Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunol Rev ; 314(1): 181-196, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36609987

RESUMO

The burst of superoxide produced when neutrophils phagocytose bacteria is the defining biochemical feature of these abundant immune cells. But 50 years since this discovery, the vital role superoxide plays in host defense has yet to be defined. Superoxide is neither bactericidal nor is it just a source of hydrogen peroxide. This simple free radical does, however, have remarkable chemical dexterity. Depending on its environment and reaction partners, superoxide can act as an oxidant, a reductant, a nucleophile, or an enzyme substrate. We outline the evidence that inside phagosomes where neutrophils trap, kill, and digest bacteria, superoxide will react preferentially with the enzyme myeloperoxidase, not the bacterium. By acting as a cofactor, superoxide will sustain hypochlorous acid production by myeloperoxidase. As a substrate, superoxide may give rise to other forms of reactive oxygen. We contend that these interactions hold the key to understanding the precise role superoxide plays in neutrophil biology. State-of-the-art techniques in mass spectrometry, oxidant-specific fluorescent probes, and microscopy focused on individual phagosomes are needed to identify bactericidal mechanisms driven by superoxide. This work will undoubtably lead to fascinating discoveries in host defense and give a richer understanding of superoxide's varied biology.


Assuntos
Neutrófilos , Superóxidos , Humanos , Neutrófilos/microbiologia , Superóxidos/farmacologia , Peroxidase/farmacologia , Fagocitose , Oxidantes/farmacologia , Ácido Hipocloroso/análise , Ácido Hipocloroso/farmacologia , Antibacterianos , Biologia
2.
J Biol Chem ; 293(40): 15715-15724, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30135208

RESUMO

The rhodamine-based probe R19-S has been shown to react with hypochlorous acid (HOCl) to yield fluorescent R19, but not with some other oxidants including hydrogen peroxide. Here, we further examined the specificity of R19-S and used it for real-time monitoring of HOCl production in neutrophil phagosomes. We show that it also reacts rapidly with hypobromous acid, bromamines, and hypoiodous acid, indicating that R19-S responds to these reactive halogen species as well as HOCl. Hypothiocyanous acid and taurine chloramine were unreactive, however, and ammonia chloramine and dichloramine reacted only very slowly. MS analyses revealed additional products from the reaction of HOCl with R19-S, including a chlorinated species as a minor product. Of note, phagocytosis of opsonized zymosan or Staphylococcus aureus by neutrophils was accompanied by an increase in R19 fluorescence. This increase depended on NADPH oxidase and myeloperoxidase activities, and detection of chlorinated R19-S confirmed its specificity for HOCl. Using live-cell imaging to track individual phagosomes in single neutrophils, we observed considerable heterogeneity among the phagosomes in the time from ingestion of a zymosan particle to when fluorescence was first detected, ranging from 1 to >30 min. However, once initiated, the subsequent fluorescence increase was uniform, reaching a similar maximum in ∼10 min. Our results confirm the utility of R19-S for detecting HOCl in real-time and provide definitive evidence that isolated neutrophils produce HOCl in phagosomes. The intriguing variability in the onset of HOCl production among phagosomes identified here could influence the way they kill ingested bacteria.


Assuntos
Corantes Fluorescentes/química , Ácido Hipocloroso/análise , Neutrófilos/enzimologia , Fagocitose , Fagossomos/metabolismo , Rodaminas/química , Bioensaio , Corantes Fluorescentes/metabolismo , Humanos , Ácido Hipocloroso/imunologia , Ácido Hipocloroso/metabolismo , Erros Inatos do Metabolismo/enzimologia , Erros Inatos do Metabolismo/imunologia , Erros Inatos do Metabolismo/patologia , NADPH Oxidases/genética , NADPH Oxidases/imunologia , NADPH Oxidases/metabolismo , Neutrófilos/imunologia , Neutrófilos/patologia , Proteínas Opsonizantes/química , Peroxidase/deficiência , Peroxidase/genética , Peroxidase/imunologia , Fagossomos/imunologia , Fagossomos/ultraestrutura , Cultura Primária de Células , Rodaminas/metabolismo , Espectrometria de Fluorescência , Staphylococcus aureus/imunologia , Zimosan/química
3.
J Biol Chem ; 293(51): 19886-19898, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30385504

RESUMO

Urate is often viewed as an antioxidant. Here, we present an alternative perspective by showing that, when oxidized, urate propagates oxidative stress. Oxidation converts urate to the urate radical and the electrophilic products dehydrourate, 5-hydroxyisourate, and urate hydroperoxide, which eventually break down to allantoin. We investigated whether urate-derived electrophiles are intercepted by nucleophilic amino acid residues to form stable adducts on proteins. When urate was oxidized in the presence of various peptides and proteins, two adducts derived from urate (Mr 167 Da) were detected and had mass additions of 140 and 166 Da, occurring mainly on lysine residues and N-terminal amines. The adduct with a 140-Da mass addition was detected more frequently and was stable. Dehydrourate (Mr 166 Da) also formed transient adducts with cysteine residues. Urate-derived adducts were detected on human serum albumin in plasma of healthy donors. Basal adduct levels increased when neutrophils were added to plasma and stimulated, and relied on the NADPH oxidase, myeloperoxidase, hydrogen peroxide, and superoxide. Adducts of oxidized urate on serum albumin were elevated in plasma and synovial fluid from individuals with gout and rheumatoid arthritis. We propose that rather than acting as an antioxidant, urate's conversion to electrophiles contributes to oxidative stress. The addition of urate-derived electrophiles to nucleophilic amino acid residues, a process we call oxidative uratylation, will leave a footprint on proteins that could alter their function when critical sites are modified.


Assuntos
Ácido Úrico/química , Aminas/química , Sequência de Aminoácidos , Ativação Enzimática/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Humanos , Inflamação/metabolismo , Modelos Moleculares , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Conformação Proteica , Albumina Sérica/química , Albumina Sérica/metabolismo , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia
4.
J Leukoc Biol ; 112(4): 591-605, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35621076

RESUMO

Targeting immune evasion tactics of pathogenic bacteria may hold the key to treating recalcitrant bacterial infections. Staphylococcus aureus produces bacillithiol (BSH), its major low-molecular-weight thiol, which is thought to protect this opportunistic human pathogen against the bombardment of oxidants inside neutrophil phagosomes. Here, we show that BSH was oxidized when human neutrophils phagocytosed S. aureus, but provided limited protection to the bacteria. We used mass spectrometry to measure the oxidation of BSH upon exposure of S. aureus USA300 to either a bolus of hypochlorous acid (HOCl) or a flux generated by the neutrophil enzyme myeloperoxidase. Oxidation of BSH and loss of bacterial viability were strongly correlated (r = 0.99, p < 0.001). BSH was fully oxidized after exposure of S. aureus to lethal doses of HOCl. However, there was no relationship between the initial BSH levels and the dose of HOCl required for bacterial killing. In contrast to the HOCl systems, only 50% of total BSH was oxidized when neutrophils killed the majority of phagocytosed bacteria. Oxidation of BSH was decreased upon inhibition of myeloperoxidase, implicating HOCl in phagosomal BSH oxidation. A BSH-deficient S. aureus USA300 mutant was slightly more susceptible to treatment with either HOCl or ammonia chloramine, or to killing within neutrophil phagosomes. Collectively, our data show that myeloperoxidase-derived oxidants react with S. aureus inside neutrophil phagosomes, leading to partial BSH oxidation, and contribute to bacterial killing. However, BSH offers only limited protection against the neutrophil's multifaceted killing mechanisms.


Assuntos
Neutrófilos , Staphylococcus aureus , Cisteína/análogos & derivados , Cisteína/metabolismo , Glucosamina/análogos & derivados , Humanos , Ácido Hipocloroso/metabolismo , Ácido Hipocloroso/farmacologia , Neutrófilos/metabolismo , Oxidantes/metabolismo , Oxirredução , Peroxidase/metabolismo , Fagossomos/metabolismo , Staphylococcus aureus/metabolismo
5.
Pathog Dis ; 79(1)2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33351093

RESUMO

Neutrophils generate hypochlorous acid (HOCl) and related reactive chlorine species as part of their defence against invading microorganisms. In isolation, bacteria respond to reactive chlorine species by upregulating responses that provide defence against oxidative challenge. Key questions are whether these responses are induced when bacteria are phagocytosed by neutrophils, and whether this provides them with a survival advantage. We investigated RclR, a transcriptional activator of the rclABC operon in Escherichia coli that has been shown to be specifically activated by reactive chlorine species. We first measured induction by individual reactive chlorine species, and showed that HOCl itself activates the response, as do chloramines (products of HOCl reacting with amines) provided they are cell permeable. Strong RclR activation was seen in E. coli following phagocytosis by neutrophils, beginning within 5 min and persisting for 40 min. RclR activation was suppressed by inhibitors of NOX2 and myeloperoxidase, providing strong evidence that it was due to HOCl production in the phagosome. RclR activation demonstrates that HOCl, or a derived chloramine, enters phagocytosed bacteria in sufficient amount to induce this response. Although RclR was induced in wild-type bacteria following phagocytosis, we detected no greater sensitivity to neutrophil killing of mutants lacking genes in the rclABC operon.


Assuntos
Cloro/metabolismo , Escherichia coli/metabolismo , Ácido Hipocloroso/metabolismo , NADPH Oxidase 2/metabolismo , Neutrófilos/metabolismo , Peroxidase/metabolismo , Fatores de Transcrição/metabolismo , Células Cultivadas , Cloraminas/farmacologia , Cloro/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inativação de Genes , Humanos , Ácido Hipocloroso/farmacologia , Viabilidade Microbiana , Neutrófilos/microbiologia , Oxirredução , Fagocitose , Fatores de Transcrição/genética
6.
Free Radic Biol Med ; 159: 119-124, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32739594

RESUMO

The bactericidal activity of the physiological oxidant hypochlorous acid (HOCl) is commonly studied in a variety of laboratory media. Reactive with numerous targets, HOCl will rapidly lose its toxicity via reduction or be converted to chloramines and other less toxic species. The objective of this study was to test the influence of various media, temperature and reaction time on the toxicity of HOCl. After incubating bacteria in media dosed with reagent HOCl, the bactericidal outcome was measured by colony forming ability. In parallel, we determined the HOCl and chloramine content after dosing media alone. Our results showed that more reagent HOCl was required to kill bacteria in culture media than in aqueous buffer, and this corresponded to the lower concentration of reactive chlorine species achieved in the media. RPMI and MOPS minimal medium retained significant oxidising equivalents after HOCl-dosing, but more nutrient-rich media such as MEM, DMEM, LB and TSB, had higher scavenging capacity. Other factors that lowered the bactericidal strength of HOCl were longer lag-times and raised temperature when pre-dosing media, and insufficient incubation time of cells with the HOCl-treated media. In summary, we demonstrate that the choice of media as well as procedural details within experiments crucially impact the cellular toxicity of HOCl. These factors influence the nature and concentration of oxidants generated, and therefore are critical in affecting cellular responses.


Assuntos
Cloraminas , Ácido Hipocloroso , Bactérias , Cloraminas/farmacologia , Cloro , Meios de Cultura , Oxidantes/farmacologia
7.
Methods Mol Biol ; 2087: 149-164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31728990

RESUMO

This chapter describes three methods for measuring the bactericidal activity of neutrophils. All utilize colony counting techniques to quantify viable bacteria. A simple "one-step" protocol provides a composite measure of phagocytosis and killing, while a "two-step" protocol that separates extracellular and intracellular bacteria allows calculation of rate constants for both of these processes. We also present a method for selectively monitoring the long-term survival of bacteria within the phagosome. This may have application in identifying resistant strains and searching for compounds that sensitize pathogens to destruction.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose , Algoritmos , Sobrevivência Celular , Mecanismos de Defesa , Humanos , Modelos Teóricos , Neutrófilos/metabolismo , Fagossomos/metabolismo , Staphylococcus aureus/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa