RESUMO
Sensitive and selective detection of biomarkers in serum in a short time has a significant impact on health. The enormous clinical importance of developing reliable methods and devices for testing serum levels of cardiac troponin I (cTnI), which are directly correlated to acute myocardial infarction (AMI), has spurred an unmatched race among researchers for the development of highly sensitive and cost-effective sensing formats to be able to differentiate patients with early onset of cardiac injury from healthy individuals with a mean cTnI level of 26 pg mL-1. Electronic- and electrochemical-based detection schemes allow for fast and quantitative detection not otherwise possible at the point of care. Such approaches rely largely on voltammetric and field-effect-based readouts. Here, we systematically investigate electric and electrochemical point-of-care sensors for the detection of cTnI in serum samples by using the same surface receptors, cTnI aptamer-functionalized CVD graphene-coated interdigated gold electrodes. The analytical performances of both sensors are comparable with a limit of detection (LoD) of 5.7 ± 0.6 pg mL-1(electrochemical) and 3.3 ± 1.2 pg mL-1 (electric). However, both sensors exhibit different equilibrium dissociation constant (KD) values between the aptamer-linked surface receptor and the cTnI analyte, being 160 pg mL-1 for the electrochemical and about three times lower for the electrical approach with KD = 51.4 pg mL-1. This difference is believed to be related to the use of a redox mediator in the electrochemical sensor for readout. The ability of the redox mediator to diffuse from the solution to the surface via the cTnI/aptamer interface is hindered, correlating to higher KD values. In contrast, the electric readout has the advantage of being label-free with a sensing limitation due to ionic strength effects, which can be limited using poly(ethylene) glycol surface ligands.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Biomarcadores , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Humanos , Limite de Detecção , Troponina IRESUMO
Polyaniline (PANI) films are promising candidates for electronic nose-based IoT applications, but device performances are influenced by fabrication parameters and ambient conditions. Affinities of different PANI composites to analytes for gas sensing applications remain elusive. In this study, we investigate the material properties in detail for two different dopant systems: F4TCNQ and carbon black. Using a reproducibility-driven approach, we investigate different dopant concentrations in regard to their sensitivity and specificity towards five relevant markers for breath cancer diagnosis. We benchmark the system using ammonia measurements and evaluate limits of detection. Furthermore, we provide statistical analysis on reproducibility and pave the way towards machine learning discrimination via principal component analysis. The influence of relative humidity on sensor hysteresis is also investigated. We find that F4TCNQ-doped PANI films show improved reproducibility compared to carbon black-doped films. We establish and quantify a tradeoff between sensitivity, reproducibility, and environmental stability by the choice of dopant and concentrations ratios.
Assuntos
Amônia , Fuligem , Amônia/análise , Compostos de Anilina , Reprodutibilidade dos TestesRESUMO
Several challenging biological sensing concepts have been realized using electrolyte-gated reduced graphene oxide field effect transistors (rGO-FETs). In this work, we demonstrate the interest of rGO-FET for the sensing of human papillomavirus (HPV), one of the most common sexually transmitted viruses and a necessary factor for cervical carcinogenesis. The highly sensitive and selective detection of the HPV-16 E7 protein relies on the attractive semiconducting characteristics of pyrene-modified rGO functionalized with RNA aptamer Sc5-c3. The aptamer-functionalized rGO-FET allows for monitoring the aptamer-HPV-16 E7 protein binding in real time with a detection limit of about 100 pg mL-1 (1.75 nM) for HPV-16 E7 from five blank noise signals (95% confidence level). The feasibility of this method for clinical application in point-of-care technology is evaluated using HPV-16 E7 protein suspended in saliva and demonstrates the successful fabrication of a promising field effect transistor biosensor for HPV diagnosis.Graphical abstract.
Assuntos
Grafite/química , Papillomavirus Humano 16/isolamento & purificação , Infecções por Papillomavirus/diagnóstico , Saliva/virologia , Transistores Eletrônicos , Infecções Tumorais por Vírus/diagnóstico , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Estudos de Viabilidade , Humanos , Limite de Detecção , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus/virologia , Análise Espectral/métodos , Infecções Tumorais por Vírus/virologiaRESUMO
By combining surface plasmon resonance (SPR) and electrolyte gated field-effect transistor (EG-FET) methods in a single analytical device we introduce a novel tool for surface investigations, enabling simultaneous measurements of the surface mass and charge density changes in real time. This is realized using a gold sensor surface that simultaneously serves as a gate electrode of the EG-FET and as the SPR active interface. This novel platform has the potential to provide new insights into (bio)adsorption processes on planar solid surfaces by directly relating complementary measurement principles based on (i) detuning of SPR as a result of the modification of the interfacial refractive index profile by surface adsorption processes and (ii) change of output current as a result of the emanating effective gate voltage modulations. Furthermore, combination of the two complementary sensing concepts allows for the comparison and respective validation of both analytical techniques. A theoretical model is derived describing the mass uptake and evolution of surface charge density during polyelectrolyte multilayer formation. We demonstrate the potential of this combined platform through the observation of layer-by-layer assembly of PDADMAC and PSS. These simultaneous label-free and real-time measurements allow new insights into complex processes at the solid-liquid interface (like non-Fickian ion diffusion), which are beyond the scope of each individual tool.
RESUMO
This study presents a graphene field-effect transistor (gFET) biosensor with dual detection capabilities for SARS-CoV-2: one RNA detection assay to confirm viral positivity and the other for nucleocapsid (N-)protein detection as a proxy for infectiousness of the patient. This technology can be rapidly adapted to emerging infectious diseases, making an essential tool to contain future pandemics. To detect viral RNA, the highly conserved E-gene of the virus was targeted, allowing for the determination of SARS-CoV-2 presence or absence using nasopharyngeal swab samples. For N-protein detection, specific antibodies were used. Tested on 213 clinical nasopharyngeal samples, the gFET biosensor showed good correlation with RT-PCR cycle threshold values, proving its high sensitivity in detecting SARS-CoV-2 RNA. Specificity was confirmed using 21 pre-pandemic samples positive for other respiratory viruses. The gFET biosensor had a limit of detection (LOD) for N-protein of 0.9 pM, establishing a foundation for the development of a sensitive tool for monitoring active viral infection. Results of gFET based N-protein detection corresponded to the results of virus culture in all 16 available clinical samples and thus it also proved its capability to serve as a proxy for infectivity. Overall, these findings support the potential of the gFET biosensor as a point-of-care device for rapid diagnosis of SARS-CoV-2 infection and indirect assessment of infectiousness in patients, providing additional information for clinical and public health decision-making.
RESUMO
A novel multivariable system, combining a transistor with fiber optic-based surface plasmon resonance spectroscopy with the gate electrode simultaneously acting as the fiber optic sensor surface, is reported. The dual-mode sensor allows for discrimination of mass and charge contributions for binding assays on the same sensor surface. Furthermore, we optimize the sensor geometry by investigating the influence of the fiber area to transistor channel area ratio and distance. We show that larger fiber optic tip diameters are favorable for electronic and optical signals and demonstrate the reversibility of plasmon resonance wavelength shifts after electric field application. As a proof of principle, a layer-by-layer assembly of polyelectrolytes is performed to benchmark the system against multivariable sensing platforms with planar surface plasmon resonance configurations. Furthermore, the biosensing performance is assessed using a thrombin binding assay with surface-immobilized aptamers as receptors, allowing for the detection of medically relevant thrombin concentrations.
Assuntos
Técnicas Biossensoriais , Fibras Ópticas , Técnicas Biossensoriais/métodos , Eletrodos , Tecnologia de Fibra Óptica/métodos , Trombina/análiseRESUMO
Oligonucleotide DNA aptamers represent an emergently important class of binding entities towards as different analytes as small molecules or even whole cells. Without requiring the canonical isolation of individual aptamers following the SELEX process, the focused polyclonal libraries prepared by this in vitro evolution and selection can directly be used to label their dedicated targets and to serve as binding molecules on surfaces. Here we report the first instance of a sensor able to discriminate between loaded and unloaded retinol-binding protein 4 (RBP4), an important biomarker for the prediction of diabetes and kidney disease. The sensor relies on two aptamer libraries tuned such that they discriminate between the protein isoforms, requiring no further sample labelling to detect RBP4 in both states. The evolution, binding properties of the libraries and the functionalization of graphene FET sensor chips are presented as well as the functionality of the resulting biosensor.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Nefropatias , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Grafite/metabolismo , Humanos , Proteínas Plasmáticas de Ligação ao RetinolRESUMO
The controlled covalent functionalization of the graphene channel of a field effect transistor, based on interdigitated gold electrodes (source and drain), via electrochemical grafting, using specifically designed aryl diazonium species is demonstrated to allow the simple fabrication of a general platform for (bio)sensing applications. The electrochemical grafting of a protected ethynylphenyl diazonium salt leads to the deposition of only a monolayer on the graphene channel. This controlled covalent functionalization of the graphene channel results in a charge mobility of the GFET of 1739 ± 376 cm2 V-1 s-1 and 1698 ± 536 cm2 V-1 s-1 for the holes and electrons, respectively, allowing their utilization as (bio)sensors. After deprotection, a dense and compact ethynylphenyl monolayer is obtained and allows the immobilization of a wide range of (bio)molecules by a "click" chemistry coupling reaction (Huisgen 1,3-dipolar cycloaddition). This finding opens promising options for graphene-based (bio)sensing applications.
Assuntos
Grafite , Química Click , Reação de Cicloadição , Eletrodos , OuroRESUMO
Olfaction is capable of accomplishing incredible tasks: it starts with capturing an odor molecule, delivering it to the odorant receptors, converting it into an electrical stimulus and transmitting the data to the brain. And all of this in milliseconds. The sense of smell is not yet fully decoded and is far from being replicated by modern sensor technologies. One approach to convert biological recognition- and binding events in real-time and in a label-free manner to electrical signals is emulated in a "biomimetic electronic smell sensor". It is based on a transistor, in many cases realized as a field-effect transistor (FET) with a biorecognition element, e.g., an odorant binding protein (OBP) converting the binding event of one of its typically many ligands directly into a measurable electrical signal. OBPs are immobilized on these FETs and modulate the current in the presence of smell molecules due to the charge redistribution in the gated channel. Graphene is an elegant candidate to realize such a sensor device because an atomic monolayer of a semiconducting material leads to increased sensitivity. Beside the direct molecule interaction with the substrate upon binding and its excellent biocompatible character, graphene has the advantage of a biological-friendly working point in the sub-Volt regime. Different approaches of preparation and functionalization of graphene field-effect transistors (gFETs) are utilized to tune the performance for odorant sensing. The evaluation of kinetic binding parameters like association and dissociation rate constants and the equilibrium affinity constants of protein-ligand interactions can be derived from the direct electrical read-out of such miniaturized sensor systems. In this article, the state of the art of gFET preparation, functionalization, and operation for odorant sensing will be discussed.