Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39053462

RESUMO

The reduced ability of the central nervous system to regenerate with increasing age limits functional recovery following demyelinating injury. Previous work has shown that myelin debris can overwhelm the metabolic capacity of microglia, thereby impeding tissue regeneration in aging, but the underlying mechanisms are unknown. In a model of demyelination, we found that a substantial number of genes that were not effectively activated in aged myeloid cells displayed epigenetic modifications associated with restricted chromatin accessibility. Ablation of two class I histone deacetylases in microglia was sufficient to restore the capacity of aged mice to remyelinate lesioned tissue. We used Bacillus Calmette-Guerin (BCG), a live-attenuated vaccine, to train the innate immune system and detected epigenetic reprogramming of brain-resident myeloid cells and functional restoration of myelin debris clearance and lesion recovery. Our results provide insight into aging-associated decline in myeloid function and how this decay can be prevented by innate immune reprogramming.

2.
Immunity ; 54(4): 648-659.e8, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33667383

RESUMO

Loss of lymphocytes, particularly T cell apoptosis, is a central pathological event after severe tissue injury that is associated with increased susceptibility for life-threatening infections. The precise immunological mechanisms leading to T cell death after acute injury are largely unknown. Here, we identified a monocyte-T cell interaction driving bystander cell death of T cells in ischemic stroke and burn injury. Specifically, we found that stroke induced a FasL-expressing monocyte population, which led to extrinsic T cell apoptosis. This phenomenon was driven by AIM2 inflammasome-dependent interleukin-1ß (IL-1ß) secretion after sensing cell-free DNA. Pharmacological inhibition of this pathway improved T cell survival and reduced post-stroke bacterial infections. As such, this study describes inflammasome-dependent monocyte activation as a previously unstudied cause of T cell death after injury and challenges the current paradigms of post-injury lymphopenia.


Assuntos
Coinfecção/imunologia , Proteínas de Ligação a DNA/imunologia , Tolerância Imunológica/imunologia , Inflamassomos/imunologia , Transdução de Sinais/imunologia , Animais , Apoptose/imunologia , Infecções Bacterianas/imunologia , Queimaduras/imunologia , Queimaduras/microbiologia , Coinfecção/microbiologia , Humanos , Interleucina-1beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/microbiologia , Linfócitos T/imunologia
3.
Nature ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112714

RESUMO

The risk of early recurrent events after stroke remains high despite currently established secondary prevention strategies1. Risk is particularly high in patients with atherosclerosis, with more than 10% of patients experiencing early recurrent events1,2. However, despite the enormous medical burden of this clinical phenomenon, the underlying mechanisms leading to increased vascular risk and recurrent stroke are largely unknown. Here, using a novel mouse model of stroke-induced recurrent ischaemia, we show that stroke leads to activation of the AIM2 inflammasome in vulnerable atherosclerotic plaques via an increase of circulating cell-free DNA. Enhanced plaque inflammation post-stroke results in plaque destabilization and atherothrombosis, finally leading to arterioarterial embolism and recurrent stroke within days after the index stroke. We confirm key steps of plaque destabilization also after experimental myocardial infarction and in carotid artery plaque samples from patients with acute stroke. Rapid neutrophil NETosis was identified as the main source of cell-free DNA after stroke and NET-DNA as the causative agent leading to AIM2 inflammasome activation. Neutralization of cell-free DNA by DNase treatment or inhibition of inflammasome activation reduced the rate of stroke recurrence after experimental stroke. Our findings present an explanation for the high recurrence rate after incident ischaemic events in patients with atherosclerosis. The detailed mechanisms uncovered here provide clinically uncharted therapeutic targets for which we show high efficacy to prevent recurrent events. Targeting DNA-mediated inflammasome activation after remote tissue injury represents a promising avenue for further clinical development in the prevention of early recurrent events.

4.
Cell Mol Life Sci ; 80(9): 262, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37597109

RESUMO

The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is a deNEDDylase controlling ubiquitination activity of cullin-RING-E3 ligases (CRLs) and thus the levels of key cellular proteins. While the CSN and its catalytic subunit CSN5 have been extensively studied in cancer, its role in inflammatory and neurological diseases is less understood. Following verification that CSN5 is expressed in mouse and human brain, here we studied the role of the CSN in neuroinflammation and ischemic neuronal damage employing models of relevant brain-resident cell types, an ex vivo organotypic brain slice culture model, and the CRL NEDDylation state-modifying drugs MLN4924 and CSN5i-3, which mimic and inhibit, respectively, CSN5 deNEDDylase activity. Untargeted mass spectrometry-based proteomics revealed that MLN4924 and CSN5i-3 substantially alter the microglial proteome, including inflammation-related proteins. Applying these drugs and mimicking microglial and endothelial inflammation as well as ischemic neuronal stress by TNF and oxygen-glucose-deprivation/reoxygenation (OGD/RO) treatment, respectively, we could link CSN5/CSN-mediated cullin deNEDDylation to reduction of microglial inflammation, attenuated cerebral endothelial inflammation, improved barrier integrity, as well as protection from ischemic stress-induced neuronal cell death. Specifically, MLN4924 reduced phagocytic activity, motility, and inflammatory cytokine expression of microglial cells, and this was linked to inhibition of inflammation-induced NF-κB and Akt signaling. Inversely, Csn5 knockdown and CSN5i-3 increased NF-κB signaling. Moreover, MLN4924 abrogated TNF-induced NF-κB signaling in cerebral microvascular endothelial cells (hCMECs) and rescued hCMEC monolayers from OGD/RO-triggered barrier leakage, while CSN5i-3 exacerbated permeability. In an ex vivo organotypic brain slice model of ischemia/reperfusion stress, MLN4924 protected from neuronal death, while CSN5i-3 impaired neuronal survival. Neuronal damage was attributable to microglial activation and inflammatory cytokines, as indicated by microglial shape tracking and TNF-blocking experiments. Our results indicate a protective role of the CSN in neuroinflammation via brain-resident cell types involved in ischemic brain disease and implicate CSN activity-mimicking deNEDDylating drugs as potential therapeutics.


Assuntos
NF-kappa B , Doenças Neuroinflamatórias , Humanos , Animais , Camundongos , Complexo do Signalossomo COP9 , Proteínas Culina , Células Endoteliais , Encéfalo , Inflamação/tratamento farmacológico , Citocinas
5.
Arterioscler Thromb Vasc Biol ; 42(5): e131-e144, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35387476

RESUMO

BACKGROUND: The CCL2 (CC-chemokine ligand 2)/CCR2 (CC-chemokine receptor 2) axis governs monocyte recruitment to atherosclerotic lesions. Genetic and epidemiological studies show strong associations of CCL2 levels with atherosclerotic disease. Still, experimental studies testing pharmacological inhibition of CCL2 or CCR2 in atheroprone mice apply widely different approaches and report variable results, thus halting clinical translation. METHODS: We systematically searched the literature for studies employing pharmacological CCL2/CCR2 blockade in atheroprone mice and meta-analyzed their effects on lesion size and morphology. RESULTS: In a meta-analysis of 14 studies testing 11 different agents, CCL2/CCR2 blockade attenuated atherosclerotic lesion size in the aortic root or arch (g=-0.75 [-1.17 to -0.32], P=6×10-4; N=171/171 mice in experimental/control group), the carotid (g=-2.39 [-4.23 to -0.55], P=0.01; N=24/25), and the femoral artery (g=-2.38 [-3.50 to -1.26], P=3×10-5; N=10/10). Furthermore, CCL2/CCR2 inhibition reduced intralesional macrophage accumulation and increased smooth muscle cell content and collagen deposition. The effects of CCL2/CCR2 inhibition on lesion size correlated with reductions in plaque macrophage accumulation, in accord with a prominent role of CCL2/CCR2 signaling in monocyte recruitment. Subgroup analyses showed comparable efficacy of different CCL2- and CCR2-inhibitors in reducing lesion size and intralesional macrophages. The quality assessment revealed high risk of detection bias due to lack of blinding during outcome assessment, as well as evidence of attrition and reporting bias. CONCLUSIONS: Preclinical evidence suggests that pharmacological targeting of CCL2 or CCR2 might lower atherosclerotic lesion burden, but the majority of existing studies suffer major quality issues that highlight the need for additional high-quality research.


Assuntos
Aterosclerose , Quimiocina CCL2 , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Quimiocina CCL2/genética , Quimiocinas , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/fisiologia , Receptores CCR2/genética
6.
Circ Res ; 127(6): 811-823, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32546048

RESUMO

RATIONALE: Arterial inflammation manifested as atherosclerosis is the leading cause of mortality worldwide. Genome-wide association studies have identified a prominent role of HDAC (histone deacetylase)-9 in atherosclerosis and its clinical complications including stroke and myocardial infarction. OBJECTIVE: To determine the mechanisms linking HDAC9 to these vascular pathologies and explore its therapeutic potential for atheroprotection. METHODS AND RESULTS: We studied the effects of Hdac9 on features of plaque vulnerability using bone marrow reconstitution experiments and pharmacological targeting with a small molecule inhibitor in hyperlipidemic mice. We further used 2-photon and intravital microscopy to study endothelial activation and leukocyte-endothelial interactions. We show that hematopoietic Hdac9 deficiency reduces lesional macrophage content while increasing fibrous cap thickness thus conferring plaque stability. We demonstrate that HDAC9 binds to IKK (inhibitory kappa B kinase)-α and ß, resulting in their deacetylation and subsequent activation, which drives inflammatory responses in both macrophages and endothelial cells. Pharmacological inhibition of HDAC9 with the class IIa HDAC inhibitor TMP195 attenuates lesion formation by reducing endothelial activation and leukocyte recruitment along with limiting proinflammatory responses in macrophages. Transcriptional profiling using RNA sequencing revealed that TMP195 downregulates key inflammatory pathways consistent with inhibitory effects on IKKß. TMP195 mitigates the progression of established lesions and inhibits the infiltration of inflammatory cells. Moreover, TMP195 diminishes features of plaque vulnerability and thereby enhances plaque stability in advanced lesions. Ex vivo treatment of monocytes from patients with established atherosclerosis reduced the production of inflammatory cytokines including IL (interleukin)-1ß and IL-6. CONCLUSIONS: Our findings identify HDAC9 as a regulator of atherosclerotic plaque stability and IKK activation thus providing a mechanistic explanation for the prominence of HDAC9 as a vascular risk locus in genome-wide association studies. Its therapeutic inhibition may provide a potent lever to alleviate vascular inflammation. Graphical Abstract: A graphical abstract is available for this article.


Assuntos
Artérias/enzimologia , Aterosclerose/enzimologia , Histona Desacetilases/metabolismo , Quinase I-kappa B/metabolismo , Placa Aterosclerótica , Proteínas Repressoras/metabolismo , Acetilação , Idoso , Idoso de 80 Anos ou mais , Animais , Artérias/efeitos dos fármacos , Artérias/patologia , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/patologia , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Ativação Enzimática , Feminino , Fibrose , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Humanos , Quinase I-kappa B/genética , Mediadores da Inflamação/metabolismo , Migração e Rolagem de Leucócitos , Macrófagos/enzimologia , Macrófagos/patologia , Masculino , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Monócitos/enzimologia , Monócitos/patologia , Ligação Proteica , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 114(13): E2766-E2775, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28292897

RESUMO

Constitutive photomorphogenesis 9 (COP9) signalosome 5 (CSN5), an isopeptidase that removes neural precursor cell-expressed, developmentally down-regulated 8 (NEDD8) moieties from cullins (thus termed "deNEDDylase") and a subunit of the cullin-RING E3 ligase-regulating COP9 signalosome complex, attenuates proinflammatory NF-κB signaling. We previously showed that CSN5 is up-regulated in human atherosclerotic arteries. Here, we investigated the role of CSN5 in atherogenesis in vivo by using mice with myeloid-specific Csn5 deletion. Genetic deletion of Csn5 in Apoe-/- mice markedly exacerbated atherosclerotic lesion formation. This was broadly observed in aortic root, arch, and total aorta of male mice, whereas the effect was less pronounced and site-specific in females. Mechanistically, Csn5 KO potentiated NF-κB signaling and proinflammatory cytokine expression in macrophages, whereas HIF-1α levels were reduced. Inversely, inhibition of NEDDylation by MLN4924 blocked proinflammatory gene expression and NF-κB activation while enhancing HIF-1α levels and the expression of M2 marker Arginase 1 in inflammatory-elicited macrophages. MLN4924 further attenuated the expression of chemokines and adhesion molecules in endothelial cells and reduced NF-κB activation and monocyte arrest on activated endothelium in vitro. In vivo, MLN4924 reduced LPS-induced inflammation, favored an antiinflammatory macrophage phenotype, and decreased the progression of early atherosclerotic lesions in mice. On the contrary, MLN4924 treatment increased neutrophil and monocyte counts in blood and had no net effect on the progression of more advanced lesions. Our data show that CSN5 is atheroprotective. We conclude that MLN4924 may be useful in preventing early atherogenesis, whereas selectively promoting CSN5-mediated deNEDDylation may be beneficial in all stages of atherosclerosis.


Assuntos
Aterosclerose/enzimologia , Complexo do Signalossomo COP9/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Aorta/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Complexo do Signalossomo COP9/genética , Proteínas Culina/genética , Proteínas Culina/metabolismo , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos/enzimologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Peptídeo Hidrolases/genética
9.
J Environ Manage ; 276: 111275, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32896822

RESUMO

Weighting scheme definition represents an important step in assessment of adaptive capacity to climate change with indicator approach since it defines the trade-offs among indicators or components and can be source of uncertainty. This study aims to assess smallholder farmers' adaptive capacity to climate change by using a mixed weighting scheme that reflect farmers' perceived importance of adaptive capacity components to inform policy makers. To achieve that objective, the sustainable livelihood framework was adopted and indicator approach was used for the assessment. The mixed weighting scheme were defined by using both equal weights and experts judgement methods during the assessment process. The mixed weighting scheme index is compared to the case where equal weights are applied in the assessment process and an uncertainty analysis was performed on relative standard deviation through a Monte Carlo simulation. Primary Data were collected from 450 farmers in two communities in northern Benin with a structured questionnaire and through focus groups discussion. The results show that smallholder farmers in both communities do not have the same perceived importance of adaptive capacity components. The index scores show that farmers have in majority low adaptive capacity. When weighted product aggregation method is used, there is more uncertainty related to the index computed with the mixed weighting scheme, but it leads to the same characterisation when compared with the index computed with the equal weights. It is recommended that mixed weighting scheme should be preferred for the assessment of adaptive capacity and weighted product aggregation method should be used.


Assuntos
Mudança Climática , Fazendeiros , Agricultura , Benin , Humanos , Inquéritos e Questionários
10.
Stroke ; 50(10): 2651-2660, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31500558

RESUMO

Background and Purpose- Genome-wide association studies have identified the HDAC9 (histone deacetylase 9) gene region as a major risk locus for atherosclerotic stroke and coronary artery disease in humans. Previous results suggest a role of altered HDAC9 expression levels as the underlying disease mechanism. rs2107595, the lead single nucleotide polymorphism for stroke and coronary artery disease resides in noncoding DNA and colocalizes with histone modification marks suggestive of enhancer elements. Methods- To determine the mechanisms by which genetic variation at rs2107595 regulates HDAC9 expression and thus vascular risk we employed targeted resequencing, proteome-wide search for allele-specific nuclear binding partners, chromatin immunoprecipitation, genome-editing, reporter assays, circularized chromosome conformation capture, and gain- and loss-of-function experiments in cultured human cell lines and primary immune cells. Results- Targeted resequencing of the HDAC9 locus in patients with atherosclerotic stroke and controls supported candidacy of rs2107595 as the causative single nucleotide polymorphism. A proteomic search for nuclear binding partners revealed preferential binding of the E2F3/TFDP1/Rb1 complex (E2F transcription factor 3/transcription factor Dp-1/Retinoblastoma 1) to the rs2107595 common allele, consistent with the disruption of an E2F3 consensus site by the risk allele. Gain- and loss-of-function studies showed a regulatory effect of E2F/Rb proteins on HDAC9 expression. Compared with the common allele, the rs2107595 risk allele exhibited higher transcriptional capacity in luciferase assays and was associated with higher HDAC9 mRNA levels in primary macrophages and genome-edited Jurkat cells. Circularized chromosome conformation capture revealed a genomic interaction of the rs2107595 region with the HDAC9 promoter, which was stronger for the common allele as was the in vivo interaction with E2F3 and Rb1 determined by chromatin immunoprecipitation. Gain-of-function experiments in isogenic Jurkat cells demonstrated a key role of E2F3 in mediating rs2107595-dependent transcriptional regulation of HDAC9. Conclusions- Collectively, our findings imply allele-specific transcriptional regulation of HDAC9 via E2F3 and Rb1 as a major mechanism mediating vascular risk at rs2107595.


Assuntos
Aterosclerose/genética , Fator de Transcrição E2F3/genética , Regulação da Expressão Gênica/genética , Histona Desacetilases/genética , Proteínas Repressoras/genética , Proteínas de Ligação a Retinoblastoma/genética , Ubiquitina-Proteína Ligases/genética , Células Cultivadas , Predisposição Genética para Doença/genética , Humanos , Polimorfismo de Nucleotídeo Único
11.
Circulation ; 131(16): 1426-34, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25810338

RESUMO

BACKGROUND: The renin-angiotensin system and especially the angiotensin peptides play a central role in blood pressure regulation. Here, we hypothesize that an as-yet unknown peptide is involved in the action of angiotensin II modulating the vasoregulatory effects as a cofactor. METHODS AND RESULTS: The peptide with vasodilatory properties was isolated from adrenal glands chromatographically. The effects of this peptide were evaluated in vitro and in vivo, and the receptor affinity was analyzed. The plasma concentration in humans was quantified in patients with chronic kidney disease, patients with heart failure, and healthy control subjects. The amino acid sequence of the peptide from bovine adrenal glands was HSSYEDELSEVL EKPNDQAE PKEVTEEVSSKDAAE, which is a degradation product of chromogranin A. The sequence of the peptide isolated from human plasma was HSGFEDELSEVLENQSSQAELKEAVEEPSSKDVME. Both peptides diminished significantly the vasoconstrictive effect of angiotensin II in vitro. Therefore, we named the peptide vasoconstriction-inhibiting factor (VIF). The vasoregulatory effects of VIF are mediated by the angiotensin II type 2 receptor. VIF impairs angiotensin II-induced phosphorylation of the p38 mitogen-activated protein kinase pathway but not of extracellular-regulated kinase 1/2. The vasodilatory effects were confirmed in vivo. The plasma concentration was significantly increased in renal patients and patients with heart failure. CONCLUSIONS: VIF is a vasoregulatory peptide that modulates the vasoconstrictive effects of angiotensin II by acting on the angiotensin II type 2 receptor. It is likely that the increase in VIF may serve as a counterregulatory effect to defend against hypertension. The identification of this target may help us to understand the pathophysiology of renal and heart failure and may form a basis for the development of new strategies for the prevention and treatment of cardiovascular disease.


Assuntos
Glândulas Suprarrenais/química , Angiotensina II/fisiologia , Peptídeos/isolamento & purificação , Receptor Tipo 2 de Angiotensina/agonistas , Vasodilatação/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Bovinos , Células Cultivadas , Cromogranina A/química , Células Endoteliais/efeitos dos fármacos , Insuficiência Cardíaca/sangue , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Dados de Sequência Molecular , Peptídeos/sangue , Peptídeos/química , Peptídeos/fisiologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Ratos Wistar , Insuficiência Renal Crônica/sangue , Sistema Renina-Angiotensina/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Am J Pathol ; 184(7): 2123-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24819959

RESUMO

The complement anaphylatoxin C5a functions through its two receptors, C5aR (CD88) and C5a receptor-like 2 (C5L2). Their role in atherosclerosis is incompletely understood. We, therefore, analyzed C5aR and probed the yet unknown expression and function of C5L2 in human atherogenesis. Human atherosclerotic plaques obtained by endarterectomy were staged and analyzed for C5L2 and C5aR by IHC and quantitative real-time PCR. C5L2-expressing cells in plaques were mostly macrophages, less neutrophils and endothelial cells, as determined by double immunostaining. Although early influx of C5aR(+) cells was detected, C5L2 levels increased with lesion complexity and colocalized with C5aR and oxidized low-density lipoprotein. Gene expression of C5L2 and C5aR showed similar trends, such as the receptor-expressing cells. The expression of C5L2 in advanced lesions correlated with increased levels of IL-1ß and tumor necrosis factor-α in plaques. Furthermore, in vitro experiments in macrophages from wild-type and C5l2- and C5ar-deficient mice corroborated the contributing role of C5l2 in oxidized low-density lipoprotein-pretreated C5a-induced cytokine expression, as measured by enzyme-linked immunosorbent assay. Finally, C5l2- and C5ar-deficient peripheral blood mononuclear cells showed less arrest on tumor necrosis factor-α-stimulated mouse endothelial cells in vitro when compared with wild-type controls. Taken together, prominent C5L2 expression in advanced atherosclerotic stages directly correlates with high levels of proinflammatory cytokines. This might indicate a proinflammatory role of C5L2 in atherosclerosis that needs to be pursued in the future by applying in vivo mouse models.


Assuntos
Citocinas/metabolismo , Placa Aterosclerótica/metabolismo , Receptores de Quimiocinas/metabolismo , Animais , Artérias Carótidas/patologia , Humanos , Interleucina-1beta/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor da Anafilatoxina C5a/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Basic Res Cardiol ; 108(1): 310, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23184390

RESUMO

This study aimed to analyze the role of endothelial progenitor cell (EPC)-derived angiogenic factors and chemokines in the multistep process driving angiogenesis with a focus on the recently discovered macrophage migration inhibitory factor (MIF)/chemokine receptor axis. Primary murine and murine embryonic EPCs (eEPCs) were analyzed for the expression of angiogenic/chemokines and components of the MIF/CXC chemokine receptor axis, focusing on the influence of hypoxic versus normoxic stimulation. Hypoxia induced an upregulation of CXCR2 and CXCR4 but not CD74 on EPCs and triggered the secretion of CXCL12, CXCL1, MIF, and vascular endothelial growth factor (VEGF). These factors stimulated the transmigration activity and adhesive capacity of EPCs, with MIF and VEGF exhibiting the strongest effects under hypoxia. MIF-, VEGF-, CXCL12-, and CXCL1-stimulated EPCs enhanced tube formation, with MIF and VEGF exhibiting again the strongest effect following hypoxia. Tube formation following in vivo implantation utilizing angiogenic factor-loaded Matrigel plugs was only promoted by VEGF. Coloading of plugs with eEPCs led to enhanced tube formation only by CXCL12, whereas MIF was the only factor which induced differentiation towards an endothelial and smooth muscle cell (SMC) phenotype, indicating an angiogenic and differentiation capacity in vivo. Surprisingly, CXCL12, a chemoattractant for smooth muscle progenitor cells, inhibited SMC differentiation. We have identified a role for EPC-derived proangiogenic MIF, VEGF and MIF receptors in EPC recruitment following hypoxia, EPC differentiation and subsequent tube and vessel formation, whereas CXCL12, a mediator of early EPC recruitment, does not contribute to the remodeling process. By discerning the contributions of key angiogenic chemokines and EPCs, these findings offer valuable mechanistic insight into mouse models of angiogenesis and help to define the intricate interplay between EPC-derived angiogenic cargo factors, EPCs, and the angiogenic target tissue.


Assuntos
Quimiocinas/fisiologia , Células Endoteliais/fisiologia , Neovascularização Fisiológica , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Quimiocina CXCL12/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator A de Crescimento do Endotélio Vascular/fisiologia
15.
Cells ; 12(19)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37830572

RESUMO

Innate immune pathways play a crucial role in the development of atherosclerosis, from sensing initial danger signals to the long-term reprogramming of immune cells. Despite the success of lipid-lowering therapy, anti-hypertensive medications, and other measures in reducing complications associated with atherosclerosis, cardiovascular disease (CVD) remains the leading cause of death worldwide. Consequently, there is an urgent need to devise novel preventive and therapeutic strategies to alleviate the global burden of CVD. Extensive experimental research and epidemiological studies have demonstrated the dominant role of innate immune mechanisms in the progression of atherosclerosis. Recently, landmark trials including CANTOS, COLCOT, and LoDoCo2 have provided solid evidence demonstrating that targeting innate immune pathways can effectively reduce the risk of CVD. These groundbreaking trials mark a significant paradigm shift in the field and open new avenues for atheroprotective treatments. It is therefore crucial to comprehend the intricate interplay between innate immune pathways and atherosclerosis for the development of targeted therapeutic interventions. Additionally, unraveling the mechanisms underlying long-term reprogramming may offer novel strategies to reverse the pro-inflammatory phenotype of immune cells and restore immune homeostasis in atherosclerosis. In this review, we present an overview of the innate immune pathways implicated in atherosclerosis, with a specific focus on the signaling pathways driving chronic inflammation in atherosclerosis and the long-term reprogramming of immune cells within atherosclerotic plaque. Elucidating the molecular mechanisms governing these processes presents exciting opportunities for the development of a new class of immunotherapeutic approaches aimed at reducing inflammation and promoting plaque stability. By addressing these aspects, we can potentially revolutionize the management of atherosclerosis and its associated cardiovascular complications.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Imunidade Inata , Aterosclerose/metabolismo , Inflamação , Placa Aterosclerótica/genética , Doenças Cardiovasculares/genética , Epigênese Genética
16.
Cureus ; 13(12): e20089, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003948

RESUMO

Background Hepatocellular Carcinoma (HCC) is a severe complication of cirrhosis and the incidence of HCC has been increasing in the United States (US). We aim to describe the trends, characteristics, and outcomes of hospitalizations due to HCC across the last decade. Methods We derived a study cohort from the Nationwide Inpatient Sample (NIS) for the years 2008-2017. Adult hospitalizations due to HCC were identified using the International Classification of Diseases (9th/10th Editions) Clinical Modification diagnosis codes (ICD-9-CM/ICD-10-CM). Comorbidities were also identified by ICD-9/10-CM codes and Elixhauser Comorbidity Software (Agency for Healthcare Research and Quality, Rockville, Maryland, US). Our primary outcomes were in-hospital mortality and discharge to the facility. We then utilized the Cochran-Armitage trend test and multivariable survey logistic regression models to analyze the trends, outcomes, and predictors. Results A total of 155,436 adult hospitalizations occurred due to HCC from 2008-2017. The number of hospitalizations with HCC decreased from 16,754 in 2008 to 14,715 in 2017. Additionally, trends of in-hospital mortality declined over the study period but discharge to facilities remained stable. Furthermore, in multivariable regression analysis, predictors of increased mortality in HCC patients were advanced age (OR 1.1; 95%CI 1.0-1.2; p< 0.0001), African American (OR 1.3; 95%CI 1.1-1.4;p< 0.001), Rural/ non-teaching hospitals (OR 2.7; 95%CI 2.4-3.3; p< 0.001), uninsured (OR 1.9; CI 1.6-2.2; p< 0.0001) and complications like septicemia and pneumonia as well as comorbidities such as hypertension, diabetes mellitus, and renal failure. We observed similar trends in discharge to facilities. Conclusions In this nationally representative study, we observed a decrease in hospitalizations of patients with HCC along with in-hospital mortality; however, discharge to facilities remained stable over the last decade. We also identified multiple predictors significantly associated with increased mortality, some of which are potentially modifiable and can be points of interest for future studies.

17.
Front Physiol ; 11: 673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625118

RESUMO

Atherogenesis and arterial remodeling following mechanical injury are driven by inflammation and mononuclear cell infiltration. The binding of immune complexes (ICs) to immunoglobulin (Ig)-Fc gamma receptors (FcγRs) on most innate and adaptive immune cells induces a variety of inflammatory responses that promote atherogenesis. Here, we studied the role of FcγRIII in neointima formation after arterial injury in atherosclerosis-prone mice and compared the outcome and mechanism to that of FcγRIII in diet-induced "chronic" atherosclerosis. FcγrIII-/-/Apoe-/- and control Apoe-/- mice were subjected to wire-induced endothelial denudation of the carotid artery while on high-fat diet (HFD). FcγrIII deficiency mitigated neointimal plaque formation and lesional macrophage accumulation, and enhanced neointimal vascular smooth muscle cell (VSMC) numbers. This went along with a reduced expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1/CCL2), and vascular cell adhesion molecule-1 (VCAM-1) in the neointimal lesions. Interestingly, in a chronic model of diet-induced atherosclerosis, we unraveled a dichotomic role of FcγRIII in an early versus advanced stage of the disease. While FcγrIII deficiency conferred atheroprotection in the early stage, it promoted atherosclerosis in advanced stages. To this end, FcγrIII deficiency attenuated pro-inflammatory responses in early atherosclerosis but promoted these events in advanced stages. Analysis of the mechanism(s) underlying the athero-promoting effect of FcγrIII deficiency in late-stage atherosclerosis revealed increased serum levels of anti-oxidized-LDL immunoglobulins IgG2c and IgG2b. This was paralleled by enhanced lesional accumulation of IgGs without affecting levels of complement-activated products C5a or C5ar1, FcγRII, and FcγRIV. Moreover, FcγrIII-deficient macrophages expressed more FcγrII, Tnf-α, and Il-1ß mRNA when exposed to IgG1 or oxLDL-IgG1 ICs in vitro, and peripheral CD4+ and CD8+ T-cell levels were altered. Collectively, our data suggest that deficiency of activating FcγRIII limits neointima formation after arterial injury in atherosclerosis-prone mice as well as early stage chronic atherosclerosis, but augments late-stage atherosclerosis suggesting a dual role of FcγRIII in atherogenic inflammation.

18.
Atherosclerosis ; 292: 23-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733453

RESUMO

BACKGROUND AND AIMS: IKKα is an important regulator of gene expression. As IKKα kinase inactivity in bone marrow-derived cells does not affect atherosclerosis, we here investigate the impact of a whole body-IKKα kinase inactivity on atherosclerosis. METHODS: Apolipoprotein E (Apoe)-deficient mice homozygous for an activation-resistant Ikkα-mutant (IkkαAA/AAApoe-/-) and Ikkα+/+Apoe-/- controls received a Western-type diet. Atherosclerotic lesion size and cellular content were analyzed using histology and immunofluorescence. Vascular protein expression and IKKα kinase activity were quantified by Luminex multiplex immuno-assay and ELISA. RESULTS: A vascular site-specific IKKα expression and kinase activation profile was revealed, with higher total IKKα protein levels in aortic root but increased IKKα phosphorylation, representing activated IKKα, in the aortic arch. This was associated with a vascular site-specific effect of IkkαAA/AA knock-in on atherosclerosis: in the aortic root, IkkαAA/AA knock-in decreased lesion size by 22.0 ±â€¯7.7% (p < 0.01), reduced absolute lesional smooth muscle cell numbers and lowered pro-atherogenic MMP2. In contrast, IkkαAA/AA knock-in increased lesion size in the aortic arch by 43.7 ±â€¯20.1% (p < 0.001), increased the abundance of lesional smooth muscle cells in brachiocephalic artery as main arch side branch and elevated MMP2. A similar profile was observed for MMP3. No effects were observed on necrotic core or collagen deposition in atherosclerotic lesions, nor on absolute lesional macrophage numbers. CONCLUSIONS: A non-activatable IKKα kinase differentially affects atherosclerosis in aortic root vs. aortic arch/brachiocephalic artery, associated with a differential vascular IKKα expression and kinase activation profile as well as with a vascular site-dependent impact on lesional smooth muscle cell accumulation and protein expression profiles.


Assuntos
Aterosclerose/etiologia , Quinase I-kappa B/fisiologia , Animais , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/genética , Camundongos , Mutação
19.
Nat Commun ; 11(1): 5981, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239628

RESUMO

Targeting a specific chemokine/receptor axis in atherosclerosis remains challenging. Soluble receptor-based strategies are not established for chemokine receptors due to their discontinuous architecture. Macrophage migration-inhibitory factor (MIF) is an atypical chemokine that promotes atherosclerosis through CXC-motif chemokine receptor-4 (CXCR4). However, CXCR4/CXCL12 interactions also mediate atheroprotection. Here, we show that constrained 31-residue-peptides ('msR4Ms') designed to mimic the CXCR4-binding site to MIF, selectively bind MIF with nanomolar affinity and block MIF/CXCR4 without affecting CXCL12/CXCR4. We identify msR4M-L1, which blocks MIF- but not CXCL12-elicited CXCR4 vascular cell activities. Its potency compares well with established MIF inhibitors, whereas msR4M-L1 does not interfere with cardioprotective MIF/CD74 signaling. In vivo-administered msR4M-L1 enriches in atherosclerotic plaques, blocks arterial leukocyte adhesion, and inhibits atherosclerosis and inflammation in hyperlipidemic Apoe-/- mice in vivo. Finally, msR4M-L1 binds to MIF in plaques from human carotid-endarterectomy specimens. Together, we establish an engineered GPCR-ectodomain-based mimicry principle that differentiates between disease-exacerbating and -protective pathways and chemokine-selectively interferes with atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Oxirredutases Intramoleculares/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Receptores CXCR4/metabolismo , Idoso , Animais , Antígenos CD/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/cirurgia , Sítios de Ligação , Artéria Carótida Primitiva/patologia , Artéria Carótida Primitiva/cirurgia , Quimiocina CXCL12/metabolismo , Cristalografia por Raios X , Modelos Animais de Doenças , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Endarterectomia das Carótidas , Feminino , Humanos , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Fragmentos de Peptídeos/uso terapêutico , Receptores CXCR4/química , Receptores CXCR4/ultraestrutura , Sialiltransferases/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa