Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 119(4): 1317-1325, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552990

RESUMO

PURPOSE: In this study, a C-series linear accelerator was configured to enable rapid and reliable conversion between the production of conventional electron beams and an ultrahigh-dose-rate (UHDR) electron beamline to the treatment room isocenter for FLASH radiation therapy. Efforts to tune the beam resulted in a consistent, stable UHDR beamline. METHODS AND MATERIALS: The linear accelerator was configured to allow for efficient switching between conventional and modified electron output modes within 2 minutes. Additions to the air system allow for retraction of the x-ray target from the beamline when the 10 MV photon mode is selected. With the carousel set to an empty port, this grants access to the higher current pristine electron beam normally used to produce clinical photon fields. Monitoring signals related to the automatic frequency control system allows for tuning of the waveguide while the machine is in a hold state so a stable beam is produced from the initial pulse. A pulse counting system implemented on an field-programmable gate array-based controller platform controls the delivery to a desired number of pulses. Beam profiles were measured with Gafchromic film. Pulse-by-pulse dosimetry was measured using a custom electrometer designed around the EDGE diode. RESULTS: This method reliably produces a stable UHDR electron beam. Open-field measurements of the 16-cm full-width, half-maximum gaussian beam saw average dose rates of 432 Gy/s at treatment isocenter. Pulse overshoots were limited and ramp up was eliminated. Over the last year, there have been no recorded incidents that resulted in machine downtime due to the UHDR conversions. CONCLUSIONS: Stable 10 MeV UHDR beams were generated to produce an average dose rate of 432 Gy/s at the treatment room isocenter. With a reliable pulse-counting beam control system, consistent doses can be delivered for FLASH experiments with the ability to accommodate a wide range of field sizes, source-to-surface distances, and other experimental apparatus that may be relevant for future clinical translation.


Assuntos
Elétrons , Aceleradores de Partículas , Fótons , Aceleradores de Partículas/instrumentação , Elétrons/uso terapêutico , Fótons/uso terapêutico , Desenho de Equipamento , Dosagem Radioterapêutica , Fatores de Tempo , Radioterapia de Alta Energia/instrumentação , Radioterapia de Alta Energia/métodos
2.
Int J Radiat Oncol Biol Phys ; 119(3): 1001-1010, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171387

RESUMO

PURPOSE: Ultrahigh-dose-rate (FLASH) irradiation has been reported to reduce normal tissue damage compared with conventional dose rate (CONV) irradiation without compromising tumor control. This proof-of-concept study aims to develop a deep learning (DL) approach to quantify the FLASH isoeffective dose (dose of CONV that would be required to produce the same effect as the given physical FLASH dose) with postirradiation mouse intestinal histology images. METHODS AND MATERIALS: Eighty-four healthy C57BL/6J female mice underwent 16 MeV electron CONV (0.12 Gy/s; n = 41) or FLASH (200 Gy/s; n = 43) single fraction whole abdominal irradiation. Physical dose ranged from 12 to 16 Gy for FLASH and 11 to 15 Gy for CONV in 1 Gy increments. Four days after irradiation, 9 jejunum cross-sections from each mouse were hematoxylin and eosin stained and digitized for histological analysis. CONV data set was randomly split into training (n = 33) and testing (n = 8) data sets. ResNet101-based DL models were retrained using the CONV training data set to estimate the dose based on histological features. The classical manual crypt counting (CC) approach was implemented for model comparison. Cross-section-wise mean squared error was computed to evaluate the dose estimation accuracy of both approaches. The validated DL model was applied to the FLASH data set to map the physical FLASH dose into the isoeffective dose. RESULTS: The DL model achieved a cross-section-wise mean squared error of 0.20 Gy2 on the CONV testing data set compared with 0.40 Gy2 of the CC approach. Isoeffective doses estimated by the DL model for FLASH doses of 12, 13, 14, 15, and 16 Gy were 12.19 ± 0.46, 12.54 ± 0.37, 12.69 ± 0.26, 12.84 ± 0.26, and 13.03 ± 0.28 Gy, respectively. CONCLUSIONS: Our proposed DL model achieved accurate CONV dose estimation. The DL model results indicate that in the physical dose range of 13 to 16 Gy, the biologic dose response of small intestinal tissue to FLASH irradiation is represented by a lower isoeffective dose compared with the physical dose. Our DL approach can be a tool for studying isoeffective doses of other radiation dose modifying interventions.


Assuntos
Aprendizado Profundo , Camundongos Endogâmicos C57BL , Animais , Camundongos , Feminino , Intestinos/efeitos da radiação , Intestinos/patologia , Dosagem Radioterapêutica , Jejuno/efeitos da radiação , Jejuno/patologia , Estudo de Prova de Conceito
3.
Artigo em Inglês | MEDLINE | ID: mdl-38493902

RESUMO

PURPOSE: We conducted a multi-institutional dosimetric audit between FLASH and conventional dose rate (CONV) electron irradiations by using an anatomically realistic 3-dimensional (3D) printed mouse phantom. METHODS AND MATERIALS: A computed tomography (CT) scan of a live mouse was used to create a 3D model of bony anatomy, lungs, and soft tissue. A dual-nozzle 3D printer was used to print the mouse phantom using acrylonitrile butadiene styrene (∼1.02 g/cm3) and polylactic acid (∼1.24 g/cm3) simultaneously to simulate soft tissue and bone densities, respectively. The lungs were printed separately using lightweight polylactic acid (∼0.64 g/cm3). Hounsfield units (HU), densities, and print-to-print stability of the phantoms were assessed. Three institutions were each provided a phantom and each institution performed 2 replicates of irradiations at selected anatomic regions. The average dose difference between FLASH and CONV dose distributions and deviation from the prescribed dose were measured with radiochromic film. RESULTS: Compared with the reference CT scan, CT scans of the phantom demonstrated mass density differences of 0.10 g/cm3 for bone, 0.12 g/cm3 for lung, and 0.03 g/cm3 for soft tissue regions. Differences in HU between phantoms were <10 HU for soft tissue and bone, with lung showing the most variation (54 HU), but with minimal effect on dose distribution (<0.5%). Mean differences between FLASH and CONV decreased from the first to the second replicate (4.3%-1.2%), and differences from the prescribed dose decreased for both CONV (3.6%-2.5%) and FLASH (6.4%-2.7%). Total dose accuracy suggests consistent pulse dose and pulse number, although these were not specifically assessed. Positioning variability was observed, likely due to the absence of robust positioning aids or image guidance. CONCLUSIONS: This study marks the first dosimetric audit for FLASH using a nonhomogeneous phantom, challenging conventional calibration practices reliant on homogeneous phantoms. The comparison protocol offers a framework for credentialing multi-institutional studies in FLASH preclinical research to enhance reproducibility of biologic findings.

4.
Phys Med Biol ; 68(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37591253

RESUMO

Objective.While radiation-excited fluorescence imaging has great potential to measure absolute 2D dose distributions with high spatial resolution, the fluorescence images are contaminated by noise or artifacts due to Cherenkov light, scattered light or background noise. This study developed a novel deep learning-based model to correct the fluorescence images for accurate dosimetric application.Approach.181 single-aperture static photon beams were delivered to an acrylic tank containing quinine hemisulfate water solution. The emitted radiation-exited optical signals were detected by a complementary metal-oxide semiconductor camera to acquire fluorescence images with 0.3 × 0.3 mm2pixel size. 2D labels of projected dose distributions were obtained by applying forward projection calculation of the 3D dose distributions calculated by a clinical treatment planning system. To calibrate the projected dose distributions for Cherenkov angular dependency, a novel empirical Cherenkov emission calibration method was performed. Total 400-epoch supervised learning was applied to a convolutional neural network (CNN) model to predict the projected dose distributions from fluorescence images, gantry, and collimator angles. Accuracy of the calculated projected dose distributions was evaluated with that of uncorrected or conventional methods by using a few quantitative evaluation metrics.Main results.The projected dose distributions corrected by the empirical Cherenkov emission calibration represented more accurate noise-free images than the uncalibrated distributions. The proposed CNN model provided accurate projected dose distributions. The mean absolute error of the projected dose distributions was improved from 2.02 to 0.766 mm·Gy by the CNN model correction. Moreover, the CNN correction provided higher gamma index passing rates for three different threshold criteria than the conventional methods.Significance.The deep learning-based method improves the accuracy of dose distribution measurements. This technique will also be applied to optical signal denoising or Cherenkov light discrimination in other imaging modalities. This method will provide an accurate dose verification tool with high spatial resolution.

5.
Med Phys ; 50(9): 5875-5883, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37249058

RESUMO

BACKGROUND: Ultra-high dose rate (UHDR) FLASH beams typically deliver dose at rates of  >40 Gy/sec. Characterization of these beams with respect to dose, mean dose rate, and dose per pulse requires dosimeters which exhibit high temporal resolution and fast readout capabilities. PURPOSE: A diode EDGE Detector with a newly designed electrometer has been characterized for use in an UHDR electron beam and demonstrated appropriateness for UHDR FLASH radiotherapy dosimetry. METHODS: Dose linearity, mean dose rate, and dose per pulse dependencies of the EDGE Detector were quantified and compared with dosimeters including a W1 scintillator detector, radiochromic film, and ionization chamber that were irradiated with a 10 MeV UHDR beam. The dose, dose rate, and dose per pulse were controlled via an in-house developed scintillation-based feedback mechanism, repetition rate of the linear accelerator, and source-to-surface distance, respectively. Depth-dose profiles and temporal profiles at individual pulse resolution were compared to the film and scintillation measurements, respectively. The radiation-induced change in response sensitivity was quantified via irradiation of ∼5kGy. RESULTS: The EDGE Detector agreed with film measurements in the measured range with varying dose (up to 70 Gy), dose rate (nearly 200 Gy/s), and dose per pulse (up to 0.63 Gy/pulse) on average to within 2%, 5%, and 1%, respectively. The detector also agreed with W1 scintillation detector on average to within 2% for dose per pulse (up to 0.78 Gy/pulse). The EDGE Detector signal was proportional to ion chamber (IC) measured dose, and mean dose rate in the bremsstrahlung tail to within 0.4% and 0.2% respectively. The EDGE Detector measured percent depth dose (PDD) agreed with film to within 3% and per pulse output agreed with W1 scintillator to within -6% to +5%. The radiation-induced response decrease was 0.4% per kGy. CONCLUSIONS: The EDGE Detector demonstrated dose linearity, mean dose rate independence, and dose per pulse independence for UHDR electron beams. It can quantify the beam spatially, and temporally at sub millisecond resolution. It's robustness and individual pulse detectability of treatment deliveries can potentially lead to its implementation for in vivo FLASH dosimetry, and dose monitoring.


Assuntos
Dosimetria in Vivo , Dosímetros de Radiação , Radiometria/métodos , Aceleradores de Partículas
6.
Integr Biol (Camb) ; 152023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37874173

RESUMO

Radiation therapy, one of the most effective therapies to treat cancer, is highly toxic to healthy tissue. The delivery of radiation at ultra-high dose rates, FLASH radiation therapy (FLASH), has been shown to maintain therapeutic anti-tumor efficacy while sparing normal tissues compared to conventional dose rate irradiation (CONV). Though promising, these studies have been limited mainly to murine models. Here, we leveraged enteroids, three-dimensional cell clusters that mimic the intestine, to study human-specific tissue response to radiation. We observed enteroids have a greater colony growth potential following FLASH compared with CONV. In addition, the enteroids that reformed following FLASH more frequently exhibited proper intestinal polarity. While we did not observe differences in enteroid damage across groups, we did see distinct transcriptomic changes. Specifically, the FLASH enteroids upregulated the expression of genes associated with the WNT-family, cell-cell adhesion, and hypoxia response. These studies validate human enteroids as a model to investigate FLASH and provide further evidence supporting clinical study of this therapy. Insight Box Promising work has been done to demonstrate the potential of ultra-high dose rate radiation (FLASH) to ablate cancerous tissue, while preserving healthy tissue. While encouraging, these findings have been primarily observed using pre-clinical murine and traditional two-dimensional cell culture. This study validates the use of human enteroids as a tool to investigate human-specific tissue response to FLASH. Specifically, the work described demonstrates the ability of enteroids to recapitulate previous in vivo findings, while also providing a lens through which to probe cellular and molecular-level responses to FLASH. The human enteroids described herein offer a powerful model that can be used to probe the underlying mechanisms of FLASH in future studies.


Assuntos
Técnicas de Cultura de Células , Intestinos , Humanos , Camundongos , Animais
7.
Radiat Res ; 200(3): 223-231, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37590482

RESUMO

Recent studies suggest ultra-high dose rate radiation treatment (UHDR-RT) reduces normal tissue damage compared to conventional radiation treatment (CONV-RT) at the same dose. In this study, we compared first, the kinetics and degree of skin damage in wild-type C57BL/6 mice, and second, tumor treatment efficacy in GL261 and B16F10 dermal tumor models, at the same UHDR-RT and CONV-RT doses. Flank skin of wild-type mice received UHDR-RT or CONV-RT at 25 Gy and 30 Gy. Normal skin damage was tracked by clinical observation to determine the time to moist desquamation, an endpoint which was verified by histopathology. Tumors were inoculated on the right flank of the mice, then received UHDR-RT or CONV-RT at 1 × 11 Gy, 1 × 15, 1 × 25, 3 × 6 and 3 × 8 Gy, and time to tumor tripling volume was determined. Tumors also received 1 × 11, 1 × 15, 3 × 6 and 3 × 8 Gy doses for assessment of CD8+/CD4+ tumor infiltrate and genetic expression 96 h postirradiation. All irradiations of the mouse tumor or flank skin were performed with megavoltage electron beams (10 MeV, 270 Gy/s for UHDR-RT and 9 MeV, 0.12 Gy/s for CONV-RT) delivered via a clinical linear accelerator. Tumor control was statistically equal for similar doses of UHDR-RT and CONV-RT in B16F10 and GL261 murine tumors. There were variable qualitative differences in genetic expression of immune and cell damage-associated pathways between UHDR and CONV irradiated B16F10 tumors. Compared to CONV-RT, UHDR-RT resulted in an increased latent period to skin desquamation after a single 25 Gy dose (7 days longer). Time to moist skin desquamation did not significantly differ between UHDR-RT and CONV-RT after a 30 Gy dose. The histomorphological characteristics of skin damage were similar for UHDR-RT and CONV-RT. These studies demonstrated similar tumor control responses for equivalent single and fractionated radiation doses, with variable difference in expression of tumor progression and immune related gene pathways. There was a modest UHDR-RT skin sparing effect after a 1 × 25 Gy dose but not after a 1 × 30 Gy dose.


Assuntos
Neoplasias , Lesões por Radiação , Camundongos , Animais , Camundongos Endogâmicos C57BL , Pele/efeitos da radiação , Neoplasias/patologia , Modelos Animais de Doenças , Lesões por Radiação/patologia , Dosagem Radioterapêutica
8.
Int J Radiat Oncol Biol Phys ; 117(2): 482-492, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37105403

RESUMO

PURPOSE: Ultrahigh-dose-rate (UHDR) radiation therapy (RT) has produced the FLASH effect in preclinical models: reduced toxicity with comparable tumor control compared with conventional-dose-rate RT. Early clinical trials focused on UHDR RT feasibility using specialized devices. We explore the technical feasibility of practical electron UHDR RT on a standard clinical linear accelerator (LINAC). METHODS AND MATERIALS: We tuned the program board of a decommissioned electron energy for UHDR electron delivery on a clinical LINAC without hardware modification. Pulse delivery was controlled using the respiratory gating interface. A short source-to-surface distance (SSD) electron setup with a standard scattering foil was configured and tested on an anthropomorphic phantom using circular blocks with 3- to 20-cm field sizes. Dosimetry was evaluated using radiochromic film and an ion chamber profiler. RESULTS: UHDR open-field mean dose rates at 100, 80, 70, and 59 cm SSD were 36.82, 59.52, 82.01, and 112.83 Gy/s, respectively. At 80 cm SSD, mean dose rate was ∼60 Gy/s for all collimated field sizes, with an R80 depth of 6.1 cm corresponding to an energy of 17.5 MeV. Heterogeneity was <5.0% with asymmetry of 2.2% to 6.2%. The short SSD setup was feasible under realistic treatment conditions simulating broad clinical indications on an anthropomorphic phantom. CONCLUSIONS: Short SSD and tuning for high electron beam current on a standard clinical LINAC can deliver flat, homogenous UHDR electrons over a broad, clinically relevant range of field sizes and depths with practical working distances in a configuration easily reversible to standard clinical use.


Assuntos
Elétrons , Neoplasias , Humanos , Radiometria/métodos , Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
9.
ArXiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808098

RESUMO

We conducted a multi-institutional audit of dosimetric variability between FLASH and conventional dose rate (CONV) electron irradiations by using an anatomically realistic 3D-printed mouse phantom. A CT scan of a live mouse was used to create a 3D model of bony anatomy, lungs, and soft tissue. A dual-nozzle 3D printer was used to print the mouse phantom using acrylonitrile butadiene styrene ($~1.02 g/cm^3$) and polylactic acid ($~1.24 g/cm^3$) simultaneously to simulate soft tissue and bone densities, respectively. The lungs were printed separately using lightweight polylactic acid ($~0.64 g/cm^3$). Hounsfield units (HU) and densities were compared with the reference CT scan of the live mouse. Print-to-print reproducibility of the phantom was assessed. Three institutions were each provided a phantom, and each institution performed two replicates of irradiations at selected mouse anatomic regions. The average dose difference between FLASH and CONV dose distributions and deviation from the prescribed dose were measured with radiochromic film. Compared to the reference CT scan, CT scans of the phantom demonstrated mass density differences of $0.10 g/cm^3$ for bone, $0.12 g/cm^3$ for lung, and $0.03 g/cm^3$ for soft tissue regions. Between phantoms, the difference in HU for soft tissue and bone was <10 HU from print to print. Lung exhibited the most variation (54 HU) but minimally affected dose distribution (<0.5% dose differences between phantoms). The mean difference between FLASH and CONV from the first replicate to the second decreased from 4.3% to 1.2%, and the mean difference from the prescribed dose decreased from 3.6% to 2.5% for CONV and 6.4% to 2.7% for FLASH. The framework presented here is promising for credentialing of multi-institutional studies of FLASH preclinical research to maximize the reproducibility of biological findings.

10.
Int J Radiat Oncol Biol Phys ; 112(4): 1023-1032, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34762969

RESUMO

PURPOSE: To present a Monte Carlo (MC) beam model and its implementation in a clinical treatment planning system (TPS, Varian Eclipse) for a modified ultrahigh dose-rate electron FLASH radiation therapy (eFLASH-RT) linear accelerator (LINAC) using clinical accessories and geometry. METHODS AND MATERIALS: The gantry head without scattering foils or targets, representative of the LINAC modifications, was modeled in the Geant4-based GAMOS MC toolkit. The energy spectrum (σE) and beam source emittance cone angle (θcone) were varied to match the calculated open-field central-axis percent depth dose (PDD) and lateral profiles with Gafchromic film measurements. The beam model and its Eclipse configuration were validated with measured profiles of the open field and nominal fields for clinical applicators. An MC forward dose calculation was conducted for a mouse whole-brain treatment, and an eFLASH-RT plan was compared with a conventional (Conv-) RT electron plan in Eclipse for a human patient with metastatic renal cell carcinoma. RESULTS: The eFLASH beam model agreed best with measurements at σE = 0.5 MeV and θcone = 3.9° ± 0.2°. The model and its Eclipse configuration were validated to clinically acceptable accuracy (the absolute average error was within 1.5% for in-water lateral, 3% for in-air lateral, and 2% for PDDs). The forward calculation showed adequate dose delivery to the entire mouse brain while sparing the organ at risk (lung). The human patient case demonstrated the planning capability with routine accessories to achieve an acceptable plan (90% of the tumor volume receiving 95% and 90% of the prescribed dose for eFLASH and Conv-RT, respectively). CONCLUSIONS: To our knowledge, this is the first functional beam model commissioned in a clinical TPS for eFLASH-RT enabling planning and evaluation with minimal deviation from the Conv-RT workflow. It facilitates the clinical translation because eFLASH-RT and Conv-RT plan quality were comparable for a human patient involving complex geometries and tissue heterogeneity. The methods can be expanded to model other eFLASH irradiators with different beam characteristics.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Algoritmos , Animais , Elétrons , Humanos , Camundongos , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
11.
Phys Med Biol ; 67(9)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313290

RESUMO

Objective.Existing ultra-high dose rate (UHDR) electron sources lack dose rate independent dosimeters and a calibrated dose control system for accurate delivery. In this study, we aim to develop a custom single-pulse dose monitoring and a real-time dose-based control system for a FLASH enabled clinical linear accelerator (Linac).Approach.A commercially available point scintillator detector was coupled to a gated integrating amplifier and a real-time controller for dose monitoring and feedback control loop. The controller was programmed to integrate dose for each radiation pulse and stop the radiation beam when the prescribed dose was delivered. Additionally, the scintillator was mounted in a solid water phantom and placed underneath mice skin forin vivodose monitoring. The scintillator was characterized in terms of its radiation stability, mean dose-rate (Dm), and dose per pulse (Dp) dependence.Main results.TheDpexhibited a consistent ramp-up period across ∼4-5 pulse. The plastic scintillator was shown to be linear withDm(40-380 Gy s-1) andDp(0.3-1.3 Gy Pulse-1) to within +/- 3%. However, the plastic scintillator was subject to significant radiation damage (16%/kGy) for the initial 1 kGy and would need to be calibrated frequently. Pulse-counting control was accurately implemented with one-to-one correspondence between the intended and the actual delivered pulses. The dose-based control was sufficient to gate on any pulse of the Linac.In vivodosimetry monitoring with a 1 cm circular cut-out revealed that during the ramp-up period, the averageDpwas ∼0.045 ± 0.004 Gy Pulse-1, whereas after the ramp-up it stabilized at 0.65 ± 0.01 Gy Pulse-1.Significance.The tools presented in this study can be used to determine the beam parameter space pertinent to the FLASH effect. Additionally, this study is the first instance of real-time dose-based control for a modified Linac at ultra-high dose rates, which provides insight into the tool required for future clinical translation of FLASH-RT.


Assuntos
Aceleradores de Partículas , Radiometria , Animais , Camundongos , Imagens de Fantasmas , Plásticos , Dosagem Radioterapêutica
12.
Int J Radiat Oncol Biol Phys ; 110(3): 872-882, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444695

RESUMO

PURPOSE: In this study, procedures were developed to achieve efficient reversible conversion of a clinical linear accelerator (LINAC) and deliver ultrahigh-dose-rate (UHDR) electron or conventional beams to the treatment room isocenter for FLASH radiation therapy. METHODS AND MATERIALS: The LINAC was converted to deliver UHDR beam within 20 minutes by retracting the x-ray target from the beam's path, positioning the carousel on an empty port, and selecting 10 MV photon beam energy in the treatment console. Dose rate surface and depth dose profiles were measured in solid water phantom at different field sizes with Gafchromic film and an optically stimulated luminescent dosimeter (OSLD). A pulse controller counted the pulses via scattered radiation signal and gated the delivery for a preset pulse count. A fast photomultiplier tube-based Cherenkov detector measured the per pulse beam output at a 2-ns sampling rate. After conversion back to clinical mode, conventional beam output, flatness, symmetry, field size, and energy were measured for all clinically commissioned energies. RESULTS: The surface average dose rates at the isocenter for 1-cm diameter and 1.5-in diameter circular fields and for a jaws-wide-open field were 238 ± 5 Gy/s, 262 ± 5 Gy/s, and 290 ± 5 Gy/s, respectively. The radial symmetry of the beams was within 2.4%, 0.5%, and 0.2%, respectively. The doses from simultaneous irradiation of film and OSLD were within 1%. The photomultiplier tube showed the LINAC required ramp up time in the first 4 to 6 pulses before the output stabilized, after which its stability was within 3%. CONCLUSIONS: At the isocenter of the treatment room, 10 MeV UHDR beams were achieved. The beam output was reproducible but requires further investigation of the ramp up time, equivalent to ∼1 Gy, requiring dose monitoring. The UHDR beam can irradiate both small and large subjects to investigate potential FLASH radiobiological effects in minimally modified clinical settings, and the dose rate can be further increased by reducing the source-to-surface distance.


Assuntos
Elétrons , Aceleradores de Partículas , Humanos , Imagens de Fantasmas
13.
Med Phys ; 48(5): 2673-2681, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33730367

RESUMO

PURPOSE: High dose rate conditions, coupled with problems related to small field dosimetry, make dose characterization for FLASH-RT challenging. Most conventional dosimeters show significant dependence on dose rate at ultra-high dose rate conditions or fail to provide sufficiently fast temporal data for pulse to pulse dosimetry. Here fast 2D imaging of radioluminescence from a water and quinine phantom was tested for dosimetry of individual 4 µs linac pulses. METHODS: A modified clinical linac delivered an electron FLASH beam of >50 Gy/s to clinical isocenter. This modification removed the x-ray target and flattening filter, leading to a beam that was symmetric and gaussian, as verified with GafChromic EBT-XD film. Lateral projected 2D dose distributions for each linac pulse were imaged in a quinine-doped water tank using a gated intensified camera, and an inverse Abel transform reconstruction provided 3D images for on-axis depth dose values. A total of 20 pulses were delivered with a 10 MeV, 1.5 cm circular beam, and beam with jaws wide open (40 × 40 cm2 ), and a 3D dose distribution was recovered for each pulse. Beam output was analyzed on a pulse by pulse basis. RESULTS: The Rp , Dmax , and the R50 measured with film and optical methods agreed to within 1 mm for the 1.5 cm circular beam and the beam with jaws wide open. Cross beam profiles for both beams agreed with film data with >95% passing rate (2%/2 mm gamma criteria). The optical central axis depth dose agreed with film data, except for near the surface. A temporal pulse analysis revealed a ramp-up period where the dose per pulse increased for the first few pulses and then stabilized. CONCLUSIONS: Optical imaging of radioluminescence was presented as a valuable tool for establishing a baseline for the recently initiated electron FLASH beam at our institution.


Assuntos
Radiometria , Água , Imagem Óptica , Aceleradores de Partículas , Dosímetros de Radiação
14.
Phys Med Biol ; 66(13)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34015774

RESUMO

Purpose.In this study, spatio-temporal beam profiling for electron ultra-high dose rate (UHDR; >40 Gy s-1) radiation via Cherenkov emission and radioluminescence imaging was investigated using intensified complementary metal-oxide-semiconductor cameras.Methods.The cameras, gated to FLASH optimized linear accelerator pulses, imaged radioluminescence and Cherenkov emission incited by single pulses of a UHDR (>40 Gy s-1) 10 MeV electron beam delivered to the isocenter. Surface dosimetry was investigated via imaging Cherenkov emission or scintillation from a solid water phantom or Gd2O2S:Tb screen positioned on top of the phantom, respectively. Projected depth-dose profiles were imaged from a tank filled with water (Cherenkov emission) and a 1 g l-1quinine sulfate solution (scintillation). These optical results were compared with projected lateral dose profiles measured by Gafchromic film at different depths, including the surface.Results.The per-pulse beam output from Cherenkov imaging agreed with the photomultiplier tube Cherenkov output to within 3% after about the first five to seven ramp-up pulses. Cherenkov emission and scintillation were linear with dose (R2 = 0.987 and 0.995, respectively) and independent of dose rate from ∼50 to 300 Gy s-1(0.18-0.91 Gy/pulse). The surface dose distribution from film agreed better with scintillation than with Cherenkov emission imaging (3%/3 mm gamma pass rates of 98.9% and 88.8%, respectively). Using a 450 nm bandpass filter, the quinine sulfate-based water imaging of the projected depth optical profiles agreed with the projected film dose to within 5%.Conclusion.The agreement of surface dosimetry using scintillation screen imaging and Gafchromic film suggests it can verify the consistency of daily beam quality assurance parameters with an accuracy of around 2% or 2 mm. Cherenkov-based surface dosimetry was affected by the target's optical properties, prompting additional calibration. In projected depth-dose profiling, scintillation imaging via spectral suppression of Cherenkov emission provided the best match to film. Both camera-based imaging modalities resolved dose from single UHDR beam pulses of up to 60 Hz repetition rate and 1 mm spatial resolution.


Assuntos
Elétrons , Radiometria , Imagem Óptica , Aceleradores de Partículas , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa