RESUMO
Histidine phosphorylation (pHis) is well studied in bacteria; however, its role in mammalian signaling remains largely unexplored due to the lack of pHis-specific antibodies and the lability of the phosphoramidate (P-N) bond. Both imidazole nitrogens can be phosphorylated, forming 1-phosphohistidine (1-pHis) or 3-phosphohistidine (3-pHis). We have developed monoclonal antibodies (mAbs) that specifically recognize 1-pHis or 3-pHis; they do not cross-react with phosphotyrosine or the other pHis isomer. Assays based on the isomer-specific autophosphorylation of NME1 and phosphoglycerate mutase were used with immunoblotting and sequencing IgG variable domains to screen, select, and characterize anti-1-pHis and anti-3-pHis mAbs. Their sequence independence was determined by blotting synthetic peptide arrays, and they have been tested for immunofluorescence staining and immunoaffinity purification, leading to putative identification of pHis-containing proteins. These reagents should be broadly useful for identification of pHis substrates and functional study of pHis using a variety of immunological, proteomic, and biological assays.
Assuntos
Anticorpos Monoclonais , Histidina/metabolismo , Animais , Centrossomo , Cromatografia Líquida , Células HeLa , Humanos , Modelos Químicos , Peptídeos/análise , Fosforilação , Polos do Fuso , Espectrometria de Massas em TandemRESUMO
LINE-1 retrotransposons are fast-evolving mobile genetic entities that play roles in gene regulation, pathological conditions, and evolution. Here, we show that the primate LINE-1 5'UTR contains a primate-specific open reading frame (ORF) in the antisense orientation that we named ORF0. The gene product of this ORF localizes to promyelocytic leukemia-adjacent nuclear bodies. ORF0 is present in more than 3,000 loci across human and chimpanzee genomes and has a promoter and a conserved strong Kozak sequence that supports translation. By virtue of containing two splice donor sites, ORF0 can also form fusion proteins with proximal exons. ORF0 transcripts are readily detected in induced pluripotent stem (iPS) cells from both primate species. Capped and polyadenylated ORF0 mRNAs are present in the cytoplasm, and endogenous ORF0 peptides are identified upon proteomic analysis. Finally, ORF0 enhances LINE-1 mobility. Taken together, these results suggest a role for ORF0 in retrotransposon-mediated diversity.
Assuntos
Pan troglodytes/genética , Retroelementos , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Animais , Sequência de Bases , Citoplasma/genética , Humanos , Elementos Nucleotídeos Longos e Dispersos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fases de Leitura Aberta , Processamento Pós-Transcricional do RNA , RNA Antissenso/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Ribossomos/metabolismo , Alinhamento de SequênciaRESUMO
Heterochromatic repetitive satellite RNAs are extensively transcribed in a variety of human cancers, including BRCA1 mutant breast cancer. Aberrant expression of satellite RNAs in cultured cells induces the DNA damage response, activates cell cycle checkpoints, and causes defects in chromosome segregation. However, the mechanism by which satellite RNA expression leads to genomic instability is not well understood. Here we provide evidence that increased levels of satellite RNAs in mammary glands induce tumor formation in mice. Using mass spectrometry, we further show that genomic instability induced by satellite RNAs occurs through interactions with BRCA1-associated protein networks required for the stabilization of DNA replication forks. Additionally, de-stabilized replication forks likely promote the formation of RNA-DNA hybrids in cells expressing satellite RNAs. These studies lay the foundation for developing novel therapeutic strategies that block the effects of non-coding satellite RNAs in cancer cells.
Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Dano ao DNA , Instabilidade Genômica , Heterocromatina/genética , RNA Neoplásico/genética , RNA Satélite/genética , Animais , Proteína BRCA1/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Heterocromatina/metabolismo , Humanos , Células MCF-7 , Camundongos , Ligação Proteica , RNA Neoplásico/metabolismo , RNA Satélite/metabolismo , Carga TumoralRESUMO
Oncogene-induced senescence is an important tumor-suppressing defense mechanism. However, relatively little is known about the signaling pathway mediating the senescence response. Here, we demonstrate that a multifunctional acetyltransferase, Tip60, plays an essential role in oncogenic ras-induced senescence. Further investigation reveals a cascade of posttranslational modifications involving p38, Tip60, and PRAK, three proteins that are essential for ras-induced senescence. Upon activation by ras, p38 induces the acetyltransferase activity of Tip60 through phosphorylation of Thr158; activated Tip60 in turn directly interacts with and induces the protein kinase activity of PRAK through acetylation of K364 in a manner that depends on phosphorylation of both Tip60 and PRAK by p38. These posttranslational modifications are critical for the prosenescent function of Tip60 and PRAK, respectively. These results have defined a signaling pathway that mediates oncogene-induced senescence, and identified posttranslational modifications that regulate the enzymatic activity and biological functions of Tip60 and PRAK.
Assuntos
Senescência Celular/genética , Genes ras , Histona Acetiltransferases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Acetilação , Linhagem Celular , Histona Acetiltransferases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisina Acetiltransferase 5 , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Treonina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genéticaRESUMO
Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a multifunctional protein that has been implicated in a myriad of cellular pathways. Although most well-known for its phosphodiesterase activity removing stalled topoisomerase 2 from DNA, TDP2 has also been shown to interact with both survival and apoptotic mitogen-activated protein kinase (MAPK) signaling cascades. Moreover, it facilitates enterovirus replication and has been genetically linked to neurological disorders ranging from Parkinson's disease to dyslexia. To accurately evaluate TDP2 as a therapeutic target, we need to understand how TDP2 performs such a wide diversity of functions. Here, we use cancer cell lines modified with CRISPR/Cas9 or stably-expressed TDP2-targeted shRNA and transfection of various TDP2 mutants to show that its expression is regulated at the translational level via an internal ribosome entry site (IRES) that initiates translation at codon 54, the second in-frame methionine of the TDP2 coding sequence. We observed that this IRES drives expression of a shorter, N-terminally truncated isoform of TDP2, ΔN-TDP2, which omits a nuclear localization sequence. Additionally, we noted that ΔN-TDP2 retains phosphodiesterase activity and is protective against etoposide-induced cell death, but co-immunoprecipitates with fewer high-molecular-weight ubiquitinated peptide species, suggesting partial loss-of-function of TDP2's ubiquitin-association domain. In summary, our findings suggest the existence of an IRES in the 5' coding sequence of TDP2 that translationally regulates expression of an N-terminally truncated, cytoplasmic isoform of TDP2. These results shed light on the regulation of this multifunctional protein and may inform the design of therapies targeting TDP2 and associated pathways.
Assuntos
Processamento Alternativo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sítios Internos de Entrada Ribossomal/genética , Neoplasias/genética , Proteínas Nucleares/genética , Ribossomos/metabolismo , Fatores de Transcrição/genética , Sequência de Aminoácidos , Proteínas de Ligação a DNA , Humanos , Neoplasias/enzimologia , Neoplasias/patologia , Iniciação Traducional da Cadeia Peptídica , Diester Fosfórico Hidrolases , Isoformas de Proteínas , Ribossomos/genética , Homologia de Sequência , Células Tumorais Cultivadas , Ubiquitina/metabolismoRESUMO
Viral hijacking of cellular processes relies on the ability to mimic the structure or function of cellular proteins. Many viruses encode ubiquitin ligases to facilitate infection, although the mechanisms by which they select their substrates are often unknown. The Herpes Simplex Virus type-1-encoded E3 ubiquitin ligase, ICP0, promotes infection through degradation of cellular proteins, including the DNA damage response E3 ligases RNF8 and RNF168. Here we describe a mechanism by which this viral E3 hijacks a cellular phosphorylation-based targeting strategy to degrade RNF8. By mimicking a cellular phosphosite, ICP0 binds RNF8 via the RNF8 forkhead associated (FHA) domain. Phosphorylation of ICP0 T67 by CK1 recruits RNF8 for degradation and thereby promotes viral transcription, replication, and progeny production. We demonstrate that this mechanism may constitute a broader viral strategy to target other cellular factors, highlighting the importance of this region of the ICP0 protein in countering intrinsic antiviral defenses.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Mimetismo Molecular/fisiologia , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral/fisiologia , Animais , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Proteínas Imediatamente Precoces/genética , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Transcrição Gênica/fisiologia , Ubiquitina-Proteína Ligases/genética , Células VeroRESUMO
Glioblastomas (GBMs) are malignant brain tumors with a median survival of less than 18 months. Redundancy of signaling pathways represented within GBMs contributes to their therapeutic resistance. Exosomes are extracellular nanovesicles released from cells and present in human biofluids that represent a possible biomarker of tumor signaling state that could aid in personalized treatment. Herein, we demonstrate that mouse GBM cell-derived extracellular nanovesicles resembling exosomes from an H-RasV12 myr-Akt mouse model for GBM are enriched for intracellular signaling cascade proteins (GO: 0007242) and Ras protein signal transduction (GO: 0007265), and contain active Ras. Active Ras isolated from human and mouse GBM extracellular nanovesicles lysates using the Ras-binding domain of Raf also coprecipitates with ESCRT (endosomal sorting complex required for transport)-associated exosome proteins Vps4a and Alix. Although we initially hypothesized a role for active Ras protein signaling in exosome biogenesis, we found that GTP binding of K-Ras was dispensable for its packaging within extracellular nanovesicles and for the release of Alix. By contrast, farnesylation of K-Ras was required for its packaging within extracellular nanovesicles, yet expressing a K-Ras farnesylation mutant did not decrease the number of nanovesicles or the amount of Alix protein released per cell. Overall, these results emphasize the primary importance of membrane association in packaging of extracellular nanovesicle factors and indicate that screening nanovesicles within human fluids could provide insight into tissue origin and the wiring of signaling proteins at membranes to predict onset and behavior of cancer and other diseases linked to deregulated membrane signaling states.
Assuntos
Neoplasias Encefálicas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Micropartículas Derivadas de Células/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Glioblastoma/metabolismo , Prenilação , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Quinases raf/genética , Quinases raf/metabolismoRESUMO
Homologous to E6AP C-terminal (HECT) ubiquitin (Ub) ligases (E3s) are a large class of enzymes that bind to their substrates and catalyze ubiquitination through the formation of a Ub thioester intermediate. The mechanisms by which these E3s assemble polyubiquitin chains on their substrates remain poorly defined. We report here that the Nedd4 family HECT E3, WWP1, assembles substrate-linked Ub chains containing Lys-63, Lys-48, and Lys-11 linkages (Lys-63 > Lys-48 > Lys-11). Our results demonstrate that WWP1 catalyzes the formation of Ub chains through a sequential addition mechanism, in which Ub monomers are transferred in a successive fashion to the substrate, and that ubiquitination by WWP1 requires the presence of a low-affinity, noncovalent Ub-binding site within the HECT domain. Unexpectedly, we find that the formation of Ub chains by WWP1 occurs in two distinct phases. In the first phase, chains are synthesized in a unidirectional manner and are linked exclusively through Lys-63 of Ub. In the second phase, chains are elongated in a multidirectional fashion characterized by the formation of mixed Ub linkages and branched structures. Our results provide new insight into the mechanism of Ub chain formation employed by Nedd4 family HECT E3s and suggest a framework for understanding how this family of E3s generates Ub signals that function in proteasome-independent and proteasome-dependent pathways.
Assuntos
Poliubiquitina/biossíntese , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Humanos , Poliubiquitina/genética , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Proteólise , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genéticaRESUMO
ATR and Chk1 are two key protein kinases in the replication checkpoint. Activation of ATR-Chk1 has been extensively investigated, but checkpoint termination and replication fork restart are less well understood. Here, we report that DNA damage not only activates Chk1, but also exposes a degron-like region at the carboxyl terminus of Chk1 to an Fbx6-containing SCF (Skp1-Cul1-F box) E3 ligase, which mediates the ubiquitination and degradation of Chk1 and, in turn, terminates the checkpoint. The protein levels of Chk1 and Fbx6 showed an inverse correlation in both cultured cancer cells and in human breast tumor tissues. Further, we show that low levels of Fbx6 and consequent impairment of replication stress-induced Chk1 degradation are associated with cancer cell resistance to the chemotherapeutic agent, camptothecin. We propose that Fbx6-dependent Chk1 degradation contributes to S phase checkpoint termination and that a defect in this mechanism might increase tumor cell resistance to certain anticancer drugs.
Assuntos
Dano ao DNA , Replicação do DNA , Neoplasias/enzimologia , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Ligases SKP Culina F-Box/metabolismo , Estresse Fisiológico , Antineoplásicos Fitogênicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia , Camptotecina/farmacologia , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática , Humanos , Lisina , Neoplasias/genética , Neoplasias/patologia , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Ligases SKP Culina F-Box/genética , Fatores de Tempo , UbiquitinaçãoRESUMO
In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor â¼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.
Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Epigênese Genética , Histonas/metabolismo , Espermatozoides/fisiologia , Acetilação , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Metilação , Dados de Sequência Molecular , Oócitos/metabolismo , Processamento de Proteína Pós-Traducional , Espermatozoides/metabolismo , UbiquitinaçãoRESUMO
MBF and SBF transcription factors regulate a large family of coordinately expressed G1/S genes required for early cell-cycle functions including DNA replication and repair. SBF is inactivated upon S-phase entry by Clb/CDK whereas MBF targets are repressed by the co-repressor, Nrm1. Using genome-wide expression analysis of cells treated with methyl methane sulfonate (MMS), hydroxyurea (HU) or camptothecin (CPT), we show that genotoxic stress during S phase specifically induces MBF-regulated genes. This occurs via direct phosphorylation of Nrm1 by Rad53, the effector checkpoint kinase, which prevents its binding to MBF target promoters. We conclude that MBF-regulated genes are distinguished from SBF-regulated genes by their sensitivity to activation by the S-phase checkpoint, thereby, providing an effective mechanism for enhancing DNA replication and repair and promoting genome stability.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Replicação do DNA , Fase G1/genética , Regulação Fúngica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Fase S/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Camptotecina/farmacologia , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2 , Hidroxiureia/farmacologia , Metanossulfonato de Metila/farmacologia , Mutagênicos/farmacologia , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Post-translational modification by SUMO is a highly conserved pathway in eukaryotes that plays very important regulatory roles in many cellular processes. Deregulation of the SUMO pathway contributes to the development and progression of many diseases including cancer. Therefore, identifying additional SUMO substrates and studying how their cellular and biological functions are regulated by sumoylation should provide new insights. Our studies showed that sumoylation activity was significant in Xenopus egg extracts, and that a high level of sumoylation was associated with sperm chromatin when SUMO was incubated with Xenopus egg extracts. By isolating SUMO-conjugated substrates using His-tagged SUMO1 or SUMO2 proteins under denaturing conditions, we identified 346 proteins by mass spectrometry analysis that were not present in control pull-downs. Among them, 167 proteins were identified from interphase egg extracts, 86 proteins from mitotic phase egg extracts, and 93 proteins from both. Thirty-three proteins were pulled down by SUMO1, 85 proteins by SUMO2, and 228 proteins by both. We validated the sumoylation of five candidates, CKB, ATXN10, BTF3, HABP4, and BZW1, by co-transfecting them along with SUMO in HEK293T cells. Gene ontology analysis showed that SUMO substrates identified in this study were involved in diverse biological processes. Additionally, SUMO substrates identified from different cell cycle stages or pulled down by different SUMO homologs were enriched for distinct cellular components and functional categories. Our results comprehensively profile the sumoylation occurring in the Xenopus egg extract system.
Assuntos
Cromatina/metabolismo , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Espermatozoides/metabolismo , Sumoilação/fisiologia , Sequência de Aminoácidos , Animais , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quimiocinas CC/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Dados de Sequência Molecular , Fatores de Regulação Miogênica/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Óvulo/metabolismo , Fatores de Transcrição/metabolismo , XenopusRESUMO
Chk1 is an essential mediator of the DNA damage response and cell cycle checkpoint. However, how exactly Chk1 transduces the checkpoint signaling is not fully understood. Here we report the identification of the heterohexamic minichromosome maintenance (MCM) complex that interacts with Chk1 by mass spectrometry. The interaction between Chk1 and the MCM complex was reduced by DNA damage treatment. We show that the MCM complex, at least partially, contributes to the chromatin association of Chk1, allowing for immediate phosphorylation of Chk1 by ataxia telangiectasia mutated and Rad3-related (ATR) in the presence of DNA damage. Further, phosphorylation of Chk1 at ATR sites reduces the interaction between Chk1 and the MCM complex, facilitating chromatin release of phosphorylated Chk1, a critical step in the initiation and amplification of cell cycle checkpoint. Together, these data provide novel insights into the activation of Chk1 in response to DNA damage.
Assuntos
Dano ao DNA , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Quinases/metabolismo , Linhagem Celular , Quinase 1 do Ponto de Checagem , Humanos , Estresse Oxidativo , Fosforilação , Ligação ProteicaRESUMO
MOTIVATION: We introduce Census 2, an update of a mass spectrometry data analysis tool for peptide/protein quantification. New features for analysis of isobaric labeling, such as Tandem Mass Tag (TMT) or Isobaric Tags for Relative and Absolute Quantification (iTRAQ), have been added in this version, including a reporter ion impurity correction, a reporter ion intensity threshold filter and an option for weighted normalization to correct mixing errors. TMT/iTRAQ analysis can be performed on experiments using HCD (High Energy Collision Dissociation) only, CID (Collision Induced Dissociation)/HCD (High Energy Collision Dissociation) dual scans or HCD triple-stage mass spectrometry data. To improve measurement accuracy, we implemented weighted normalization, multiple tandem spectral approach, impurity correction and dynamic intensity threshold features. AVAILABILITY AND IMPLEMENTATION: Census 2 supports multiple input file formats including MS1/MS2, DTASelect, mzXML and pepXML. It requires JAVA version 6 or later to run. Free download of Census 2 for academic users is available at http://fields.scripps.edu/census/index.php. CONTACT: jyates@scripps.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Estatística como Assunto/métodos , Animais , Linhagem Celular , Marcação por Isótopo , Camundongos , Peptídeos/análise , Peptídeos/química , Proteínas/análise , Proteínas/químicaRESUMO
In response to DNA damage, eukaryotic cells activate ATM-Chk2 and/or ATR-Chk1 to arrest the cell cycle and initiate DNA repair. We show that, in the absence of p53, cells depend on a third cell-cycle checkpoint pathway involving p38MAPK/MK2 for cell-cycle arrest and survival after DNA damage. MK2 depletion in p53-deficient cells, but not in p53 wild-type cells, caused abrogation of the Cdc25A-mediated S phase checkpoint after cisplatin exposure and loss of the Cdc25B-mediated G2/M checkpoint following doxorubicin treatment, resulting in mitotic catastrophe and pronounced regression of murine tumors in vivo. We show that the Chk1 inhibitor UCN-01 also potently inhibits MK2, suggesting that its clinical efficacy results from the simultaneous disruption of two critical checkpoint pathways in p53-defective cells.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/efeitos da radiação , Sobrevivência Celular , Células Cultivadas , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Doxorrubicina/farmacologia , Fase G2/efeitos dos fármacos , Fase G2/efeitos da radiação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Camundongos Nus , Mitose/efeitos dos fármacos , Mitose/efeitos da radiação , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Proteína Quinase C/antagonistas & inibidores , Proteínas Quinases/genética , Fase S/efeitos dos fármacos , Fase S/efeitos da radiação , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia , Raios Ultravioleta , Fosfatases cdc25/metabolismoRESUMO
Intact protein analysis via top-down mass spectrometry (MS) provides a bird's eye view over the protein complexes and complex protein mixtures with the unique capability of characterizing protein variants, splice isoforms, and combinatorial post-translational modifications (PTMs). Here we applied capillary electrophoresis (CE) through a sheathless CE-electrospray ionization interface coupled to an LTQ Velos Orbitrap Elite mass spectrometer to analyze the Dam1 complex from Saccharomyces cerevisiae. We achieved a 100-fold increase in sensitivity compared to a reversed-phase liquid chromatography coupled MS analysis of recombinant Dam1 complex with a total loading of 2.5 ng (12 amol). N-terminal processing forms of individual subunits of the Dam1 complex were observed as well as their phosphorylation stoichiometry upon Mps1p kinase treatment.
Assuntos
Proteínas de Ciclo Celular/análise , Eletroforese Capilar/métodos , Proteínas Associadas aos Microtúbulos/análise , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Peso Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Subunidades Proteicas/análise , Subunidades Proteicas/metabolismo , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Intact protein analysis via top-down mass spectrometry (MS) provides the unique capability of fully characterizing protein isoforms and combinatorial post-translational modifications (PTMs) compared to the bottom-up MS approach. Front-end protein separation poses a challenge for analyzing complex mixtures of intact proteins on a proteomic scale. Here we applied capillary electrophoresis (CE) through a sheathless capillary electrophoresis-electrospray ionization (CESI) interface coupled to an Orbitrap Elite mass spectrometer to profile the proteome from Pyrococcus furiosus. CESI-top-down MS analysis of Pyrococcus furiosus cell lysate identified 134 proteins and 291 proteoforms with a total sample consumption of 270 ng in 120 min of total analysis time. Truncations and various PTMs were detected, including acetylation, disulfide bonds, oxidation, glycosylation, and hypusine. This is the largest scale analysis of intact proteins by CE-top-down MS to date.
Assuntos
Proteínas Arqueais/análise , Proteoma/análise , Proteômica , Pyrococcus furiosus/química , Espectrometria de Massas em Tandem , Eletroforese CapilarRESUMO
Intron removal from tRNA precursors involves cleavage by a tRNA splicing endonuclease to yield tRNA 3'-halves beginning with a 5'-hydroxyl, and 5'-halves ending in a 2',3'-cyclic phosphate. A tRNA ligase then incorporates this phosphate into the internucleotide bond that joins the two halves. Although this 3'-P RNA splicing ligase activity was detected almost three decades ago in extracts from animal and later archaeal cells, the protein responsible was not yet identified. Here we report the purification of this ligase from Methanopyrus kandleri cells, and its assignment to the still uncharacterized RtcB protein family. Studies with recombinant Pyrobaculum aerophilum RtcB showed that the enzyme is able to join spliced tRNA halves to mature-sized tRNAs where the joining phosphodiester linkage contains the phosphate originally present in the 2',3'-cyclic phosphate. The data confirm RtcB as the archaeal RNA 3'-P ligase. Structural genomics efforts previously yielded a crystal structure of the Pyrococcus horikoshii RtcB protein containing a new protein fold and a conserved putative Zn(2+) binding cleft. This structure guided our mutational analysis of the P. aerophilum enzyme. Mutations of highly conserved residues in the cleft (C100A, H205A, H236A) rendered the enzyme inactive suggesting these residues to be part of the active site of the P. aerophilum ligase. There is no significant sequence similarity between the active sites of P. aerophilum ligase and that of T4 RNA ligase, nor ligases from plants and fungi. RtcB sequence conservation in archaea and in eukaryotes implicates eukaryotic RtcB as the long-sought animal 3'-P RNA ligase.
Assuntos
Proteínas Arqueais/metabolismo , Euryarchaeota/enzimologia , RNA Ligase (ATP)/metabolismo , Precursores de RNA/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Sequência de Bases , Sítios de Ligação , Biocatálise , Euryarchaeota/genética , Dados de Sequência Molecular , Mutação , Fosfatos/metabolismo , Filogenia , Pyrococcus horikoshii/enzimologia , Pyrococcus horikoshii/genética , RNA Ligase (ATP)/classificação , RNA Ligase (ATP)/genética , Precursores de RNA/genética , Splicing de RNA , RNA Arqueal/genética , RNA Arqueal/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Homologia de Sequência de Aminoácidos , Zinco/metabolismoRESUMO
Protein modification by SUMO and ubiquitin critically impacts genome stability via effectors that "read" their signals using SUMO interaction motifs or ubiquitin binding domains, respectively. A novel mixed SUMO and ubiquitin signal is generated by the SUMO-targeted ubiquitin ligase (STUbL), which ubiquitylates SUMO conjugates. Herein, we determine that the "ubiquitin-selective" segregase Cdc48-Ufd1-Npl4 also binds SUMO via a SUMO interaction motif in Ufd1 and can thus act as a selective receptor for STUbL targets. Indeed, we define key cooperative DNA repair functions for Cdc48-Ufd1-Npl4 and STUbL, thereby revealing a new signaling mechanism involving dual recruitment by SUMO and ubiquitin for Cdc48-Ufd1-Npl4 functions in maintaining genome stability.
Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Instabilidade Genômica/fisiologia , Proteína SUMO-1/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Reparo do DNA/fisiologia , DNA Fúngico/genética , DNA Fúngico/metabolismo , Ligação Proteica , Proteína SUMO-1/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais/fisiologia , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Proteína com ValosinaRESUMO
Ubiquitination plays an important role in the DNA damage response. We identified a novel interaction of the E3 ubiquitin ligase RNF8 with Nbs1, a key regulator of DNA double-strand break (DSB) repair. We found that Nbs1 is ubiquitinated both before and after DNA damage and is a direct ubiquitination substrate of RNF8. We also identified key residues on Nbs1 that are ubiquitinated by RNF8. By using laser microirradiation and live-cell imaging, we observed that RNF8 and its ubiquitination activity are important for promoting optimal binding of Nbs1 to DSB-containing chromatin. We also demonstrated that RNF8-mediated ubiquitination of Nbs1 contributes to the efficient and stable binding of Nbs1 to DSBs and is important for HR-mediated DSB repair. Taken together, these studies suggest that Nbs1 is one important target of RNF8 to regulate DNA DSB repair.