Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L609-L624, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36852942

RESUMO

Hereditary pulmonary veno-occlusive disease (hPVOD) is a severe form of autosomal recessive pulmonary hypertension and is due to biallelic loss of function of the EIF2AK4 gene (alias GCN2) coding for GCN2. GCN2 is a stress kinase that belongs to the integrated stress response pathway (ISR). Three rat lines carrying biallelic Gcn2 mutation were generated and found phenotypically normal and did not spontaneously develop a PVOD-related disease. We submitted these rats to amino acid deprivation to document the molecular and cellular response of the lungs and to identify phenotypic changes that could be involved in PVOD pathophysiology. Gcn2-/- rat lungs were analyzed under basal conditions and 3 days after a single administration of PEG-asparaginase (ASNase). Lung mRNAs were analyzed by RNAseq and single-cell RNAseq (scRNA-seq), flow cytometry, tissue imaging, and Western blots. The ISR was not activated after ASNase treatment in Gcn2-/- rat lungs, and apoptosis was increased. Several proinflammatory and innate immunity genes were overexpressed, and inflammatory cells infiltration was also observed in the perivascular area. Under basal conditions, scRNA-seq analysis of Gcn2-/- rat lungs revealed increases in two T-cell populations, a LAG3+ T-cell population and a proliferative T-cell population. Following ASNase administration, we observed an increase in calprotectin expression involved in TLR pathway activation and neutrophil infiltration. In conclusion, under basal and asparagine and glutamine deprivation induced by asparaginase administration, Gcn2-/- rats display molecular and cellular signatures in the lungs that may indicate a role for Gcn2 in immune homeostasis and provide further clues to the mechanisms of hPVOD development.


Assuntos
Hipertensão Pulmonar , Pneumopatia Veno-Oclusiva , Animais , Ratos , Pulmão/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pneumopatia Veno-Oclusiva/genética , RNA Mensageiro
2.
Clin Transplant ; 36(5): e14616, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35188995

RESUMO

BACKGROUND: To evaluate the association between donors' and recipients' serum levels of soluble ST2 (sST2) and recipients' outcome after heart transplantation (HT). METHODS: Blood samples were collected in 50 heart donors before organ procurement and in 50 recipients before HT (D0), a week after HT (D7) and at every first year's endomyocardial biopsy (EMB); sST2 levels were evaluated by ELISA. RESULTS: Donors who sustained a cardiac arrest, had significantly higher sST2 levels. Recipients on national high emergency waiting list had significantly higher preoperative sST2 levels compared to recipients who did not. Recipients with postoperative sepsis or continuous renal replacement therapy had significantly higher sST2 levels at D7. Recipients who needed a postoperative ECMO for allograft dysfunction had significantly higher sST2 levels in their corresponding donors. Recipients who died during the hospitalization after the transplantation had significantly higher sST2 levels at D7 compared to recipients who did not. No difference was observed in sST2 levels in recipients who had mild allograft rejection and recipient who did not. CONCLUSIONS: Higher sST2 levels in donors are associated to allograft dysfunction requiring ECMO in recipients; higher postoperative sST2 levels in recipients are associated with in-hospital mortality.


Assuntos
Transplante de Coração , Proteína 1 Semelhante a Receptor de Interleucina-1 , Biomarcadores , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/sangue , Doadores de Tecidos , Transplante Homólogo
3.
Radiology ; 286(1): 83-92, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28813234

RESUMO

Purpose To determine whether left atrial (LA) strain quantification with cardiac magnetic resonance (MR) imaging feature tracking is associated with the severity of LA fibrofatty myocardial remodeling at histologic analysis. Materials and Methods This prospective case-control study was approved by the institutional review board. LA strain was evaluated with cardiac MR feature tracking between January 2014 and March 2015 in 13 consecutive patients (mean age, 61 years ± 19; nine male) with mitral regurgitation in the 24 hours before mitral valve surgery and 13 age- and sex-matched healthy control subjects. LA strain parameters were compared first between control subjects and patients and then according to atrial fibrillation and mitral regurgitation status. Associations between LA strain and histology of preoperative biopsies were reported by using receiver operating characteristic curve analysis and Spearman correlation. Results Peak longitudinal atrial strain (PLAS) was significantly lower in patients with mitral regurgitation than in healthy control subjects (P < .001). Increased LA remodeling was significantly related to altered LA strain, and the strongest association was found between PLAS and the degree of fibrofatty myocardial replacement at histologic analysis (r = -0.75, P = .017). LA end-diastolic volume was increased in patients with mitral regurgitation when compared with that in healthy volunteers (P < .001) because of volume overload; however, volume did not correlate with the histologic degree of LA fibrofatty replacement (r = -0.35, P = .330). Conclusion LA strain, especially PLAS, correlates strongly with the degree of fibrofatty replacement at histologic analysis. Such functional imaging biomarker in combination with LA volumetry could help to guide clinical decisions, since myocardial structural remodeling is a known morphologic substrate of LA dysfunction leading to atrial fibrillation with adverse outcome. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Remodelamento Atrial , Átrios do Coração/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Tecido Adiposo/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Fibrose/diagnóstico por imagem , Fibrose/patologia , Átrios do Coração/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/patologia , Estudos Prospectivos
4.
Biochim Biophys Acta ; 1862(4): 611-621, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26775030

RESUMO

We identified murine miR-322, orthologous to human miR-424, as a new regulator of insulin receptor, IGF-1 receptor and sirtuin 4 mRNA in vitro and in vivo in the heart and found that miR-322/424 is highly expressed in the heart of mice. C57Bl/6N mice fed 10weeks of high fat diet (HFD) presented signs of cardiomyopathy and a stable miR-322 cardiac level while cardiac function was slightly affected in 11week-old ob/ob which overexpressed miR-322. We thus hypothesized that mmu-miR-322 could be protective against cardiac consequences of hyperinsulinemia and hyperlipidemia. We overexpressed or knocked-down mmu-miR-322 using AAV9 and monitored cardiac function in wild-type C57Bl/6N mice fed a control diet (CD) or a HFD and in ob/ob mice. The fractional shortening progressively declined while the left ventricle systolic diameter increased in HFD mice infected with an AAVcontrol or with an AAVsponge (decreasing miR-322 bioavailability) but also in ob/ob mice infected with AAVsponge. Similar observations were also found in CD-fed mice infected with AAVsponge. On the contrary over-expressing miR-322 with AAVmiR-322 was efficient in protecting the heart from HFD effects in C57Bl/6N mice. This cardioprotection could be associated with the regulation of identified targets IGF1R, INSR and CD1, a decrease in insulin signaling pathway and an enrichment of genes involved in mitochondrial function and fatty acid oxidation as demonstrated by transcriptome analysis. Altogether, these results emphasize miR-322 as a new potential therapeutic target against cardiac consequences of metabolic syndrome, which represents an increasing burden in the western countries.


Assuntos
Cardiopatias/metabolismo , Insulina/metabolismo , Síndrome Metabólica/metabolismo , MicroRNAs/biossíntese , Transdução de Sinais , Animais , Dependovirus , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Vetores Genéticos , Cardiopatias/genética , Cardiopatias/patologia , Cardiopatias/terapia , Humanos , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Hiperinsulinismo/terapia , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Hiperlipidemias/terapia , Insulina/genética , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , Síndrome Metabólica/terapia , Camundongos , Camundongos Obesos , MicroRNAs/genética , Ratos , Ratos Wistar , Transdução Genética
5.
Eur Heart J ; 36(13): 795-805a, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23525094

RESUMO

AIMS: Recent studies have reported a relationship between the abundance of epicardial adipose tissue (EAT) and the risk of cardiovascular diseases including atrial fibrillation (AF). However, the underlying mechanisms are unknown. The aim of this study was to examine the effects of the secretome of human EAT on the histological properties of the myocardium. METHODS AND RESULTS: Samples of EAT and subcutaneous adipose (SAT), obtained from 39 patients undergoing coronary bypass surgery, were analysed and tested in an organo-culture model of rat atria to evaluate the fibrotic properties of human fat depots. The EAT secretome induced global fibrosis (interstitial and peripheral) of rat atria in organo-culture conditions. Activin A was highly expressed in EAT compared with SAT and promoted atrial fibrosis, an effect blocked using neutralizing antibody. In addition, Activin A levels were enhanced in patients with low left-ventricular function. In sections of human atrial and ventricular myocardium, adipose and myocardial tissues were in close contact, together with fibrosis. CONCLUSION: This study provides the first evidence that the secretome from EAT promotes myocardial fibrosis through the secretion of adipo-fibrokines such as Activin A.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo/fisiologia , Miocárdio/patologia , Ativinas/metabolismo , Ativinas/fisiologia , Adipocinas/fisiologia , Animais , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Remodelamento Atrial/fisiologia , Células Cultivadas , Feminino , Fibrose/etiologia , Fibrose/patologia , Átrios do Coração/patologia , Humanos , Masculino , Metaloproteinase 8 da Matriz/metabolismo , Metaloproteinase 8 da Matriz/fisiologia , Pessoa de Meia-Idade , Ratos , Gordura Subcutânea/fisiologia
6.
Circulation ; 129(7): 773-85, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24249716

RESUMO

BACKGROUND: Phenotypic modulation or switching of vascular smooth muscle cells from a contractile/quiescent to a proliferative/synthetic phenotype plays a key role in vascular proliferative disorders such as atherosclerosis and restenosis. Although several calcium handling proteins that control differentiation of smooth muscle cells have been identified, the role of protein phosphatase inhibitor 1 (I-1) in the acquisition or maintenance of the contractile phenotype modulation remains unknown. METHODS AND RESULTS: In human coronary arteries, I-1 and sarco/endoplasmic reticulum Ca2+ -ATPase expression is specific to contractile vascular smooth muscle cells. In synthetic cultured human coronary artery smooth muscle cells, protein phosphatase inhibitor 1 (I-1 target) is highly expressed, leading to a decrease in phospholamban phosphorylation, sarco/endoplasmic reticulum Ca2+ -ATPase, and cAMP-responsive element binding activity. I-1 knockout mice lack phospholamban phosphorylation and exhibit vascular smooth muscle cell arrest in the synthetic state with excessive neointimal proliferation after carotid injury, as well as significant modifications of contractile properties and relaxant response to acetylcholine of femoral artery in vivo. Constitutively active I-1 gene transfer decreased neointimal formation in an angioplasty rat model by preventing vascular smooth muscle cell contractile to synthetic phenotype change. CONCLUSIONS: I-1 and sarco/endoplasmic reticulum Ca2+ -ATPase synergistically induce the vascular smooth muscle cell contractile phenotype. Gene transfer of constitutively active I-1 is a promising therapeutic strategy for preventing vascular proliferative disorders.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Músculo Liso Vascular/metabolismo , Proteína Fosfatase 1/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Vasoconstrição/fisiologia , Animais , Aorta Torácica/citologia , Aorta Torácica/fisiologia , Sinalização do Cálcio/fisiologia , Vasos Coronários/citologia , Vasos Coronários/fisiologia , Artéria Femoral/citologia , Artéria Femoral/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Artéria Torácica Interna/citologia , Artéria Torácica Interna/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia , Fenótipo , Proteína Fosfatase 1/genética , Proteínas/genética , Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Doenças Vasculares/genética , Doenças Vasculares/metabolismo
7.
Anesthesiology ; 122(2): 334-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25383567

RESUMO

BACKGROUND: In the senescent heart, the positive inotropic response to ß-adrenoceptor stimulation is reduced, partly by dysregulation of ß1- and ß3-adrenoceptors. The multidrug resistance protein 4 (MRP4) takes part in the control of intracellular cyclic adenosine monophosphate concentration by controlling its efflux but the role of MRP4 in the ß-adrenergic dysfunction of the senescent heart remains unknown. METHODS: The ß-adrenergic responses to isoproterenol were investigated in vivo (stress echocardiography) and in vitro (isolated cardiomyocyte by Ionoptix with sarcomere shortening and calcium transient) in young (3 months old) and senescent (24 months old) rats pretreated or not with MK571, a specific MRP4 inhibitor. MRP4 was quantified in left ventricular homogenates by Western blotting. Data are mean ± SD expressed as percent of baseline value. RESULTS: The positive inotropic effect of isoproterenol was reduced in senescent rats in vivo (left ventricular shortening fraction 120 ± 16% vs. 158 ± 20%, P < 0.001, n = 16 rats) and in vitro (sarcomere shortening 129 ± 37% vs. 148 ± 35%, P = 0.004, n = 41 or 43 cells) as compared to young rats. MRP4 expression increased 3.6-fold in senescent compared to young rat myocardium (P = 0.012, n = 8 rats per group). In senescent rats, inhibition of MRP4 by MK571 restored the positive inotropic effect of isoproterenol in vivo (143 ± 11%, n = 8 rats). In vitro in senescent cardiomyocytes pretreated with MK571, both sarcomere shortening (161 ± 45% vs. 129 ± 37%, P = 0.007, n = 41 cells per group) and calcium transient amplitude (132 ± 25% vs. 113 ± 27%, P = 0.007) increased significantly. CONCLUSION: MRP4 overexpression contributes to the reduction of the positive inotropic response to ß-adrenoceptor stimulation in the senescent heart.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Coração/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Envelhecimento/fisiologia , Animais , Pressão Arterial/efeitos dos fármacos , Broncodilatadores/farmacologia , Cálcio/metabolismo , Ecocardiografia sob Estresse , Coração/crescimento & desenvolvimento , Isoproterenol/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Propionatos/farmacologia , Quinolinas/farmacologia , Ratos
8.
J Mol Cell Cardiol ; 53(6): 801-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22884737

RESUMO

Cardiac gene transfer is a powerful molecular tool to improve our understanding of the role of new proteins and mutants in cardiac pathophysiology. There is a need for a simple efficient myocardial gene delivery technique in order to study the physiological role of proteins in their native environment. Here we tested a new method of myocardial nonviral gene delivery, by using the combination of ultrasound energy (USE), liposomes and high pressure injections to the rat heart. Wistar rats were subjected to intra-myocardial injections of liposomes-DNA or siRNA mix. The heart was exposed after an inter-costal incision, and then injections were conducted between two sets of USE heart exposure. Ultrasound application resulted in much higher transfection efficiency (2% of left ventricle) than the liposomes-DNA alone (0.12% of left ventricle) as shown by the beta-galactosidase staining. The ultrasonic based liposomes-DNA delivery resulted in low inflammatory response, as well as in low cardiac fibrosis as shown by total collagen staining. Quantitative real time polymerase chain reaction (PCR) showed that the ultrasonic delivery resulted in cardiac specific transduction. Moreover, 23,906±2197 and 71,883±4065 calcium tolerant transfected cardiac myocytes were isolated following the delivery of a GFP plasmid or tagged siRNA, respectively. This was sufficient to perform single cell physiological measurements and biochemical experiments on homogenates. We developed an interesting safe method for local gene transfer in the heart using ultrasound and liposomes gene delivery. This method is particularly useful to study the effect of gene transfer on cardiac myocytes maintained in their normal environment in animal models.


Assuntos
Técnicas de Transferência de Genes , Miocárdio/metabolismo , Ultrassom/métodos , Animais , Técnicas de Transferência de Genes/instrumentação , Lipossomos , Fígado/metabolismo , Pulmão/metabolismo , Camundongos , Contração Miocárdica , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Plasmídeos/genética , Ratos , Baço/metabolismo , Transfecção/métodos , Ultrassom/instrumentação , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
9.
Am J Physiol Cell Physiol ; 303(10): C1104-14, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23015549

RESUMO

Plasticity-related gene-1 (PRG-1) protects neuronal cells from lysophosphatidic acid (LPA) effects. In vascular smooth muscle cells (VSMCs), LPA was shown to induce phenotypic modulation in vitro and vascular remodeling in vivo. Thus we explored the role of PRG-1 in modulating VSMC response to LPA. PCR, Western blot, and immunofluorescence experiments showed that PRG-1 is expressed in rat and human vascular media. PRG-1 expression was strongly inhibited in proliferating compared with quiescent VSMCs both in vitro and in vivo (medial vs. neointimal VSMCs), suggesting that PRG-1 expression is dependent on the cell phenotype. In vitro, adenovirus-mediated overexpression of PRG-1 specifically inhibited LPA-induced rat VSMC proliferation and migration but not platelet-derived growth factor-induced proliferation. This effect was abolished by mutation of a conserved histidine in the lipid phosphate phosphatase family that is essential for interaction with lipid phosphates. In vivo, balloon-induced neointimal formation in rat carotid was significantly decreased in vessels infected with PRG-1 adenovirus compared with ß-galactosidase adenovirus (-71%; P < 0.05). PRG-1 overexpression abolished the activation of the p42/p44 signaling pathway in LPA-stimulated rat VSMCs in culture and in balloon-injured rat carotids. Taken together, these findings provide the first evidence of a protective role of PRG-1 in the vascular media under pathophysiological conditions.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Movimento Celular/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Músculo Liso Vascular/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Adenoviridae , Animais , Proteínas de Ligação a Calmodulina/genética , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Vetores Genéticos , Humanos , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Neointima/induzido quimicamente , Monoéster Fosfórico Hidrolases/genética , Ratos , Ratos Wistar
10.
J Am Heart Assoc ; 11(7): e023021, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35348002

RESUMO

Background Platelet-derived growth factor is a major regulator of the vascular remodeling associated with pulmonary arterial hypertension. We previously showed that protein widely 1 (PW1+) vascular progenitor cells participate in early vessel neomuscularization during experimental pulmonary hypertension (PH) and we addressed the role of the platelet-derived growth factor receptor type α (PDGFRα) pathway in progenitor cell-dependent vascular remodeling and in PH development. Methods and Results Remodeled pulmonary arteries from patients with idiopathic pulmonary arterial hypertension showed an increased number of perivascular and vascular PW1+ cells expressing PDGFRα. PW1nLacZ reporter mice were used to follow the fate of pulmonary PW1+ progenitor cells in a model of chronic hypoxia-induced PH development. Under chronic hypoxia, PDGFRα inhibition prevented the increase in PW1+ progenitor cell proliferation and differentiation into vascular smooth muscle cells and reduced pulmonary vessel neomuscularization, but did not prevent an increased right ventricular systolic pressure or the development of right ventricular hypertrophy. Conversely, constitutive PDGFRα activation led to neomuscularization via PW1+ progenitor cell differentiation into new smooth muscle cells and to PH development in male mice without fibrosis. In vitro, PW1+ progenitor cell proliferation, but not differentiation, was dependent on PDGFRα activity. Conclusions These results demonstrate a major role of PDGFRα signaling in progenitor cell-dependent lung vessel neomuscularization and vascular remodeling contributing to PH development, including in idiopathic pulmonary arterial hypertension patients. Our findings suggest that PDGFRα blockers may offer a therapeutic add-on strategy to combine with current pulmonary arterial hypertension treatments to reduce vascular remodeling. Furthermore, our study highlights constitutive PDGFRα activation as a novel experimental PH model.


Assuntos
Hipertensão Pulmonar , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Animais , Proliferação de Células , Células Cultivadas , Humanos , Hipertensão Pulmonar/metabolismo , Hipóxia , Pulmão , Masculino , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Remodelação Vascular
11.
J Mol Cell Cardiol ; 50(4): 621-33, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21195084

RESUMO

In blood vessels, tone is maintained by agonist-induced cytosolic Ca(2+) oscillations of quiescent/contractile vascular smooth muscle cells (VSMCs). However, in synthetic/proliferative VSMCs, Gq/phosphoinositide receptor-coupled agonists trigger a steady-state increase in cytosolic Ca(2+) followed by a Store Operated Calcium Entry (SOCE) which translates into activation of the proliferation-associated transcription factor NFAT. Here, we report that in human coronary artery smooth muscle cells (hCASMCs), the sarco/endoplasmic reticulum calcium ATPase type 2a (SERCA2a) expressed in the contractile form of the hCASMCs, controls the nature of the agonist-induced Ca(2+) transient and the resulting down-stream signaling pathway. Indeed, restoring SERCA2a expression by gene transfer in synthetic hCASMCs 1) increased Ca(2+) storage capacity; 2) modified agonist-induced IP(3)R Ca(2+) release from steady-state to oscillatory mode (the frequency of agonist-induced IP(3)R Ca(2+) signal was 11.66 ± 1.40/100 s in SERCA2a-expressing cells (n=39) vs 1.37 ± 0.20/100 s in control cells (n=45), p<0.01); 3) suppressed SOCE by preventing interactions between SR calcium sensor STIM1 and pore forming unit ORAI1; 4) inhibited calcium regulated transcription factor NFAT and its down-stream physiological function such as proliferation and migration. This study provides evidence for the first time that oscillatory and steady-state patterns of Ca(2+) transients have different effects on calcium-dependent physiological functions in smooth muscle cells.


Assuntos
Sinalização do Cálcio/fisiologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Fatores de Transcrição NFATC/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Western Blotting , Cálcio/metabolismo , Sinalização do Cálcio/genética , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Vasos Coronários/citologia , Ciclina D1/genética , Ciclina D1/metabolismo , Humanos , Imunoprecipitação , Microscopia Confocal , Modelos Biológicos , Fatores de Transcrição NFATC/genética , Reação em Cadeia da Polimerase , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
12.
Mol Ther ; 18(7): 1284-92, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20461063

RESUMO

Congestive heart failure (HF) is associated with impaired endothelium-dependent nitric oxide-mediated vasodilatation. The aim of this study was to examine the effects of sarco/endoplasmic reticulum (ER) Ca(2+)-ATPase 2a (SERCA2a) gene transfer on endothelial function in a swine HF model. Two months after the creation of mitral regurgitation to induce HF, the animals underwent intracoronary injection of adeno-associated virus (AAV) carrying SERCA2a (n = 7) or saline (n = 6). At 4 months, coronary flow (CF) was measured in the mid-portion of the left anterior descending (LAD) artery. In the failing animals, CF was decreased significantly; SERCA2a gene transfer rescued CF to levels observed in sham-group [ml/min/g, 0.47 +/- 0.064 saline versus 0.89 +/- 0.116, SERCA2a; P < 0.05; 1.00 +/- 0. 185 sham P = NS (nonsignificant)]. In coronary arteries from HF animals, SERCA2a and endothelial isoform of nitric oxide synthase (eNOS) protein expression were decreased, but restored to normal levels by SERCA2a gene transfer. In human coronary artery endothelial cells (HCAECs), SERCA2a overexpression increased eNOS expression, phosphorylation, eNOS promoter activity, Ca(2+) storage capacity, and enhanced histamine-induced calcium oscillations, eNOS activity, and cyclic guanosine monophosphate (cGMP) production. Thus, SERCA2a gene transfer increases eNOS expression and activity by modulating calcium homeostasis to improve CF. These findings suggest that SERCA2a gene transfer improves vascular reactivity in the setting of HF.


Assuntos
Células Endoteliais/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Western Blotting , Linhagem Celular , Vasos Coronários/citologia , Feminino , Técnicas de Transferência de Genes , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , Humanos , Imunoprecipitação , Microscopia Confocal , Óxido Nítrico Sintase Tipo III/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Suínos
13.
Front Microbiol ; 10: 2900, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921075

RESUMO

We aimed to analyze the strain-by-strain expression of a large panel of antimicrobial activities counteracting the virulence mechanisms of bacterial vaginosis-associated Prevotella bivia CI-1 and Gardnerella vaginalis 594, pyelonephritis-associated Escherichia coli CFT073, and recurrent cystitis- and preterm labor-associated IH11128 E. coli by Lactobacillus gasseri and Lactobacillus crispatus clinical strains, and L. gasseri ATCC 9857 and KS 120.1, and L. crispatus CTV-05 strains isolated from the cervicovaginal microbiota of healthy women. All L. gasseri and L. crispatus strains exerted antimicrobial activity by secreted lactic acid, which killed the microbial pathogens by direct contact. Potent bactericidal activity was exerted by a very limited number of resident L. gasseri and L. crispatus strains showing the specific ability to a strain to produce and release antibiotic-like compounds. These compounds eradicated the microbial pathogens pre-associated with the surface of cervix epithelial cells, providing efficient protection of the cells against the deleterious effects triggered by toxin-producing G. vaginalis and uropathogenic E. coli. Furthermore, these compounds crossed the cell membrane to kill the pre-internalized microbial pathogens. In addition, all L. gasseri and L. crispatus cells exhibited another non-strain specific activity which inhibited the association of microbial pathogens with cervix epithelial cells with varying efficiency, partially protecting the cells against lysis and detachment triggered by toxin-producing G. vaginalis and uropathogenic E. coli. Our results provide evidence of strain-level specificity for certain antimicrobial properties among cervicovaginal L. gasseri and L. crispatus strains, indicating that the presence of a particular species in the vaginal microbiota is not sufficient to determine its benefit to the host. A full repertory of antimicrobial properties should be evaluated in choosing vaginal microbiota-associated Lactobacillus isolates for the development of live biotherapeutic strategies.

14.
Sci Rep ; 9(1): 6047, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988334

RESUMO

Early adaptive cardiac hypertrophy (EACH) is initially a compensatory process to optimize pump function. We reported the emergence of Orai3 activity during EACH. This study aimed to characterize how inflammation regulates store-independent activation of Orai3-calcium influx and to evaluate the functional role of this influx. Isoproterenol infusion or abdominal aortic banding triggered EACH. TNFα or conditioned medium from cardiac CD11b/c cells activated either in vivo [isolated from rats displaying EACH], or in vitro [isolated from normal rats and activated with lipopolysaccharide], were added to adult cardiomyocytes before measuring calcium entry, cell hypertrophy and cell injury. Using intramyocardial injection of siRNA, Orai3 was in vivo knockdown during EACH to evaluate its protective activity in heart failure. Inflammatory CD11b/c cells trigger a store-independent calcium influx in hypertrophied cardiomyocytes, that is mimicked by TNFα. Pharmacological or molecular (siRNA) approaches demonstrate that this calcium influx, depends on TNFR2, is Orai3-driven, and elicits cardiomyocyte hypertrophy and resistance to oxidative stress. Neutralization of Orai3 inhibits protective GSK3ß phosphorylation, impairs EACH and accelerates heart failure. Orai3 exerts a pathophysiological protective impact in EACH promoting hypertrophy and resistance to oxidative stress. We highlight inflammation arising from CD11b/c cells as a potential trigger of TNFR2- and Orai3-dependent signaling pathways.


Assuntos
Canais de Cálcio/metabolismo , Cardiomegalia/imunologia , Insuficiência Cardíaca/imunologia , Miócitos Cardíacos/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Animais , Antígeno CD11b/metabolismo , Antígeno CD11c/metabolismo , Cálcio/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Isoproterenol/toxicidade , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Fosforilação/imunologia , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
15.
PLoS One ; 13(10): e0205104, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30296279

RESUMO

BACKGROUND: Atrial fibrillation is associated with an atrial cardiomyopathy composed mainly of fibrosis and adipose tissue accumulation. We hypothesized that MRI, when used in an optimal ex vivo setting allowing high spatial resolution without motion artifacts, can help characterizing the complex 3D left atrial (LA) wall composition in human myocardial samples, as compared to histology. METHODS: This prospective case-control study was approved by the institutional review board. 3D MRI acquisitions including saturation-recovery T1 mapping and DIXON imaging was performed at 4.0 T on 9 human LA samples collected from patients who underwent cardiac surgery. Histological quantification of fibrosis and fat was obtained. MRI T1 maps were clustered based on a Gaussian Mixture Model allowing quantification of total, interstitial and fatty fibrosis components. Fat maps were computed from DIXON images and fat fractions were calculated. MRI measurements were performed on the same location as the histological analysis (plane) and on the entire sample volume (3D). RESULTS: High correlations and levels of agreement were observed between MRI and histology for total (r = 0.93), interstitial (r = 0.93) and fatty fibrosis (r = 0.98) and fat (r = 0.96). Native T1 correlated with the amount of fibrosis from MRI and histology. The 3D MRI total, interstitial and fatty fibrosis ranges were between 6% and 23%, 4% and 17.3%; and 1.4% and 19.7% respectively. CONCLUSION: High Field ex vivo MRI was able to quantify different LA myocardial components with high agreement in 2D with histology and moreover to provide 3D quantification of such components whereas in vivo application remains a challenge.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Fibrose/diagnóstico por imagem , Átrios do Coração/diagnóstico por imagem , Cardiopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Miocárdio/patologia , Tecido Adiposo/patologia , Estudos de Casos e Controles , Diagnóstico Diferencial , Fibrose/patologia , Cardiopatias/patologia , Cardiopatias/cirurgia , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Estudos Prospectivos
16.
J Am Coll Cardiol ; 70(6): 728-741, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28774379

RESUMO

BACKGROUND: Pw1 gene expression is a marker of adult stem cells in a wide range of tissues. PW1-expressing cells are detected in the heart but are not well characterized. OBJECTIVES: The authors characterized cardiac PW1-expressing cells and their cell fate potentials in normal hearts and during cardiac remodeling following myocardial infarction (MI). METHODS: A human cardiac sample was obtained from a patient presenting with reduced left ventricular (LV) function following a recent MI. The authors used the PW1nLacZ+/- reporter mouse to identify, track, isolate, and characterize PW1-expressing cells in the LV myocardium in normal and ischemic conditions 7 days after complete ligature of the left anterior descending coronary artery. RESULTS: In both human and mouse ischemic hearts, PW1 expression was found in cells that were mainly located in the infarct and border zones. Isolated cardiac resident PW1+ cells form colonies and have the potential to differentiate into multiple cardiac and mesenchymal lineages, with preferential differentiation into fibroblast-like cells but not into cardiomyocytes. Lineage-tracing experiments revealed that PW1+ cells differentiated into fibroblasts post-MI. Although the expression of c-Kit and PW1 showed little overlap in normal hearts, a marked increase in cells coexpressing both markers was observed in ischemic hearts (0.1 ± 0.0% in control vs. 5.7 ± 1.2% in MI; p < 0.001). In contrast to the small proportion of c-Kit+/PW1- cells that showed cardiogenic potential, c-Kit+/PW1+ cells were fibrogenic. CONCLUSIONS: This study demonstrated the existence of a novel population of resident adult cardiac stem cells expressing PW1+ and their involvement in fibrotic remodeling after MI.


Assuntos
Fatores de Transcrição Kruppel-Like/genética , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/genética , Miocárdio/metabolismo , RNA/genética , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular/genética , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Fatores de Transcrição Kruppel-Like/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo
17.
FEMS Microbiol Lett ; 257(1): 132-8, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16553843

RESUMO

The purpose of this study was to investigate the antibacterial activities of Lactobacillus jensenii KS119.1 and KS121.1, and Lactobacillus gasserii KS120.1 and KS124.3 strains isolated from the vaginal microflora of healthy women, against uropathogenic, diffusely adhering Afa/Dr Escherichia coli (Afa/Dr DAEC) strains IH11128 and 7372 involved in recurrent cystitis. We observed that some of the Lactobacillus isolates inhibited the growth and decreased the viability of E. coli IH11128 and 7372. In addition, we observed that adhering Lactobacillus strains inhibited adhesion of E. coli IH11128 onto HeLa cells, and inhibited internalization of E. coli IH11128 within HeLa cells.


Assuntos
Antibiose , Infecções por Escherichia coli/microbiologia , Escherichia coli/crescimento & desenvolvimento , Lactobacillus/crescimento & desenvolvimento , Infecções Urinárias/microbiologia , Vagina/microbiologia , Adesinas de Escherichia coli/metabolismo , Aderência Bacteriana , Cistite/microbiologia , Escherichia coli/patogenicidade , Feminino , Células HeLa/microbiologia , Humanos , Lactobacillus/isolamento & purificação
18.
FEMS Immunol Med Microbiol ; 48(3): 424-32, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17059467

RESUMO

The purpose of this study was to investigate how human vaginal isolates of Lactobacillus acidophilus, Lactobacillus jensenii, Lactobacillus gasseri and Lactobacillus crispatus inhibit the vaginosis-associated pathogens Gardnerella vaginalis and Prevotella bivia. Results show that all the strains in coculture condition reduced the viability of G. vaginalis and P. bivia, but with differing degrees of efficacy. The treatment of G. vaginalis- and P. bivia-infected cultured human cervix epithelial HeLa cells with L. gasseri strain KS120.1 culture or cell-free culture supernatant (CFCS) results in the killing of the pathogens that are adhering to the cells. The mechanism of the killing activity is not attributable to low pH and the presence of lactic acid alone, but rather to the presence of hydrogen peroxide and proteolytic enzyme-resistant compound(s) present in the CFCSs. In addition, coculture of G. vaginalis or P. bivia with L. gasseri KS120.1 culture or KS120.1 bacteria results in inhibition of the adhesion of the pathogens onto HeLa cells.


Assuntos
Antibacterianos/metabolismo , Gardnerella vaginalis/crescimento & desenvolvimento , Lactobacillus/metabolismo , Prevotella/crescimento & desenvolvimento , Vagina/microbiologia , Vaginose Bacteriana/microbiologia , Aderência Bacteriana , Técnicas de Cocultura , Feminino , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Vaginose Bacteriana/prevenção & controle
19.
Mol Ther Methods Clin Dev ; 2: 14065, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26052533

RESUMO

UNLABELLED: The ATP-binding cassette transporter MRP4 (encoded by ABCC4) regulates membrane cyclic nucleotides concentrations in arterial cells including smooth muscle cells. MRP4/ABCC4 deficient mice display a reduction in smooth muscle cells proliferation and a prevention of pulmonary hypertension in response to hypoxia. We aimed to study gene transfer of a MRP4/ABCC4 silencing RNA via intratracheal delivery of aerosolized adeno-associated virus 1 (AAV1.shMRP4 or AAV1.control) in a monocrotaline-induced model of pulmonary hypertension in rats. Gene transfer was performed at the time of monocrotaline administration and the effect on the development of pulmonary vascular remodeling was assessed 35 days later. AAV1.shMRP4 dose-dependently reduced right ventricular systolic pressure and hypertrophy with a significant reduction with the higher doses (i.e., >10(11) DRP/animal) as compared to AAV1. CONTROL: The higher dose of AAV1.shMRP4 was also associated with a significant reduction in distal pulmonary arteries remodeling. AAV1.shMRP4 was finally associated with a reduction in the expression of ANF, a marker of cardiac hypertrophy. Collectively, these results support a therapeutic potential for downregulation of MRP4 for the treatment of pulmonary artery hypertension.

20.
Cardiovasc Res ; 105(3): 248-59, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25213556

RESUMO

AIMS: Stromal interaction molecule 1 (STIM1) has been shown to control a calcium (Ca(2+)) influx pathway that emerges during the hypertrophic remodelling of cardiomyocytes. Our aim was to determine the interaction of Orai1 and Orai3 with STIM1 and their role in the constitutive store-independent and the store-operated, STIM1-dependent, Ca(2+) influx in cardiomyocytes. METHODS AND RESULTS: We characterized the expression profile of Orai proteins and their interaction with STIM1 in both normal and hypertrophied adult rat ventricular cardiomyocytes. Orai1 and 3 protein levels were unaltered during the hypertrophic process and both proteins co-immunoprecipitated with STIM1. The level of STIM1 and Orai1 were significantly greater in the macromolecular complex precipitated by the Orai3 antibody in hypertrophied cardiomyocytes. We then used a non-viral method to deliver Cy3-tagged siRNAs in vivo to adult ventricular cardiomyocytes and silence Orai channel candidates. Cardiomyocytes were subsequently isolated then the voltage-independent, i.e. store-independent and store-operated Ca(2+) entries were measured on Fura-2 AM loaded Cy3-labelled and control isolated cardiomyocytes. The whole cell patch-clamp technique was used to measure Orai-mediated currents. Specific Orai1 and Orai3 knockdown established Orai3, but not Orai1, as the critical partner of STIM1 carrying these voltage-independent Ca(2+) entries in the adult hypertrophied cardiomyocytes. Orai3 also drove an arachidonic acid-activated inward current. CONCLUSION: Cardiac Orai3 is the essential partner of STIM1 and drives voltage-independent Ca(2+) entries in adult cardiomyocytes. Arachidonic acid-activated currents, which are supported by Orai3, are present in adult cardiomyocytes and increased during hypertrophy.


Assuntos
Canais de Cálcio/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Ácido Araquidônico/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/genética , Sinalização do Cálcio , Células Cultivadas , Modelos Animais de Doenças , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Masculino , Glicoproteínas de Membrana/metabolismo , Potenciais da Membrana , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Proteína ORAI1 , Ligação Proteica , Interferência de RNA , Ratos Wistar , Molécula 1 de Interação Estromal , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa