Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Water Health ; 22(2): 268-277, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38421621

RESUMO

Vaccines combatting COVID-19 demonstrate the ability to protect against disease and hospitalization, and reduce the likelihood of death caused by SARS-CoV-2. In addition, monitoring viral loads in sewage emerges as another crucial strategy in the epidemiological context, enabling early and collective detection of outbreaks. The study aimed to monitor the viral concentration of SARS-CoV-2 in untreated sewage in a Brazilian municipality. Also, it attempted to correlate these measurements with the number of clinical cases and deaths resulting from COVID-19 between July 2021 and July 2022. SARS-CoV-2 viral RNA was quantified by RT-qPCR. Pearson's correlation was performed to analyze the variables' relationship using the number of cases, deaths, vaccinated individuals, and viral concentration of SARS-CoV-2. The results revealed a significant negative correlation (p < 0.05) between the number of vaccinated individuals and the viral concentration of SARS-CoV-2, suggesting that after vaccination, the RNA viral load concentration was reduced in the sample population by the circulating concentration of wastewater. Consequently, wastewater monitoring, in addition to functioning as an early warning system for the circulation of SARS-CoV-2 and other pathogens, can offer a novel perspective that enhances decision-making, strengthens vaccination campaigns, and contributes to authorities establishing systematic networks for monitoring SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Águas Residuárias , Esgotos , Brasil/epidemiologia , Vacinação
2.
J Environ Manage ; 362: 121251, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823295

RESUMO

The production of biogas from microalgae has gained attention due to their rapid growth, CO2 sequestration, and minimal land use. This study uses life cycle assessment to assess the environmental impacts of biogas production from wastewater-grown microalgae through anaerobic digestion within an optimized microalgae-based system. Using SimaPro® 9 software, 3 scenarios were modeled considering the ReCiPe v1.13 midpoint and endpoint methods for environmental impact assessment in different categories. In the baseline scenario (S1), a hypothetical system for biogas production was considered, consisting of a high rate algal pond (HRAP), a settling, an anaerobic digester, and a biogas upgrading unit. The second scenario (S2) included strategies to enhance biogas yield, namely co-digestion and thermal pre-treatment. The third scenario (S3), besides considering the strategies of S2, proposed the biogas upgrading in the HRAP and the digestate recovery as a biofertilizer. After normalization, human carcinogenic toxicity was the most positively affected category due to water use in the cultivation step, accounted as avoided product. However, this category was also the most negatively affected by the impacts of the digester heating energy. Anaerobic digestion was the most impactful step, constituting on average 60.37% of total impacts. Scenario S3 performed better environmentally, primarily due to the integration of biogas upgrading within the cultivation reactor and digestate use as a biofertilizer. Sensitivity analysis highlighted methane yield's importance, showing potential for an 11.28% reduction in ionizing radiation impacts with a 10% increase. Comparing S3 biogas with natural gas, the resource scarcity impact was reduced sixfold, but the human health impact was 23 times higher in S3.


Assuntos
Biocombustíveis , Microalgas , Águas Residuárias , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Águas Residuárias/química , Anaerobiose , Meio Ambiente
3.
J Environ Manage ; 358: 120862, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38652984

RESUMO

The state of Minas Gerais is one of Brazil's largest animal protein producers, and its slaughterhouses generate highly polluting wastewater, which needs to be treated for discharge or reuse. As a novelty, this review article focused on assessing the characteristics and methods to treat wastewater from slaughterhouses in the state of Minas Gerais, and verifying its compliance with environmental regulatory agencies. The aim was to present data that helps to better manage this residue in other Brazilian states and countries. By analyzing the literature data, it was found that raw slaughterhouse wastewater (SWW) showed a high concentration of organic matter. For most SWW, the BOD5/COD ratio was above 0.4, which implies that it can be treated biologically. Generally, treated wastewater was in accordance with legal discharge standards, considering COD and BOD5 removals above 70% and 75%, respectively. It was found that wastewater treatment plants (WWTPs) consisted of some type of pretreatment (screens, grease traps) to remove coarse solids and fatty material, eventually followed by a flotation step and finally by biological processes, mostly anaerobic and/or aerated (or facultative) ponds. However, the absence of an aerobic process at the end of the treatment in some WWTPs, in addition to a system allowing better removal of biological flocs, might be the reason for ammoniacal nitrogen and suspended solids values being above the allowed maximum in treated wastewater, respectively. Besides the discharge into water bodies, it was verified that fertigation using treated SWW is very common in the state of Minas Gerais.


Assuntos
Matadouros , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Brasil , Eliminação de Resíduos Líquidos/métodos , Animais
4.
J Environ Manage ; 360: 121164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768524

RESUMO

The present paper compared, through life cycle assessment (LCA), the production of aviation biofuel from two hydrothermal routes of microalgae cultivated in wastewater. Hydrothermal liquefaction (HTL) and gasification followed by Fischer-Tropsch synthesis (G + FT) were compared. Both routes included biomass production, hydrotreatment for biofuel upgrading, and product fractionation. Secondary data obtained from the literature were used for the cradle-to-gate LCA. G + FT had a higher impact than HTL in the 18 impact categories assessed, with human carcinogenic toxicity exerting the most harmful pressure on the environment. The catalysts were the inputs that caused the most adverse emissions. The solvent used for bio-oil separation also stood out in terms of impacts. In HTL, emissions for global warming were -51.6 g CO2 eq/MJ, while in G + FT, they were 250 g CO2 eq/MJ. At the Endpoint level, HTL resulted in benefits to human health and ecosystems, while G + FT caused environmental damage in these two categories, as well as in the resources category. In the improvement scenarios, besides considering solid, aqueous, and gaseous products as co-products rather than just as waste/emissions, a 20% reduction in catalyst consumption and 90% recovery were applied. Thus, in HTL, 39.47 kg CO2 eq was avoided, compared to 35.44 kg CO2 eq in the base scenario. In G + FT, emissions decreased from 147.55 kg CO2 eq to the capture of 8.60 kg CO2 eq.


Assuntos
Biocombustíveis , Biomassa , Microalgas , Águas Residuárias , Microalgas/crescimento & desenvolvimento , Águas Residuárias/química , Aviação
5.
J Environ Manage ; 355: 120505, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442662

RESUMO

Recently, hybrid systems, such as those incorporating high-rate algal ponds (HRAPs) and biofilm reactors (BRs), have shown promise in treating domestic wastewater while cultivating microalgae. In this context, the objective of the present study was to determine an improved scraping frequency to maximize microalgae biomass productivity in a mix of industrial (fruit-based juice production) and domestic wastewater. The mix was set to balance the carbon/nitrogen ratio. The scraping strategy involved maintaining 1 cm wide stripes to retain an inoculum in the reactor. Three scraping frequencies (2, 4, and 6 days) were evaluated. The findings indicate that a scraping frequency of each 2 days provided the highest biomass productivity (18.75 g total volatile solids m-2 d-1). The species' behavior varied with frequency: Chlorella vulgaris was abundant at 6-day intervals, whereas Tetradesmus obliquus favored shorter intervals. Biomass from more frequent scraping demonstrated a higher lipid content (15.45%). Extrapolymeric substance production was also highest at the 2-day frequency. Concerning wastewater treatment, the system removed 93% of dissolved organic carbon and ∼100% of ammoniacal nitrogen. Combining industrial and domestic wastewater sources to balance the carbon/nitrogen ratio enhanced treatment efficiency and biomass yield. This study highlights the potential of adjusting scraping frequencies in hybrid systems for improved wastewater treatment and microalgae production.


Assuntos
Chlorella vulgaris , Microalgas , Águas Residuárias , Biomassa , Nitrogênio , Carbono
6.
Environ Monit Assess ; 196(2): 198, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265731

RESUMO

Characteristics of an acid soil cultivated with Urochloa brizantha cv. Marandu were evaluated in relation to two types of fertilization: a conventional one, chemical based on nitrogen and potassium, and a biofertilizer, based on microalgae biomass. The results were compared among three treatments, control, conventional, and biological fertilization, with seven replications each. The study evaluated microalgae community, total carbon and nitrogen contents, mineral nitrogen, and enzymatic activity. Chlorella vulgaris showed the highest organism density, which can be explained by its rapid growth and high resistance. The highest species diversity was detected in the control 1,380,938 org cm-3 and biological 1,841,250 org cm-3 treatments, with the latter showing a higher density of cyanobacteria, especially Pseudanabaena limnetica with 394,554 org cm-3. The soil treated with chemical fertilization showed higher nitrate (9.14 mg NKg-1 NO3--N) and potassium (52.32 mg dm-3) contents. The highest levels of sulfur (21.73 mg dm-3) and iron (96.46 mgdm-3) were detected in the biological treatment. The chemical treatment showed higher activity of the enzymes acid phosphatase, acetylglucosaminidase, and sulfatase, while α-glucosidase and leucine aminopeptidase stood out in the biological treatment. Soil properties were not significantly affected by the treatments. The use of microalgae biomass derived from wastewater treatment from milking parlors was evaluated and presented as a promising biofertilizer for agriculture, following the line of recovering nutrient-rich wastes. In this sense, although many challenges need to be overcome, the results suggest that microalgal-based fertilizers could lead to low-impact agriculture.


Assuntos
Chlorella vulgaris , Microalgas , Solo , Biomassa , Monitoramento Ambiental , Fertilidade , Nitrogênio , Potássio
7.
J Environ Manage ; 285: 112171, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33609975

RESUMO

Microalgae biomass (MB) is a promising source of renewable energy, especially when the cultivation is associated with wastewater treatment. However, microalgae wastewater technologies still have much to improve. Additionally, microalgae biomass valorization routes need to be optimized to be a sustainable and feasible source of green bioenergy. Thus, this paper aimed to evaluate the environmental impacts of the production of briquettes from MB, cultivated during domestic wastewater treatment. Also, it was evaluated how much the drying of the MB affected the life cycle and the environment. Improvements in the life cycle to mitigate the environmental impacts of this energy route were proposed. Cradle-to-gate modeling was applied to obtain a life cycle assessment (LCA) from cultivation to the valorization of MB, through its transformation into a solid biofuel. With LCA, it was possible to identify which technical aspect of the process needs to be optimized so that environmental sustainability can be achieved. Two scenarios were compared, one with the microalgae growth in a high-rate algal pond (HRAP) (scenario 1) and the other in a hybrid reactor, formed by a HRAP and a biofilm reactor (BR) (scenario 2). LCA highlighted the electric power mix, representing, on average, 60% of the total environmental impacts in both scenarios. The valorization of MB in briquettes needs to consume less energy to offset its yield. The environment suffered pressure in freshwater eutrophication, due to the release of 3.1E-05 and 3.9E-05 kg of phosphorus equivalent; in fossil resources scarcity, with the extraction of 1.4E-02 and 4.5E-02 kg of oil equivalent; and in climate change, by the emission of 1.0E-01 and 1.9E-01 kg of carbon dioxide (CO2) equivalent, in scenarios 1 and 2, respectively. Scenario 1 was highly damaging to terrestrial ecotoxicity, with the release of 3.5E-01 kg of 1,4 Dichlorobenzene, coming from the CO2 used in MB growth. This category was the one that most negatively pressured the environment, differing from scenario 2, in which this input was not required. This was the only impact category in which scenario 2 had a better environmental performance when compared to scenario 1. Cotton, required in scenario 2, represented up to 87% of emissions in some of the evaluated categories. Despite the impacts that occurred in the two modeled scenarios, the environmental gains due to the use of wastewater for microalgae growth, replacing the synthetic cultivation medium, stood out. In the sensitivity analysis, two alternative scenarios were proposed: (i) electricity consumption for drying has been reduced, due to the natural decrease of MB humidity, and (ii) MB briquettes were considered a substitute for coal briquettes. Results indicated that pressures on climate change and fossil resource scarcity were eliminated in both scenarios and this also occurred for freshwater eutrophication in scenario 2. This paper contributes to the improvement and development of converting MB routes into more sustainable products, causing less pressure on the environment. Also, the study contributes to filling a gap in the literature, discussing methods and technologies to be improved, and consequently making microalgae biotechnology environmentally feasible and a potential renewable energy alternative.


Assuntos
Microalgas , Animais , Biocombustíveis , Biomassa , Estágios do Ciclo de Vida , Águas Residuárias
8.
J Environ Manage ; 299: 113668, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34492441

RESUMO

This study aimed to evaluate the simultaneous interferences of Cu and Zn found in swine wastewater (SW) in the development of microalgae considering real conditions of cultivation in high rate algal ponds (HRAPs). Ten HRAPs on a pilot scale were fed with SW with different mixtures of Cu (0.5-3.0 mg/L) and Zn (5.0-25.0 mg/L). The interferences of these metals in removing nutrients (N-NH4+ and soluble phosphorus (Ps)) from the SW were determined. In addition, this study evaluated the effects on biomass growth and biochemical composition. Chlorella sp. was dominant in all HRAPs and the condition that potentiated its growth occurred in medium containing 1.8 mg Cu/L + 15.0 mg Zn/L, while higher concentrations conferred inhibition. Only Cu compromised the removal rates of N-NH4+ while the effects of Zn were not significant. Contrary, Zn interfered with Ps removal rates, but the impact of Cu was not significant. The greatest Cu applications increased the protein levels by biomass (50.5-55.2 %). Carbohydrate accumulation was favored by conditions that inhibited the development of microalgae due to either limitation or excess of metals. Copper and Zn compromised the levels of lipids, and the control treatment had the highest content (24.5 %). The presence of Cu and Zn changed the dynamics of HRAPs regarding nutrient removal, productivity, and biochemical composition of the biomass.


Assuntos
Chlorella , Microalgas , Purificação da Água , Animais , Biomassa , Nitrogênio/análise , Nutrientes , Lagoas , Suínos , Águas Residuárias , Zinco
9.
J Environ Manage ; 274: 111183, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32784083

RESUMO

The use of algal biomass still faces challenges associated with the harvesting stages. To address this issue, we propose an innovative hybrid system, in which a biofilm reactor (BR) operates as an algal biomass production and harvesting unit connected to a high-rate algal pond (HRAP), a wastewater treatment unit. BR did not interfered with the biomass chemical composition (protein = 32%, carbohydrates = 11% and total lipids = 18%), with the wastewater treatment (removals efficiency: chemical oxygen demand = 59%, ammonia nitrogen = 78%, total phosphorus = 16% and Escherichia coli = 1 log unit), and did not alter the sedimentation characteristics of the biomass (sludge volume index = 29 mg/L and humidity content = 92%) in the secondary settling tank of the hybrid system. On the other hand, the results showed that this technology achieved a biomass production about 2.6x greater than the conventional system without a BR, and the efficiency of harvesting of the hybrid system was 61%, against 22% obtained with the conventional system. In addition, the BR promoted an increase in the density (~1011 org/m2) and diversity of microalgae in the hybrid system. Chlorella vulgaris was the most abundant species (>60%) from the 4th week of operation until the end of the experiment. Hence, results confirm that the integration of BR into a wastewater treatment plant optimised the production and harvesting of biomass of the hybrid system, making it a promising technology. The importance of economic and environmental analysis studies of BR is highlighted in order to enable its implementation on a large scale.


Assuntos
Chlorella vulgaris , Microalgas , Biofilmes , Biomassa , Lagoas , Eliminação de Resíduos Líquidos , Águas Residuárias
10.
Environ Res ; 164: 32-38, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29475106

RESUMO

The ability of microalgae to grow in nutrient-rich environments and to accumulate nutrients from wastewaters (WW) makes them attractive for the sustainable and low-cost treatment of WW. The valuable biomass produced can be further used for the generation of bioenergy, animal feed, fertilizers, and biopolymers, among others. In this study, Scenedesmus obliquus was able to remove nutrients from different wastewaters (poultry, swine and cattle breeding, brewery and dairy industries, and urban) with removal ranges of 95-100% for nitrogen, 63-99% for phosphorus and 48-70% for chemical oxygen demand. The biomass productivity using wastewaters was higher (except for poultry) than in synthetic medium (Bristol), the highest value being obtained in brewery wastewater (1025 mg/(L.day) of freeze-dried biomass). The produced biomass contained 31-53% of proteins, 12-36% of sugars and 8-23% of lipids, regardless of the type of wastewater. The potential of the produced Scenedesmus obliquus biomass for the generation of BioH2 through batch dark fermentation processes with Enterobacter aerogenes was evaluated. The obtained yields ranged, in mL H2/g Volatile Solids (VS), from 50.1 for biomass from anaerobically digested cattle WW to 390 for swine WW, whereas the yield with biomass cultivated in Bristol medium was 57.6 mL H2/gVS.


Assuntos
Biocombustíveis , Biotecnologia , Microalgas , Scenedesmus , Animais , Biomassa , Bovinos , Nitrogênio , Fósforo , Aves Domésticas , Suínos , Águas Residuárias
11.
J Environ Manage ; 209: 308-315, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29306840

RESUMO

This study evaluated the operation of a hybrid anaerobic reactor fed with algal biomass cultivated in effluent from the brewery industry. Three stages of operation were distinguished during the 72 days of semi-continuous functioning of the reactor: Stage 1 (S1), in which algal biomass was used as substrate; Stage 2 (S2), in which 10% (v/v) of the algal biomass was substituted by olive mill wastewater (OMW); and Stage 3 (S3), in which algal biomass was heat pre-treated. During S1, a loss of solids was observed, with an increment of organic matter in the outlet. The substitution of 10% of the volume of algal biomass by OMW tripled the methane productivity obtained in the previous stage by digestion of pure algal biomass. Heat pre-treatment was not efficient in rupturing the cell wall, and consequently did not have any effect on the increase in biogas production. The complementarity of substrates in the assessed conditions led to better results than the pre-treatment of the algal biomass.


Assuntos
Biocombustíveis , Reatores Biológicos , Águas Residuárias , Anaerobiose , Biomassa , Metano , Olea
12.
Water Sci Technol ; 78(1-2): 57-68, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30101789

RESUMO

The present study evaluated the cultivation of microalgae in a photobioreactor using effluents from the meat-processing industry, which had been previously treated at the primary and secondary levels. Scenedesmus sp. was the dominant genus in the phytoplankton community in both of the evaluated effluents. The different nutritional conditions affected the production of biomass, which reached 1,160 mg/L of volatile suspended solids (VSS) and 371 mg/L of VSS with cultivation in the primary (PE) and secondary effluents (SE), respectively. In both effluents, great removal efficiencies close to quantification limits were observed for ammoniacal nitrogen and soluble phosphorus. Regarding the accumulation of lipids, there were no considerable differences between the effluents. The highest lipid productivity that was observed in the PE, which reached 3.7 g/m²·d, was attributed to its larger production of biomass as a consequence of its better nutritional condition in relation to the SE.


Assuntos
Biocombustíveis , Resíduos Industriais , Microalgas/metabolismo , Fotobiorreatores , Biomassa , Indústria de Embalagem de Carne , Nitrogênio/metabolismo , Fósforo/metabolismo
13.
Water Sci Technol ; 78(1-2): 12-19, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30101784

RESUMO

High rate algal pond (HRAP) was evaluated according to its energy potential and productivity by two rates, net energy ratio (NER) and specific biomass productivity. All energy inputs were calculated according to one HRAP with pre-ultraviolet disinfection treating anaerobic domestic sewage. The outputs were calculated for two energetic pathways: lipid and biogas production for the raw biomass (RB) and biomass after lipid extraction. The non-polar lipid content in dry biomass was 7.6%, reaching a daily lipid productivity of 0.2 g/m2·day and the biogas production potential was 0.20 m3/kg solids. For the biomass after lipid extraction, the biogas production reached 2.6 m3/kg solids. NER values of 10-3 for the RB were similar for lipids and biogas routes. The specific biomass productivity was 0.7 mg/kJ. For the residual biomass, after lipid extraction, NER value was 10-2 for the integrated route (lipids + biogas) and the specific biomass productivity of the extracted biomass was 0.4 mg/kJ. The best energetic pathway was to integrate both lipids and biogas route.


Assuntos
Biocombustíveis , Clorófitas , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos , Biomassa , Microalgas
14.
Water Sci Technol ; 71(8): 1229-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909734

RESUMO

The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content.


Assuntos
Biocombustíveis , Lipídeos/química , Microalgas/metabolismo , Lagoas , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Biomassa , Desinfetantes , Desinfecção , Metabolismo dos Lipídeos , Esgotos
15.
Environ Technol ; 35(17-20): 2296-305, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25145183

RESUMO

The objective of this paper is to compare the lipid content and composition ofbiomass produced by a consortium of microalgae and bacteria, cultivated under different solar radiation intensities and tropical conditions in pilot-scale high-rate ponds (HRPs) using domestic sewage as culture medium. The treatment system consisted of an upflow anaerobic sludge blanket reactor followed by UV disinfection and six HRPs covered with shading screens that blocked 9%, 18%, 30%, 60% and 80% of the solar radiation. The total lipid content does not vary significantly among the units, showing a medium value of 9.5%. The results show that blocking over 30% of the solar radiation has a negative effect on the lipid productivity. The units with no shading and with 30% and 60% of solar radiation blocking have statistically significant lipid productivities, varying from 0.92 to 0.96 gm(-2) day(-1). Besides radiation, other variables such as volatile suspended solids and chlorophyll-a are able to explain the lipid accumulation. The lipid profile has a predominance of C16, C18:1 and C18:3 acids. The unsaturation of fatty acids increases with the reduction in solar radiation. On the other hand, the effect of polyunsaturation is not observed, which is probably due to the presence of a complex and diverse biomass.


Assuntos
Biomassa , Reatores Biológicos , Metabolismo dos Lipídeos/efeitos da radiação , Microalgas , Esgotos , Energia Solar , Bactérias/química , Bactérias/metabolismo , Biocombustíveis , Concentração de Íons de Hidrogênio , Lipídeos/análise , Lipídeos/química , Microalgas/química , Microalgas/metabolismo , Oxigênio , Fitoplâncton , Temperatura
16.
Sci Total Environ ; 920: 170918, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38354809

RESUMO

Microalgae biomass has attracted attention as a feedstock to produce biofuels, biofertilizers, and pigments. However, the high production cost associated with cultivation and separation stages is a challenge for the microalgae biotechnology application on a large scale. A promising approach to overcome the technical-economic limitations of microalgae production is using wastewater as a nutrient and water source for cultivation. This strategy reduces cultivation costs and contributes to valorizing sanitation resources. Therefore, this article presents a comprehensive literature review on the status of microalgae biomass cultivation in wastewater, focusing on production strategies and the accumulation of valuable compounds such as lipids, carbohydrates, proteins, fatty acids, and pigments. This review also covers emerging techniques for harvesting microalgae biomass cultivated in wastewater, discussing the advantages and limitations of the process, as well as pointing out the main research opportunities. The novelty of the study lies in providing a detailed analysis of state-of-the-art and potential advances in the cultivation and harvesting of microalgae, with a special focus on the use of wastewater and implementing innovative strategies to enhance productivity and the accumulation of compounds. In this context, the work aims to guide future research concerning emerging technologies in the field, emphasizing the importance of innovative approaches in cultivating and harvesting microalgae for advancing knowledge and practical applications in this area.


Assuntos
Microalgas , Águas Residuárias , Microalgas/metabolismo , Biotecnologia/métodos , Ácidos Graxos/metabolismo , Nutrientes , Biocombustíveis , Biomassa
17.
Environ Technol ; 34(13-16): 1877-85, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24350441

RESUMO

Algal biomass production associated with wastewater is usually carried out in high rate algal ponds (HRAPs), which are concomitantly used in the treatment of such effluent. However, most types of wastewater have high levels of bacteria that can inhibit the growth of algal biomass by competing for space and nutrients. The objective of this study was to assess the influence of ultraviolet (UV) pre-disinfection on the performance of HRAPs used for wastewater treatment and algal biomass production. Two HRAPs were tested: one received effluent from an upflow anaerobic sludge blanket (UASB) reactor- HRAP -and the second received UASB effluent pre-disinfected by UV radiation-(UV)HRAP. Physical, chemical and microbiological parameters were monitored, as well as algal biomass productivity and daily pH and dissolved oxygen (DO) variation. The (UV)HRAP presented highest DO and pH values, as well as greater percentage of chlorophyll a in the biomass, which indicates greater algal biomass productivity. The average percentages of chlorophyll a found in the biomass obtained from the HRAP and the (UV)HRAP were 0.95 +/- 0.65% and 1.58 +/- 0.65%, respectively. However, total biomass productivity was greater in the HRAP (11.4 gVSSm(-2) day(-1)) compared with the (UV)HRAP (9.3 gVSSm(-2) day(-1)). Mean pH values were 7.7 +/- 0.7 in the HRAP and 8.1 +/- 1.0 in the (UV)HRAP, and mean values of DO percent saturation were 87 +/- 26% and 112 +/- 31% for the HRAP and the (UV)HRAP, respectively. Despite these differences, removal efficiencies of organic carbon, chemical oxygen demand, ammoniacal nitrogen and soluble phosphorus were statistically equal at the 5% significance level.


Assuntos
Biomassa , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Águas Residuárias/microbiologia , Reatores Biológicos/microbiologia , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Clorofila/metabolismo , Desinfecção/métodos , Concentração de Íons de Hidrogênio , Oxigênio , Raios Ultravioleta
18.
Environ Pollut ; 324: 121364, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36849087

RESUMO

Microalgae cultivation in swine wastewater (SW) allows the removal of nutrients and biomass production. However, SW is known for its Cu contamination, and its effects on algae cultivation systems such as high-rate algal ponds (HRAPs) are poorly understood. This gap in the literature limits the proposition of adequate concentrations of Cu to optimise SW treatment and resource recovery in HRAPs. For this assessment, 12 HRAPs installed outdoors were operated with 800 L of SW with different Cu concentrations (0.1-4.0 mg/L). Cu's interferences on the growth and composition of biomass and nutrient removal from SW were investigated through mass balance and experimental modelling. The results showed that the concentration of 1.0 mg Cu/L stimulated microalgae growth, and above 3.0 mg Cu/L caused inhibition accompanied by an accumulation of H2O2. Furthermore, Cu affected the contents of lipids and carotenoids observed in the biomass; the highest concentration was observed in the control (16%) and 0.5 mg Cu/L (1.6 mg/g), respectively. An innovative result was verified for nutrient removal, in which increased Cu concentration reduced the N-NH4+ removal rate. In contrast, the soluble P removal rate was enhanced by 2.0 mg Cu/L. Removal of soluble Cu in treated SW reached 91%. However, the action of microalgae in this process was not associated with assimilation but with a pH increase resulting from photosynthesis. A preliminary evaluation of economic viability showed that the commercialisation of biomass considering the concentration of carotenoids obtained in HRAPs with 0.5 mg Cu/L could be economically attractive. In conclusion, Cu affected the different parameters evaluated in this study in a complex way. This can help managers consort nutrient removal, biomass production, and resource recovery, providing information for possible industrial exploitation of the generated bioproducts.


Assuntos
Microalgas , Purificação da Água , Animais , Suínos , Eliminação de Resíduos Líquidos/métodos , Cobre , Biomassa , Lagoas , Peróxido de Hidrogênio , Águas Residuárias , Purificação da Água/métodos , Nutrientes , Nitrogênio/análise
19.
Bioresour Technol ; 361: 127654, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35868464

RESUMO

Co-digestion is a strategy that may prevent microbial inhibition during the anaerobic treatment of sugarcane vinasse, a substrate with highly biodegradable organic load, acidity, and toxic compound levels (e.g., sulfates, phenols). In this context, this study evaluated the microbial dynamics and methanogenic potential throughout the co-digestion of sugarcane vinasse and secondary effluent from the dairy industry in a mesophilic lab-scale upflow anaerobic sludge blanket (UASB) reactor. Periodic next-generation sequencing (NGS) analyses revealed an increase in the relative abundance of the phylum Euryarchaeota (+8.6 % after inoculation), predominating hydrogenotrophic methanogens (Methanobacterium and Methanobrevibacter) at the end of the operation. Moreover, the average methane yield was 221 mLCH4 gCODrem-1, with 69 % of organic matter removal. These results evidenced a progressive acclimation of the anaerobic microbial community to the substrate and a stable operation. Therefore, the proposed experiment demonstrates energy advantages for the agro-industrial sector by implementing a similar but full-scale treatment plant.


Assuntos
Euryarchaeota , Saccharum , Anaerobiose , Reatores Biológicos , Digestão , Euryarchaeota/genética , Metano , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos
20.
Chemosphere ; 302: 134808, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35508259

RESUMO

The presence of emerging contaminants, such as pharmaceuticals and personal care products (PPCPs), in aquatic environments has received increasing attention in the last years due to the various possible impacts on the dynamics of the natural environment and human health. In global terms, around 771 active pharmaceutical substances or their transformation products have been detected at levels above their respective detection limit. Additionally, 528 different compounds have been detected in 159 countries. Seeking to overcome potential ecotoxicological problems, several studies have been conducted using different technologies for PPCPs removal. Recently, the use of macro, microalgae, and aquatic macrophytes has been highlighted due to the excellent bioremediation capacity of these organisms and easy acclimatization. Thus, the present review aims to outline a brief and well-oriented scenario concerning the knowledge about the bioremediation alternatives of PPCPs through the use of macro, microalgae, and aquatic macrophytes. The characteristics of PPCPs and the risks of these compounds to the environment and human health are also addressed. Moreover, the review indicates the opportunities and challenges for expanding the use of biotechnologies based on algae and aquatic macrophytes, such as studies dedicated to relate the operational criteria of these biotechnologies with the main PPCPs removal mechanisms. Finally, algae and macrophytes can compose green and ecological biotechnologies for wastewater treatment, having great contribution to PPCPs removal.


Assuntos
Cosméticos , Poluentes Químicos da Água , Purificação da Água , Cosméticos/análise , Monitoramento Ambiental , Humanos , Preparações Farmacêuticas , Águas Residuárias/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa