Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Blood ; 135(12): 934-947, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31972002

RESUMO

Adult T-cell leukemia/lymphoma (ATL) is a highly aggressive hematological malignancy derived from mature CD4+ T-lymphocytes. Here, we demonstrate the transcriptional regulatory network driven by 2 oncogenic transcription factors, IRF4 and NF-κB, in ATL cells. Gene expression profiling of primary ATL samples demonstrated that the IRF4 gene was more highly expressed in ATL cells than in normal T cells. Chromatin immunoprecipitation sequencing analysis revealed that IRF4-bound regions were more frequently found in super-enhancers than in typical enhancers. NF-κB was found to co-occupy IRF4-bound regulatory elements and formed a coherent feed-forward loop to coordinately regulate genes involved in T-cell functions and development. Importantly, IRF4 and NF-κB regulated several cancer genes associated with super-enhancers in ATL cells, including MYC, CCR4, and BIRC3. Genetic inhibition of BIRC3 induced growth inhibition in ATL cells, implicating its role as a critical effector molecule downstream of the IRF4-NF-κB transcriptional network.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Leucemia-Linfoma de Células T do Adulto/etiologia , Leucemia-Linfoma de Células T do Adulto/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Apoptose/genética , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Biologia Computacional , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Modelos Biológicos , RNA Interferente Pequeno/genética , Receptores CCR4/metabolismo
3.
Molecules ; 27(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35164343

RESUMO

Since the efficiency in the transcription of the HIV genome contributes to the success of viral replication and infectivity, we investigated the downregulating effects of the spirobisindole alkaloids globospiramine (1), deoxyvobtusine (2), and vobtusine lactone (3) from the endemic Philippine medicinal plant, Voacanga globosa, during HIV gene transcription. Alkaloids 1-3 were explored for their inhibitory activity on TNF-α-induced viral replication in two latently HIV-infected cell lines, OM10.1 and J-Lat. The induction of HIV replication from OM10.1 and J-Lat cells elicited by TNF-α was blocked by globospiramine (1) within noncytotoxic concentrations. Furthermore, globospiramine (1) was found to target the NF-ĸB activation cascade in a dose-dependent manner when the transcriptional step at which inhibitory activity is exerted was examined in TNF-α-induced 293 human cells using transient reporter (luciferase) gene expression systems (HIV LTR-luc, ĸB-luc, and mutant ĸB-luc). Interrogation through molecular docking against the NF-ĸB p50/p65 heterodimer and target sites of the subunits comprising the IKK complex revealed high binding affinities of globospiramine (1) against the S281 pocket of the p65 subunit (BE = -9.2 kcal/mol) and the IKKα activation loop (BE = -9.1 kcal/mol). These findings suggest globospiramine (1) as a molecular inspiration to discover new alkaloid-based anti-HIV derivatives.


Assuntos
Alcaloides/farmacologia , Infecções por HIV/metabolismo , HIV-1/fisiologia , Quinase I-kappa B/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Voacanga/química , Alcaloides/química , Linhagem Celular , Relação Dose-Resposta a Droga , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Células HL-60 , Humanos , Quinase I-kappa B/química , Alcaloides Indólicos/farmacologia , Modelos Biológicos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/química , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos , Compostos de Espiro/farmacologia , Fator de Transcrição RelA/química , Fator de Necrose Tumoral alfa/farmacologia , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
4.
Blood ; 130(21): 2326-2338, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-28978570

RESUMO

A number of studies have recently demonstrated that super-enhancers, which are large cluster of enhancers typically marked by a high level of acetylation of histone H3 lysine 27 and mediator bindings, are frequently associated with genes that control and define cell identity during normal development. Super-enhancers are also often enriched at cancer genes in various malignancies. The identification of such enhancers would pinpoint critical factors that directly contribute to pathogenesis. In this study, we performed enhancer profiling using primary leukemia samples from adult T-cell leukemia/lymphoma (ATL), which is a genetically heterogeneous intractable cancer. Super-enhancers were enriched at genes involved in the T-cell activation pathway, including IL2RA/CD25, CD30, and FYN, in both ATL and normal mature T cells, which reflected the origin of the leukemic cells. Super-enhancers were found at several known cancer gene loci, including CCR4, PIK3R1, and TP73, in multiple ATL samples, but not in normal mature T cells, which implicated those genes in ATL pathogenesis. A small-molecule CDK7 inhibitor, THZ1, efficiently inhibited cell growth, induced apoptosis, and downregulated the expression of super-enhancer-associated genes in ATL cells. Furthermore, enhancer profiling combined with gene expression analysis identified a previously uncharacterized gene, TIAM2, that was associated with super-enhancers in all ATL samples, but not in normal T cells. Knockdown of TIAM2 induced apoptosis in ATL cell lines, whereas overexpression of this gene promoted cell growth. Our study provides a novel strategy for identifying critical cancer genes.


Assuntos
Elementos Facilitadores Genéticos/genética , Perfilação da Expressão Gênica , Genes Neoplásicos , Leucemia-Linfoma de Células T do Adulto/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Estudos de Associação Genética , Humanos , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/imunologia , Leucemia-Linfoma de Células T do Adulto/patologia , Ativação Linfocitária/genética , Fenilenodiaminas/farmacologia , Fenilenodiaminas/uso terapêutico , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , RNA Polimerase II/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina
5.
Molecules ; 23(4)2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29673219

RESUMO

Transcription is a crucial step in the life cycle of the human immunodeficiency virus type 1 (HIV 1) and is primarily involved in the maintenance of viral latency. Both viral and cellular transcription factors, including transcriptional activators, suppressor proteins and epigenetic factors, are involved in HIV transcription from the proviral DNA integrated within the host cell genome. Among them, the virus-encoded transcriptional activator Tat is the master regulator of HIV transcription. Interestingly, unlike other known transcriptional activators, Tat primarily activates transcriptional elongation and initiation by interacting with the cellular positive transcriptional elongation factor b (P-TEFb). In this review, we describe the molecular mechanism underlying how Tat activates viral transcription through interaction with P-TEFb. We propose a novel therapeutic strategy against HIV replication through blocking Tat action.


Assuntos
Infecções por HIV/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Regulação Viral da Expressão Gênica , HIV-1/metabolismo , HIV-1/patogenicidade , Humanos , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição , Fatores de Elongação da Transcrição/genética , Replicação Viral/fisiologia
6.
Genes Cells ; 21(7): 706-16, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27193293

RESUMO

The virus-encoded Tat protein is essential for HIV transcription in infected cells. The interaction of Tat with the cellular transcription elongation factor P-TEFb (positive transcriptional elongation factor b) containing cyclin T1 (CycT1) and cyclin-dependent kinase 9 (CDK9) is critical for its activity. In this study, we use the Fluoppi (fluorescent-based technology detecting protein-protein interaction) system, which enables the quantification of interactions between biomolecules, such as proteins, in live cells. Quantitative measurement of the molecular interactions among Tat, CycT1 and CDK9 has showed that any third molecule enhances the binding between the other two molecules. These findings suggest that each component of the Tat:P-TEFb complex stabilizes the overall complex, thereby supporting the efficient transcriptional elongation during viral RNA synthesis. These interactions may serve as appropriate targets for novel anti-HIV therapy.


Assuntos
Ciclina T/genética , Quinase 9 Dependente de Ciclina/genética , HIV/genética , Fator B de Elongação Transcricional Positiva/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , HIV/patogenicidade , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Complexos Multiproteicos/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Mapas de Interação de Proteínas/genética , Transcrição Gênica , Replicação Viral/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
7.
Mod Rheumatol ; 24(5): 775-80, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24498990

RESUMO

OBJECTIVES: To evaluate the therapeutic efficacy of a novel inhibitor for IκB kinase alpha (IKKα), noraristeromycin (NAM), for murine experimental model of rheumatoid arthritis, collagen- induced arthritis (CIA). METHODS: NAM has been chemically synthesized as reported earlier. CIA was induced in DBA/1JNCrlj mice by intradermal inoculation of bovine type II collagen (col II) together with Freund Complete Adjuvant. Following the Day 21 booster injection of col II with Freund Incomplete Adjuvant, the animals were monitored for the development of arthritis and clinically evaluated. NAM was administered orally at different doses prior to induction (prophylactic protocol) or after the emergence of definitive arthritis (therapeutic protocol). RESULTS: Here we demonstrate the experimental evidence that oral administration of NAM could completely prevent the occurrence of experimental arthritis in CIA mouse model at 0.3 mg/kg with ED50 value of approximately 0.1 mg/kg twice daily. Moreover, twice daily oral therapeutic dosage of 1 mg/kg of NAM significantly inhibited the paw swelling and disease progression even after the occurrence of experimental CIA. In addition, NAM exhibited an excellent pharmacokinetics in mice and oral administration of NAM could suppress the production of TNFα elicited by lipopolysaccharide (LPS) in a dose-dependent manner. CONCLUSIONS: These results indicated that IKKα inhibition is an effective novel therapy for the treatment of chronic inflammatory processes such as those associated with RA and other related conditions.


Assuntos
Adenosina/análogos & derivados , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/prevenção & controle , Quinase I-kappa B/antagonistas & inibidores , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Adenosina/uso terapêutico , Administração Oral , Animais , Artrite Experimental/imunologia , Progressão da Doença , Esquema de Medicação , Inflamação/imunologia , Camundongos
8.
PLoS One ; 17(11): e0277024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36378653

RESUMO

HIV-1 transcription is specifically augmented by a transcriptional activator complex composed of Tat, an HIV-1-encoded activator, and the host transcription elongation factor P-TEFb, which is composed of cyclin-dependent kinase 9 (CDK9) and cyclin T1. Several observations suggest that P-TEFb is an attractive anti-HIV-1 drug target. However, the long-term cytotoxicity of CDK9 inhibitors hinders their widespread use in HIV-1 therapy. Thus, novel and safe inhibitors are sorely needed. By performing molecular dynamics simulations of the 3D structure of Tat/P-TEFb, we previously identified a unique cavity structure of CDK9, the CDK9 hidden cavity, that is specifically induced by Tat binding. Here, we attempted to identify compounds that fit this cavity and inhibit CDK9 activity by in silico screening. We identified compounds that could inhibit CDK9 activity. One of such compound, 127, showed the strongest inhibitory activity against CDK9. Interestingly, it also inhibited CDK6 to a similar extent. We inspected the amino acid sequence and structural properties of the CDK9 hidden cavity to determine whether it is conserved in other CDKs, such as CDK6. The Ile61, comprising the center of the CDK9 hidden cavity, appears to be crucial for its kinase activity, thus indicating that the identification of the CDK9 hidden cavity may provide vital information for the development of novel CDK9 inhibitors.


Assuntos
Quinase 9 Dependente de Ciclina , HIV-1 , Quinase 9 Dependente de Ciclina/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Ciclina T/química , HIV-1/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina , Transcrição Gênica
9.
AIDS Res Hum Retroviruses ; 38(1): 64-72, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030452

RESUMO

Emergence of drug resistance demands new therapeutic strategies against the human immunodeficiency virus (HIV). Currently, there is an increasing research focus on targeting gene expression-the crucial step wherein new viruses and new viral strains are amplified. Moreover, natural products are also being considered as potential candidates for new antivirals. We screened the extract obtained from a Philippine medicinal plant, Mentha cordifolia (Mc). In this study, we demonstrated that Mc ammonium sulfate extract has antiretroviral activity against HIV. HIV-1 latently infected cells (OM10.1) were pretreated with Mc extract and activated with TNFα. In treated cells, viral replication was inhibited in both cell culture supernatant and whole cell lysates. The level of viral production, as measured by the viral p24 protein concentration, was very much inhibited under noncytotoxic concentrations to the similar level without addition of TNFα. Luciferase assays, however, showed that Mc does not inhibit the HIV-1 long terminal repeat-driven gene expression. IκBα degradation and p65 nuclear translocation was also not affected as visualized through Western blot and immunofluorescence. These observations demonstrated that Mc possessed an antiviral component against HIV-1 and warrant further work to explore its target of action at a later step of gene expression. Our study introduces a potential source of a lead compound that targets steps in the HIV life cycle.


Assuntos
Infecções por HIV , HIV-1 , Mentha , Antivirais/farmacologia , Linhagem Celular , Humanos , Extratos Vegetais/farmacologia , Replicação Viral
10.
J Biol Chem ; 285(36): 28097-104, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20562110

RESUMO

The cAMP-dependent protein kinase (PKA) signaling pathway plays a crucial role in the pathogenesis of many NF-kappaB-related diseases. However, there have been controversial reports with regard to the PKA actions in the regulation of NF-kappaB activity. In this study, we have demonstrated the effect of PKA on NF-kappaB activity in view of AKIP1 action; and in 293 and HeLa cells, where the endogenous AKIP1 expression is minimal, PKA-activating agents inhibited the NF-kappaB-dependent reporter gene expression, blocked the interaction of PKAc and p65 subunit of NF-kappaB, and attenuated PKA-dependent phosphorylation of p65 on Ser-276. This inhibitory function of PKAc in NF-kappaB signaling was reversed by overexpression of AKIP1 in 293 cells. In the breast cancer cell line, MDA-MB231 cells and MCF7 cells, where the endogenous AKIP1 is abundant, the PKA signal was found to be synergized with NF-kappaB activation; PKA-activating agents enhanced NF-kappaB-dependent transcriptional activity and the interaction between p65 and PKAc and augmented the phosphorylation of p65 on Ser-276. After RNAi knockdown of AKIP1 in these breast cancer cells, we observed that PKA-activating agents antagonized NF-kappaB-dependent activation. Meanwhile, PKA inhibitor suppressed NF-kappaB-induced breast cancer cell proliferation and multiple NF-kappaB-dependent anti-apoptotic gene expression. It is likely that expression of AKIP1 determines the relationship between these two signal transduction pathways. These findings explained controversial results from various independent groups regarding the action of PKA signaling on the NF-kappaB activation cascade and suggested a possible therapeutic potential of PKA inhibitor in developing anti-cancer strategies.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Apoptose/genética , Neoplasias da Mama/patologia , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/antagonistas & inibidores , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Serina/metabolismo , Fator de Transcrição RelA/química , Transcrição Gênica/efeitos dos fármacos
11.
Biophys Physicobiol ; 18: 67-77, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977004

RESUMO

The hepatitis B virus X protein (HBx) and the V protein of paramyxovirus simian virus 5 (SV5-V) interact with DNA damage-binding protein 1 (DDB1), a cellular enzyme involved in DNA repair and cell cycle regulation, to stimulate viral activity. DDB1 has several cellular substrates, and the amino acid sequences of the binding sites in the viral proteins and their substrates are notably dissimilar. To determine whether HBx binds preferentially to DDB1, despite differences in the amino acid sequences, we developed a system to monitor DDB1 binding in living cells through a protein-protein visuali-zation system, designated fluorescent-based technology detecting protein-protein interactions (Fluoppi). HBx in association with DDB1 formed clear fluorescent puncta. The number of these fluorescent puncta increased with an increase in the amount of HBx. The binding of HBx to DDB1 inhibited the cellular substrate DDB1-CUL4A-associated factor 9 (DCAF9) from binding to DDB1. The inhibitor nitazoxanide prevented the viral proteins HBx and SV5-V from binding to DDB1 but did not inhibit the binding of DCAF9 or HBx(ΔNC), which constitutes the binding site of HBx. Our results demonstrate that the Fluoppi system is useful for monitoring the binding of HBx to DDB1 as well as for examining the effect of drugs on DDB1-Hbx binding.

12.
J Pharmacol Exp Ther ; 333(1): 236-43, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20053934

RESUMO

Nuclear factor-kappaB (NF-kappaB) is involved in the pathophysiology of rheumatoid arthritis (RA) and is considered to be a feasible molecular target in treating patients. In the RA joint tissues, activation of NF-kappaB is often observed together with high amounts of the proinflammatory cytokines tumor necrosis factor (TNF)alpha and interleukin (IL)-1beta. TNFalpha and IL-1beta are known to stimulate NF-kappaB signaling and are produced as the effect of NF-kappaB signaling, thus forming a vicious cycle leading to a self-perpetuating nature of rheumatoid inflammation and expansion of such inflammatory response to other joints. Because a kinase called IkappaB kinase complex (IKK) is involved in the NF-kappaB activation cascade, we examined the effect of a novel IKK inhibitor, (7-[2-(cyclopropyl-methoxy)-6-hydroxyphenyl]-5-[(3S)-3-piperidinyl]-1,4-dihydro-2H-pyrido[2,3-d][1,3]oxazin-2-one hydrochloride; CHPD), on the production of inflammatory cytokines from rheumatoid synovial fibroblasts (RSF). TNFalpha stimulation induced production of inflammatory cytokines such as IL-6 and IL-8 in RSF, and the extent of IL-6 and IL-8 induction was dramatically reduced by CHPD under noncytotoxic concentrations. Likewise, expression of il-6 and il-8 genes was significantly reduced by CHPD. In addition, chromatin immunoprecipitation assays revealed that the DNA binding of NF-kappaB (p65) to il-8 promoter in RSF was induced after TNFalpha stimulation and that, upon CHPD treatment to RSF for 1 h, the NF-kappaB binding to il-8 promoter was significantly decreased. Here, we have demonstrated that an IKKbeta inhibitor, CHPD, acts as an effective inhibitor for the production of inflammatory cytokines in response to proinflammatory cytokines. These findings indicate that such a IKKbeta inhibitor could be a feasible candidate for an antirheumatic drug.


Assuntos
Artrite Reumatoide/patologia , Citocinas/biossíntese , Fibroblastos/efeitos dos fármacos , Quinase I-kappa B/antagonistas & inibidores , Oxazinas/farmacologia , Piridinas/farmacologia , Membrana Sinovial/patologia , Adulto , Células Cultivadas , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Interleucina-6/biossíntese , Interleucina-6/genética , Interleucina-8/biossíntese , Interleucina-8/genética , Masculino , Pessoa de Meia-Idade , NF-kappa B/fisiologia , Fosforilação , RNA Mensageiro/biossíntese , Transdução de Sinais
13.
Oncogene ; 39(16): 3322-3335, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32071397

RESUMO

The ubiquitously transcribed tetratricopeptide repeat on X chromosome (UTX) is a major histone H3 lysine 27 (H3K27) demethylase and the mixed-lineage leukemia (MLL) proteins are the H3K4 methyltransferases. UTX is one of the major components of MLL3- and MLL4-containing (MlLL3/4) complexes and likely has functions within the complexes. Although UTX is frequently mutated in various types of cancer and is thought to play a crucial role as a tumor suppressor, the importance of UTX interaction with MLL3/4 complexes in cancer formation is poorly understood. Here, we analyzed the ability of cancer-derived UTX mutant proteins to interact with ASH2L, which is a common core component of all the MLL complexes, and MLL3/4-specific components PTIP and PA1, and found that several single-amino acid substitution mutations in the tetratricopeptide repeat (TPR) affect UTX interaction with these components. Interaction-compromised mutants G137V and D336G and a TPR-deleted mutant Δ80-397 were preferentially localized to the cytoplasm, suggesting that UTX is retained in the nucleus by MLL3/4 complexes through their interaction with the TPR. Intriguingly, WT UTX suppressed colony formation in soft agar, whereas G137V failed. This suggests that interaction of UTX with MLL3/4 complex plays a crucial role in their tumor suppressor function. Preferential cytoplasmic localization was also observed for endogenous proteins of G137V and another mutant G137VΔ138 in HCT116 created by CRISPR-Cas9 gene editing. Interestingly, expression levels of these mutants were low and MG312 stabilized both endogenous as well as exogenous G137V proteins. These results reveal a novel mechanism of UTX regulation and reinforce the importance of UTX interaction with MLL3/4 complexes in cancer formation.


Assuntos
Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/genética , Histona Desmetilases/genética , Proteínas Nucleares/genética , Repetições de Tetratricopeptídeos/genética , Fatores de Transcrição/genética , Substituição de Aminoácidos/genética , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Histona-Lisina N-Metiltransferase/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Mutação/genética
14.
Cancer Sci ; 99(3): 615-22, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18201273

RESUMO

RelA-associated inhibitor (RAI) was initially identified as a protein that interacts with the p65 subunit (RelA) of nuclear factor-kappaB. It was recently found to interact with the p53 tumor suppressor protein. RAI is a structural homolog of the p53-binding protein 2 and I kappaB family proteins, and is known to inhibit the DNA-binding activities of p65 and p53. In the present study, we have attempted to predict the 3-dimensional structure of RAI in complex with p53 using computational chemistry. In order to evaluate the predicted structure model, we created a series of RAI mutants in which the amino acid residues involved in the interaction with p53 were mutated, and examined their activities in blocking p53-mediated bax gene expression. Our observations support the validity of the predicted 3-dimensional model of the p53-RAI protein complex. Based on the p53-RAI complex model, we have demonstrated the biological importance of the R248 and R273 residues of p53, and the D775 and E795 residues of RAI, in the protein-protein interaction between p53 and RAI and the biological actions of these proteins. These findings will further clarify the biological actions of RAI in carcinogenesis and can be used for the development of a novel strategy in blocking the actions of RAI. The possible biological implications of RAI are also discussed.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Proteínas Repressoras , Fator de Transcrição RelA/genética , Proteína Supressora de Tumor p53/química
15.
J Biochem ; 144(5): 581-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18713798

RESUMO

Nuclear factor kappaB (NF-kappaB) is one of the critical transcription factors in inflammatory responses and replication of viruses such as human immunodeficiency virus (HIV). In fact, it has been demonstrated that various NF-kappaB inhibitors could block HIV replication. To explore more potent NF-kappaB inhibitors, we focused on carbocyclic adenine nucleosides that had been reported to have anti-inflammatory effects. We synthesized 15 carbocyclic adenine nucleoside compounds and examined their effects on the NF-kappaB-dependent gene expression using HEK293 cell line. Among these compounds, noraristeromycin (NAM) exhibited the most potent inhibitory effect on the NF-kappaB activity under the non-cytotoxic concentrations. NAM-inhibited IkappaBalpha phosphorylation and degradation upon stimulation of cells with tumour necrosis factor-alpha (TNF-alpha). In addition, NAM prevented p65 phoshorylation. These findings suggested that both IkappaB kinase-alpha (IKK-alpha) and -beta were targeted by NAM. Interestingly, in vitro kinase assay revealed that NAM inhibited the kinase activity of IKK-alpha more potently than that of IKK-beta. When we treated the cell lines, OM10.1 and Molt4/IIIB, in which HIV-1 is latently and chronically infected, we found a strong suppressive effect of NAM on HIV-1 viral replication upon stimulation with TNF-alpha.


Assuntos
Adenosina/análogos & derivados , Fármacos Anti-HIV/farmacologia , Inibidores Enzimáticos/farmacologia , HIV-1/efeitos dos fármacos , Quinase I-kappa B/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Adenosina/química , Adenosina/farmacologia , Fármacos Anti-HIV/química , Linhagem Celular , Inibidores Enzimáticos/química , HIV-1/fisiologia , Humanos , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Ativação Transcricional/efeitos dos fármacos
16.
Eur J Pharmacol ; 565(1-3): 212-9, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17346696

RESUMO

Transcriptional activity of nuclear factor kappaB (NF-kappaB) is induced by environmental signals including inflammation, UV irradiation and oxidative stress. It was shown that the NF-kappaB activity greatly contributes to the skin photoaging process. Thus, it is plausible that NF-kappaB inhibitors could directly prevent skin photoaging. In this study, we found that Magnolia ovovata extract inhibited NF-kappaB-mediated gene expression and demonstrated that external swabbing with Magnolia extract preventing skin photoaging processes through keratinocyte hyperproliferation and degradation of collagen fibers in mice skin. We have identified magnolol as the solely responsible active compound in Magnolia extract. Magnolol effectively inhibited the NF-kappaB-dependent transcription, but no effect was observed with other inducible transcription factors such as activator protein-1 (AP-1) and cyclic-AMP responsive element-binding protein (CREB). In addition, magnolol was effective in inhibiting the production of basic fibroblast growth factor (bFGF) and matrix metalloprotease-1 (MMP-1) from the cells overexpressing p65, a major subunit of NF-kappaB. Although magnolol did not affect the phosphorylation and degradation of IkappaBalpha, it inhibited the nuclear translocation of the activated NF-kappaB. These findings suggest that Magnolia extract and its active component magnolol can be used to prevent the skin photoaging via inhibiting NF-kappaB by external topical application.


Assuntos
Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Magnolia/química , NF-kappa B/antagonistas & inibidores , Extratos Vegetais/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/patologia , Epiderme/efeitos da radiação , Fator 2 de Crescimento de Fibroblastos/biossíntese , Humanos , Masculino , Metaloproteinase 1 da Matriz/biossíntese , Camundongos , Camundongos Pelados , Raios Ultravioleta
17.
Curr Pharm Des ; 23(28): 4091-4097, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28699519

RESUMO

Human immunodeficiency virus type (HIV) transcription is crucial for its life cycle and is primarily involved in the maintenance of viral latency. HIV transcription is regulated by both viral and cellular transcription factors. Numerous epigenetic factors, as well as transcriptional suppressor proteins, play major roles in the maintenance of transcriptional silencing of viral gene expression from the proviral DNA. Once inducible transcription factors such as nuclear factor κB are activated through extracellular signaling, viral latency is terminated and transcription from the silenced proviral DNA is initiated. Transcriptional induction by cellular factors is immediately followed by high gene expression via the function of the virus-encoded transcriptional activator Tat. Interestingly, unlike other known transcriptional activators, Tat primarily activates transcriptional elongation, rather than initiation, by interacting with and activating cellular positive transcriptional elongation factor b (P-TEFb). In this review, we describe how HIV transcription is negatively and positively regulated through its life cycle and the molecular mechanism underlying how Tat activates viral transcription. We propose a novel strategy against viral replication in which regulated transcriptional processes play important roles in determining the extent of viral replication. The structural details of how Tat interacts with P-TEFb are described, which may be useful for the development of effective and specific anti-HIV therapies.


Assuntos
Infecções por HIV/virologia , Fator B de Elongação Transcricional Positiva/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Epigênese Genética/genética , Infecções por HIV/genética , HIV-1/genética , Humanos , Transdução de Sinais , Ativação Transcricional , Latência Viral/genética , Replicação Viral/genética
18.
PLoS One ; 12(2): e0171727, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28178316

RESUMO

In this study, we applied molecular dynamics (MD) simulation to analyze the dynamic behavior of the Tat/CycT1/CDK9 tri-molecular complex and revealed the structural changes of P-TEFb upon Tat binding. We found that Tat could deliberately change the local flexibility of CycT1. Although the structural coordinates of the H1 and H2 helices did not substantially change, H1', H2', and H3' exhibited significant changes en masse. Consequently, the CycT1 residues involved in Tat binding, namely Tat-recognition residues (TRRs), lost their flexibility with the addition of Tat to P-TEFb. In addition, we clarified the structural variation of CDK9 in complex with CycT1 in the presence or absence of Tat. Interestingly, Tat addition significantly reduced the structural variability of the T-loop, thus consolidating the structural integrity of P-TEFb. Finally, we deciphered the formation of the hidden catalytic cavity of CDK9 upon Tat binding. MD simulation revealed that the PITALRE signature sequence of CDK9 flips the inactive kinase cavity of CDK9 into the active form by connecting with Thr186, which is crucial for its activity, thus presumably recruiting the substrate peptide such as the C-terminal domain of RNA pol II. These findings provide vital information for the development of effective novel anti-HIV drugs with CDK9 catalytic activity as the target.


Assuntos
Ciclina T/química , Quinase 9 Dependente de Ciclina/química , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Sítios de Ligação , Catálise , Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Relação Estrutura-Atividade , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
19.
Clin Cancer Res ; 11(5): 1974-82, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15756023

RESUMO

Involvement of nuclear factor-kappaB (NF-kappaB) in cell survival and proliferation of multiple myeloma has been well established. In this study we observed that NF-kappaB is constitutively activated in all human myeloma cell lines, thus confirming the previous studies. In addition, we found the phosphorylation of p65 subunit of NF-kappaB in addition to the phosphorylation of IkappaBalpha and the activation of NF-kappaB DNA binding and that various target genes of NF-kappaB including bcl-x(L), XIAP, c-IAP1, cyclin D1, and IL-6 are up-regulated. We then examined the effect of a novel IkappaB kinase inhibitor, 2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-piperidin-4-yl nicotinonitrile (ACHP). When myeloma cells were treated with ACHP, the cell growth was efficiently inhibited with IC(50) values ranging from 18 to 35 mumol/L concomitantly with inhibition of the phosphorylation of IkappaBalpha/p65 and NF-kappaB DNA-binding, down-regulation of the NF-kappaB target genes, and induction of apoptosis. In addition, we observed the treatment of ACHP augmented the cytotoxic effects of vincristine and melphalan (l-phenylalanine mustard), conventional antimyeloma drugs. These findings indicate that IkappaB kinase inhibitors such as ACHP can sensitize myeloma cells to the cytotoxic effects of chemotherapeutic agents by blocking the antiapoptotic nature of myeloma cells endowed by the constitutive activation of NF-kappaB.


Assuntos
Proteínas I-kappa B/antagonistas & inibidores , Proteínas I-kappa B/farmacologia , Mieloma Múltiplo/patologia , NF-kappa B/farmacologia , Ácidos Nicotínicos/farmacologia , Nitrilas/farmacologia , Proliferação de Células , Citocinas/biossíntese , DNA/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , Fosforilação , Células Tumorais Cultivadas , Regulação para Cima
20.
PLoS One ; 10(3): e0119451, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25781978

RESUMO

The viral encoded Tat protein is essential for the transcriptional activation of HIV proviral DNA. Interaction of Tat with a cellular transcription elongation factor P-TEFb containing CycT1 is critically required for its action. In this study, we performed MD simulation using the 3D data for wild-type and 4CycT1mutants3D data. We found that the dynamic structural change of CycT1 H2' helix is indispensable for its activity for the Tat action. Moreover, we detected flexible structural changes of the Tat-recognition cavity in the WT CycT1 comprising of ten AAs that are in contact with Tat. These structural fluctuations in WT were lost in the CycT1 mutants. We also found the critical importance of the hydrogen bond network involving H1, H1' and H2 helices of CycT1. Since similar AA substitutions of the Tat-CycT1 chimera retained the Tat-supporting activity, these interactions are considered primarily involved in interaction with Tat. These findings described in this paper should provide vital information for the development of effective anti-Tat compound.


Assuntos
Ciclina T/química , Simulação de Dinâmica Molecular , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Ciclina T/metabolismo , HIV-1/química , Dados de Sequência Molecular , Ligação Proteica , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa