studying 3-D imaging, it has primarily been focused on the nervous system. This protocol aims to outline the workflow for rendering a 3-D image of the skeletal muscle using spatial data from confocal microscope images. This protocol uses the ImageJ, Ilastik, and Imaris software for 3-D rendering and computational image analysis as both are relatively easy to use and have powerful segmentation capabilities.


Assuntos
Imageamento Tridimensional , Células Satélites de Músculo Esquelético , Células Satélites de Músculo Esquelético/fisiologia , Músculo Esquelético/fisiologia , Processamento de Imagem Assistida por Computador , Desenvolvimento Muscular/fisiologia , Diferenciação Celular
8.
Hum Mol Genet ; 19(21): 4145-59, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20705734

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disease caused by mutations in the gene coding for the protein dystrophin. Recent work demonstrates that dystrophin is also found in the vasculature and its absence results in vascular deficiency and abnormal blood flow. This induces a state of ischemia further aggravating the muscular dystrophy pathogenesis. For an effective form of therapy of DMD, both the muscle and the vasculature need to be addressed. To reveal the developmental relationship between muscular dystrophy and vasculature, mdx mice, an animal model for DMD, were crossed with Flt-1 gene knockout mice to create a model with increased vasculature. Flt-1 is a decoy receptor for vascular endothelial growth factor, and therefore both homozygous (Flt-1(-/-)) and heterozygous (Flt-1(+/-)) Flt-1 gene knockout mice display increased endothelial cell proliferation and vascular density during embryogenesis. Here, we show that Flt-1(+/-) and mdx:Flt-1(+/-) adult mice also display a developmentally increased vascular density in skeletal muscle compared with the wild-type and mdx mice, respectively. The mdx:Flt-1(+/-) mice show improved muscle histology compared with the mdx mice with decreased fibrosis, calcification and membrane permeability. Functionally, the mdx:Flt-1(+/-) mice have an increase in muscle blood flow and force production, compared with the mdx mice. Consequently, the mdx:utrophin(-/-):Flt-1(+/-) mice display improved muscle histology and significantly higher survival rates compared with the mdx:utrophin(-/-) mice, which show more severe muscle phenotypes than the mdx mice. These data suggest that increasing the vasculature in DMD may ameliorate the histological and functional phenotypes associated with this disease.


Assuntos
Haploinsuficiência , Distrofia Muscular Animal/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Proliferação de Células , Heterozigoto , Homozigoto , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Contração Muscular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Fenótipo
9.
Stem Cells ; 29(3): 505-16, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21425413

RESUMO

Expression of the four transcription factors, that is, Oct4, Sox2, cMyc, and Klf4 has been shown to generate induced pluripotent stem cells (iPSCs) from many types of specialized differentiated somatic cells. It remains unclear, however, whether fully committed skeletal muscle progenitor cells (myoblasts) have the potency to undergo reprogramming to develop iPSCs in line with previously reported cases. To test this, we have isolated genetically marked myoblasts derived from satellite cell of adult mouse muscles using the Cre-loxP system (Pax7-CreER:R26R and Myf5-Cre:R26R). On infection with retroviral vectors expressing the four factors, these myoblasts gave rise to myogenic lineage tracer lacZ-positive embryonic stem cell (ESC)-like colonies. These cells expressed ESC-specific genes and were competent to differentiate into all three germ layers and germ cells, indicating the successful generation of myoblast-derived iPSCs. Continuous expression of the MyoD gene, a master transcription factor for skeletal muscle specification, inhibited this reprogramming process in myoblasts. In contrast, reprogramming myoblasts isolated from mice lacking the MyoD gene led to an increase in reprogramming efficiency. Our data also indicated that Oct4 acts as a transcriptional suppressor of MyoD gene expression through its interaction with the upstream enhancer region. Taken together, these results indicate that suppression of MyoD gene expression by Oct4 is required for the initial reprogramming step in the development of iPSCs from myoblasts. This data suggests that the skeletal muscle system provides a well-defined differentiation model to further elaborate on the effects of iPSC reprogramming in somatic cells.


Assuntos
Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Proteína MyoD/genética , Mioblastos/fisiologia , Fator 3 de Transcrição de Octâmero/fisiologia , Animais , Células Cultivadas , Regulação para Baixo/genética , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos ICR , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteína MyoD/metabolismo , Proteína MyoD/fisiologia , Mioblastos/citologia , Mioblastos/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Gravidez
10.
Nat Metab ; 4(2): 180-189, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35228746

RESUMO

Adult skeletal muscle is a highly plastic tissue that readily reduces or gains its mass in response to mechanical and metabolic stimulation; however, the upstream mechanisms that control muscle mass remain unclear. Notch signalling is highly conserved, and regulates many cellular events, including proliferation and differentiation of various types of tissue stem cell via cell-cell contact. Here we reveal that multinucleated myofibres express Notch2, which plays a crucial role in disuse- or diabetes-induced muscle atrophy. Mechanistically, in both atrophic conditions, the microvascular endothelium upregulates and releases the Notch ligand, Dll4, which then activates muscular Notch2 without direct cell-cell contact. Inhibition of the Dll4-Notch2 axis substantively prevents these muscle atrophy and promotes mechanical overloading-induced muscle hypertrophy in mice. Our results illuminate a tissue-specific function of the endothelium in controlling tissue plasticity and highlight the endothelial Dll4-muscular Notch2 axis as a central upstream mechanism that regulates catabolic signals from mechanical and metabolic stimulation, providing a therapeutic target for muscle-wasting diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ligação ao Cálcio , Atrofia Muscular , Animais , Endotélio , Camundongos , Músculo Esquelético , Receptor Notch2
11.
Nucleic Acids Res ; 37(9): 3021-31, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19304752

RESUMO

Genetically programmed cell deaths play important roles in unicellular prokaryotes. In postsegregational killing, loss of a gene complex from a cell leads to its descendants' deaths. With type II restriction-modification gene complexes, such death is triggered by restriction endonuclease's attacks on under-methylated chromosomes. Here, we examined how the Escherichia coli transcriptome changes after loss of PaeR7I gene complex. At earlier time points, activation of SOS genes and sigma(E)-regulon was noticeable. With time, more SOS genes, stress-response genes (including sigma(S)-regulon, osmotic-, oxidative- and periplasmic-stress genes), biofilm-related genes, and many hitherto uncharacterized genes were induced, and genes for energy metabolism, motility and outer membrane biogenesis were repressed. As expected from the activation of sigma(E)-regulon, the death was accompanied by cell lysis and release of cellular proteins. Expression of several sigma(E)-regulon genes indeed led to cell lysis. We hypothesize that some signal was transduced, among multiple genes involved, from the damaged genome to the cell surface and led to its disintegration. These results are discussed in comparison with other forms of programmed deaths in bacteria and eukaryotes.


Assuntos
Dano ao DNA , Enzimas de Restrição-Modificação do DNA/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Ampicilina/toxicidade , Antibacterianos/toxicidade , Morte Celular , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica/métodos , Genoma Bacteriano , Cinética , Ofloxacino/toxicidade , Regulon , Resposta SOS em Genética
12.
J Cell Biol ; 220(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34009269

RESUMO

Circadian rhythms regulate cell proliferation and differentiation, but circadian control of tissue regeneration remains elusive at the molecular level. Here, we show that proper myoblast differentiation and muscle regeneration are regulated by the circadian master regulators Per1 and Per2. Depletion of Per1 or Per2 suppressed myoblast differentiation in vitro and muscle regeneration in vivo, demonstrating their nonredundant functions. Both Per1 and Per2 were required for the activation of Igf2, an autocrine promoter of myoblast differentiation, accompanied by Per-dependent recruitment of RNA polymerase II, dynamic histone modifications at the Igf2 promoter and enhancer, and the promoter-enhancer interaction. This circadian epigenetic priming created a preferred time window for initiating myoblast differentiation. Consistently, muscle regeneration was faster if initiated at night, when Per1, Per2, and Igf2 were highly expressed compared with morning. This study reveals the circadian timing as a significant factor for effective muscle cell differentiation and regeneration.


Assuntos
Ritmo Circadiano/genética , Fator de Crescimento Insulin-Like II/genética , Proteínas Circadianas Period/genética , Regeneração/genética , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/crescimento & desenvolvimento , Mioblastos/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética
13.
Cell Stem Cell ; 23(4): 530-543.e9, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290177

RESUMO

Skeletal muscle is a complex tissue containing tissue resident muscle stem cells (satellite cells) (MuSCs) important for postnatal muscle growth and regeneration. Quantitative analysis of the biological function of MuSCs and the molecular pathways responsible for a potential juxtavascular niche for MuSCs is currently lacking. We utilized fluorescent reporter mice and muscle tissue clearing to investigate the proximity of MuSCs to capillaries in 3 dimensions. We show that MuSCs express abundant VEGFA, which recruits endothelial cells (ECs) in vitro, whereas blocking VEGFA using both a vascular endothelial growth factor (VEGF) inhibitor and MuSC-specific VEGFA gene deletion reduces the proximity of MuSCs to capillaries. Importantly, this proximity to the blood vessels was associated with MuSC self-renewal in which the EC-derived Notch ligand Dll4 induces quiescence in MuSCs. We hypothesize that MuSCs recruit capillary ECs via VEGFA, and in return, ECs maintain MuSC quiescence though Dll4.


Assuntos
Receptores Notch/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Camundongos , Células Satélites de Músculo Esquelético/citologia , Nicho de Células-Tronco
14.
Elife ; 72018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30284969

RESUMO

Adult skeletal muscle maintenance and regeneration depend on efficient muscle stem cell (MuSC) functions. The mechanisms coordinating cell cycle with activation, renewal, and differentiation of MuSCs remain poorly understood. Here, we investigated how adult MuSCs are regulated by CDKN1c (p57kip2), a cyclin-dependent kinase inhibitor, using mouse molecular genetics. In the absence of CDKN1c, skeletal muscle repair is severely impaired after injury. We show that CDKN1c is not expressed in quiescent MuSCs, while being induced in activated and proliferating myoblasts and maintained in differentiating myogenic cells. In agreement, isolated Cdkn1c-deficient primary myoblasts display differentiation defects and increased proliferation. We further show that the subcellular localization of CDKN1c is dynamic; while CDKN1c is initially localized to the cytoplasm of activated/proliferating myoblasts, progressive nuclear translocation leads to growth arrest during differentiation. We propose that CDKN1c activity is restricted to differentiating myoblasts by regulated cyto-nuclear relocalization, coordinating the balance between proliferation and growth arrest.


Assuntos
Células-Tronco Adultas/citologia , Diferenciação Celular/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Desenvolvimento Muscular/genética , Animais , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Mioblastos/citologia , Mioblastos/metabolismo , Regeneração/genética , Células Satélites de Músculo Esquelético/citologia
15.
Cell Rep ; 25(9): 2537-2551.e8, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30485818

RESUMO

Fkbp5 is a widely expressed peptidyl prolyl isomerase that serves as a molecular chaperone through conformational changes of binding partners. Although it regulates diverse protein functions, little is known about its roles in myogenesis. We found here that Fkbp5 plays critical roles in myoblast differentiation through two mechanisms. First, it sequesters Cdk4 within the Hsp90 storage complex and prevents the formation of the cyclin D1-Cdk4 complex, which is a major inhibitor of differentiation. Second, Fkbp5 promotes cis-trans isomerization of the Thr172-Pro173 peptide bond in Cdk4 and inhibits phosphorylation of Thr172, an essential step for Cdk4 activation. Consistent with these in vitro findings, muscle regeneration is delayed in Fkbp5-/- mice. The related protein Fkbp4 also sequesters Cdk4 within the Hsp90 complex but does not isomerize Cdk4 or induce Thr173 phosphorylation despite its highly similar sequence. This study demonstrates protein isomerization as a critical regulatory mechanism of myogenesis by targeting Cdk4.


Assuntos
Diferenciação Celular , Quinase 4 Dependente de Ciclina/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Proteínas de Choque Térmico HSP90/metabolismo , Isomerismo , Masculino , Camundongos Knockout , Músculos/fisiologia , Peptídeos/metabolismo , Prolina/metabolismo , Ligação Proteica , Regeneração , Proteínas de Ligação a Tacrolimo/deficiência
16.
Cell Rep ; 22(8): 2118-2132, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466738

RESUMO

Circadian rhythms regulate cell proliferation and differentiation; however, little is known about their roles in myogenic differentiation. Our synchronized differentiation studies demonstrate that myoblast proliferation and subsequent myotube formation by cell fusion occur in circadian manners. We found that one of the core regulators of circadian rhythms, Cry2, but not Cry1, is critical for the circadian patterns of these two critical steps in myogenic differentiation. This is achieved through the specific interaction between Cry2 and Bclaf1, which stabilizes mRNAs encoding cyclin D1, a G1/S phase transition regulator, and Tmem176b, a transmembrane regulator for myogenic cell fusion. Myoblasts lacking Cry2 display premature cell cycle exit and form short myotubes because of inefficient cell fusion. Consistently, muscle regeneration is impaired in Cry2-/- mice. Bclaf1 knockdown recapitulated the phenotypes of Cry2 knockdown: early cell cycle exit and inefficient cell fusion. This study uncovers a post-transcriptional regulation of myogenic differentiation by circadian rhythms.


Assuntos
Diferenciação Celular , Ritmo Circadiano , Criptocromos/metabolismo , Ciclina D1/genética , Proteínas de Membrana/metabolismo , Desenvolvimento Muscular , Estabilidade de RNA/genética , Proteínas Repressoras/metabolismo , Animais , Ciclo Celular/genética , Fusão Celular , Linhagem Celular , Ciclina D1/metabolismo , Regulação da Expressão Gênica , Camundongos Knockout , Músculos/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regeneração
17.
Biotechniques ; 63(2): 72-76, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28803542

RESUMO

Viral vector-mediated foreign gene expression in cultured cells has been extensively used in stem cell studies to explore gene function. However, it is difficult to obtain high-quality stem cells and primary cells after viral vector infection. Here, we describe a new protocol for high-efficiency retroviral infection of primary muscle stem cell (satellite cell) cultures. We compared multiple commercially available transfection reagents to determine which was optimal for retroviral infections of primary myoblasts. Centrifugation force was also tested, and a spin infection protocol with centrifugation at 2800 × g for 90 min had the highest infection efficiency for primary myoblasts. We confirmed that infected muscle stem cells maintain cell proliferation and the capacity for in vitro and in vivo myogenic differentiation. Our new, efficient retroviral infection protocol for muscle stem cells can be applied to molecular biology experiments as well as translational studies.


Assuntos
Vetores Genéticos/genética , Desenvolvimento Muscular , Mioblastos/citologia , Retroviridae/genética , Células-Tronco/citologia , Transfecção/métodos , Animais , Linhagem Celular , Proliferação de Células , Células Cultivadas , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Mioblastos/metabolismo , Células-Tronco/metabolismo
19.
Methods Mol Biol ; 1460: 129-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27492170

RESUMO

Skeletal muscle is a highly ordered yet complex tissue containing several cell types that interact with each other in order to maintain structure and homeostasis. It is also a highly regenerative tissue that responds to damage in a highly intricate but stereotypic manner, with distinct spatial and temporal kinetics. Proper examination of this process requires one to look at the three-dimensional orientation of the cellular and subcellular components, which can be accomplished through tissue clearing. While there has been a recent surge of protocols to study biology in whole tissue, it has primarily focused on the nervous system. This chapter describes the workflow for whole mount analysis of murine skeletal muscle for LacZ reporters, fluorescent reporters and immunofluorescence staining. Using this technique, we are able to visualize LacZ reporters more effectively in deep tissue samples, and to perform fluorescent imaging with a depth greater than 1700 µm.


Assuntos
Imunofluorescência , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Músculo Esquelético/metabolismo , beta-Galactosidase/metabolismo , Animais , Biomarcadores , Proteínas de Fluorescência Verde/genética , Camundongos , Microscopia de Fluorescência/métodos , Coloração e Rotulagem , beta-Galactosidase/genética
20.
PLoS One ; 10(3): e0120325, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25775477

RESUMO

Duchenne muscular dystrophy (DMD), the most common and severe type of dystrophinopathy, is an X-linked recessive genetic disease caused by the absence of dystrophin, which leads to fragility and vulnerability of the sarcolemma to mechanical stretching with increased membrane permeability. Currently, glucocorticoids such as prednisolone are the only medication available for DMD. However, molecular pathways responsible for this effect are still unclear. In addition, it remains unclear whether sex-related factors, including pregnancy and the postpartum period, affect the phenotype of dystrophinopathy. Here, we report the amelioration of muscle membrane permeability in the diaphragm muscle of pregnant and postpartum, but not in nulliparous, mdx mice, an animal model for DMD, during the physiological surge of corticosterone, the most abundant glucocorticoid in rodents. Cultures of single muscle fibers and myotubes isolated from mdx mouse diaphragm demonstrate resistance to hypo-osmotic shock when treated with corticosterone but not with estradiol or progesterone. This corticosterone-mediated resistance was diminished by an antagonist of corticosterone, indicating that the glucocorticoid-glucocorticoid receptor axis plays a role in this membrane stabilization effect on muscle. Moreover, subcutaneous injection of corticosterone into mdx mice showed decreased membrane permeability. This is the first report to demonstrate that pregnancy-related resistance to muscle fiber damage in mdx mice due to the membrane stabilization effect of corticosterone. We also propose that this membrane stabilization effect is exerted through annexin A1 up-regulation as the molecular mechanisms of glucocorticoid effects on DMD muscle. Furthermore, single muscle fiber culture studies provide a sensitive chemical screening platform for muscular dystrophies.


Assuntos
Membrana Celular/metabolismo , Corticosterona/sangue , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Fenótipo , Animais , Anexina A1/genética , Anexina A1/metabolismo , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular , Corticosterona/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular de Duchenne/patologia , Pressão Osmótica , Gravidez , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa