Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(2): e2211189119, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595681

RESUMO

Human ETS Related Gene, ERG, a master transcription factor, turns oncogenic upon its out-of-context activation in diverse developmental lineages. However, the mechanism underlying its lineage-specific activation of Notch (N), Wnt, or EZH2-three well-characterized oncogenic targets of ERG-remains elusive. We reasoned that deep homology in genetic tool kits might help uncover such elusive cancer mechanisms in Drosophila. By heterologous gain of human ERG in Drosophila, here we reveal Chip, which codes for a transcriptional coactivator, LIM-domain-binding (LDB) protein, as its novel target. ERG represses Drosophila Chip via its direct binding and, indirectly, via E(z)-mediated silencing of its promoter. Downregulation of Chip disrupts LIM-HD complex formed between Chip and Tailup (Tup)-a LIM-HD transcription factor-in the developing notum. A consequent activation of N-driven Wg signaling leads to notum-to-wing transdetermination. These fallouts of ERG gain are arrested upon a simultaneous gain of Chip, sequestration of Wg ligand, and, alternatively, loss of N signaling or E(z) activity. Finally, we show that the human LDB1, a homolog of Drosophila Chip, is repressed in ERG-positive prostate cancer cells. Besides identifying an elusive target of human ERG, our study unravels an underpinning of its lineage-specific carcinogenesis.


Assuntos
Proteínas de Drosophila , Drosophila , Masculino , Animais , Humanos , Drosophila/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Oncogênicas/metabolismo , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
2.
Semin Cancer Biol ; 89: 76-91, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702449

RESUMO

Transcription factors (TFs) represent the most commonly deregulated DNA-binding class of proteins associated with multiple human cancers. They can act as transcriptional activators or repressors that rewire the cistrome, resulting in cellular reprogramming during cancer progression. Deregulation of TFs is associated with the onset and maintenance of various cancer types including prostate cancer. An emerging subset of TFs has been implicated in the regulation of multiple cancer hallmarks during tumorigenesis. Here, we discuss the role of key TFs which modulate transcriptional cicuitries involved in the development and progression of prostate cancer. We further highlight the role of TFs associated with key cancer hallmarks, including, chromatin remodeling, genome instability, DNA repair, invasion, and metastasis. We also discuss the pluripotent function of TFs in conferring lineage plasticity, that aids in disease progression to neuroendocrine prostate cancer. At the end, we summarize the current understanding and approaches employed for the therapeutic targeting of TFs and their cofactors in the clinical setups to prevent disease progression.


Assuntos
Neoplasias da Próstata , Fatores de Transcrição , Masculino , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina , Neoplasias da Próstata/genética , Redes Reguladoras de Genes , Progressão da Doença
3.
Semin Cancer Biol ; 83: 136-151, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33545340

RESUMO

Conrad Waddington's theory of epigenetic landscape epitomize the process of cell fate and cellular decision-making during development. Wherein the epigenetic code maintains patterns of gene expression in pluripotent and differentiated cellular states during embryonic development and differentiation. Over the years disruption or reprogramming of the epigenetic landscape has been extensively studied in the course of cancer progression. Cellular dedifferentiation being a key hallmark of cancer allow us to take cues from the biological processes involving epigenetic reprogramming in development such as the cellular differentiation and morphogenesis. Here, we discuss the role of epigenetic landscape and its modifiers in cell-fate determination, differentiation and prostate cancer progression. Lately, the emergence of RNA-modifications has also furthered our understanding of epigenetics in cancer. The overview of the epigenetic code regulating androgen signalling, and progression to aggressive neuroendocrine stage of PCa reinforces its gene regulatory functions during the development of prostate gland as well as cancer progression. Additionally, we also highlight the clinical implications of cancer cell epigenome, and discuss the recent advancements in the therapeutic strategies targeting the advanced stage disease.


Assuntos
Próstata , Neoplasias da Próstata , Diferenciação Celular/genética , Reprogramação Celular/genética , Epigênese Genética , Epigenômica , Humanos , Masculino , Neoplasias da Próstata/genética
4.
NMR Biomed ; 35(7): e4705, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35102613

RESUMO

Metabolic reprogramming, a key hallmark of cancer, plays a pivotal role in fulfilling the accelerated biological demands of tumor cells. Such metabolic changes trigger the production of several proinflammatory factors, thereby inciting cancer development and its progression. Serine protease inhibitor Kazal Type 1 (SPINK1), well known for its oncogenic role and its upregulation via acute-phase reactions, is highly expressed in multiple cancers including colorectal cancer (CRC). Here, we show accumulation of lipid droplets in CRC cells stained with Oil Red O upon SPINK1 silencing. Furthermore, NMR spectroscopy analysis revealed an accretion of monounsaturated fatty acids (MUFAs) and phosphatidylcholine in these CRC cells, while the levels of polyunsaturated fatty acids remained unaltered. This alteration indicates the presence of MUFAs with the triglycerides in the lipid droplets as observed in SPINK1-silenced CRC cells. Considering the role of MUFAs in the anti-inflammatory response, our data hint that suppression of SPINK1 in CRC leads to activation of an anti-inflammatory signaling milieu. Conclusively, our study uncovers a connection between lipid metabolism and SPINK1-mediated CRC progression, hence paving the way for further exploration and better prognosis of SPINK1-positive CRC patients.


Assuntos
Neoplasias Colorretais , Metabolismo dos Lipídeos , Inibidor da Tripsina Pancreática de Kazal , Neoplasias Colorretais/patologia , Ácidos Graxos Monoinsaturados/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Inibidor da Tripsina Pancreática de Kazal/metabolismo
5.
Crit Rev Food Sci Nutr ; 61(1): 1-13, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32023132

RESUMO

Epigenetic modifications play an important role in disease pathogenesis and therefore are a focus of intense investigation. Epigenetic changes include DNA, RNA, and histone modifications along with expression of non-coding RNAs. Various factors such as environment, diet, and lifestyle can influence the epigenome. Dietary nutrients like vitamins can regulate both physiological and pathological processes through their direct impact on epigenome. Vitamin A acts as a major regulator of above-mentioned epigenetic mechanisms. B group vitamins including biotin, niacin, and pantothenic acid also participate in modulation of various epigenome. Further, vitamin C has shown to modulate both DNA methylation and histone modifications while few reports have also supported its role in miRNA-mediated pathways. Similarly, vitamin D also influences various epigenetic modifications of both DNA and histone by controlling the regulatory mechanisms. Despite the information that vitamins can modulate the epigenome, the detailed mechanisms of vitamin-mediated epigenetic regulations have not been explored fully and hence further detailed studies are required to decipher their role at epigenome level in both normal and disease pathogenesis. The current review summarizes the available literature on the role of vitamins as epigenetic modifier and highlights the key evidences for developing vitamins as potential epidrugs.


Assuntos
Vitamina A , Vitaminas , Metilação de DNA , Epigênese Genética , Histonas/metabolismo , Vitaminas/farmacologia
6.
Mol Cell ; 49(1): 80-93, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23159737

RESUMO

Histone methyltransferases (HMTases), as chromatin modifiers, regulate the transcriptomic landscape in normal development as well in diseases such as cancer. Here, we molecularly order two HMTases, EZH2 and MMSET, that have established genetic links to oncogenesis. EZH2, which mediates histone H3K27 trimethylation and is associated with gene silencing, was shown to be coordinately expressed and function upstream of MMSET, which mediates H3K36 dimethylation and is associated with active transcription. We found that the EZH2-MMSET HMTase axis is coordinated by a microRNA network and that the oncogenic functions of EZH2 require MMSET activity. Together, these results suggest that the EZH2-MMSET HMTase axis coordinately functions as a master regulator of transcriptional repression, activation, and oncogenesis and may represent an attractive therapeutic target in cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Neoplasias da Próstata/enzimologia , Proteínas Repressoras/metabolismo , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Embrião de Galinha , Membrana Corioalantoide/patologia , Proteína Potenciadora do Homólogo 2 de Zeste , Expressão Gênica , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Invasividade Neoplásica , Transplante de Neoplasias , Complexo Repressor Polycomb 2/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Interferência de RNA , Proteínas Repressoras/genética , Análise Serial de Tecidos , Ativação Transcricional
7.
Biochemistry ; 59(45): 4379-4394, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33146015

RESUMO

Interactions between pro- and anti-apoptotic Bcl-2 proteins decide the fate of the cell. The BH3 domain of pro-apoptotic Bcl-2 proteins interacts with the exposed hydrophobic groove of their anti-apoptotic counterparts. Through their design and development, BH3 mimetics that target the hydrophobic groove of specific anti-apoptotic Bcl-2 proteins have the potential to become anticancer drugs. We have developed a novel computational method for designing sequences with BH3 domain features that can bind specifically to anti-apoptotic Mcl-1 or Bcl-XL. In this method, we retained the four highly conserved hydrophobic and aspartic residues of wild-type BH3 sequences and randomly substituted all other positions to generate a large number of BH3-like sequences. We modeled 20000 complex structures with Mcl-1 or Bcl-XL using the BH3-like sequences derived from five wild-type pro-apoptotic BH3 peptides. Peptide-protein interaction energies calculated from these models for each set of BH3-like sequences resulted in negatively skewed extreme value distributions. The selected BH3-like sequences from the extreme negative tail regions have highly favorable interaction energies with Mcl-1 or Bcl-XL. They are enriched in acidic and basic residues when they bind to Mcl-1 and Bcl-XL, respectively. With the charged residues often away from the binding interface, the overall electric field generated by the charged residues results in strong long-range electrostatic interaction energies between the peptide and the protein giving rise to high specificity. Cell viability studies of representative BH3-like peptides further validated the predicted specificity. This study has revealed the importance of non-hot spot residues in BH3-mimetic peptides in providing specificity to a particular anti-apoptotic protein.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo , Sequência de Aminoácidos , Humanos , Células MCF-7 , Modelos Moleculares , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato , Proteína bcl-X/química
8.
FASEB J ; 33(3): 3198-3211, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30379590

RESUMO

Growth factor receptor-binding protein 10 (GRB10) is a well-known adaptor protein and a recently identified substrate of the mammalian target of rapamycin (mTOR). Depletion of GRB10 increases insulin sensitivity and overexpression suppresses PI3K/Akt signaling. Because the major reason for the limited efficacy of PI3K/Akt-targeted therapies in prostate cancer (PCa) is loss of mTOR-regulated feedback suppression, it is therefore important to assess the functional importance and regulation of GRB10 under these conditions. On the basis of these background observations, we explored the status and functional impact of GRB10 in PCa and found maximum expression in phosphatase and tensin homolog (PTEN)-deficient PCa. In human PCa samples, GRB10 inversely correlated with PTEN and positively correlated with pAKT levels. Knockdown of GRB10 in nontumorigenic PTEN null mouse embryonic fibroblasts and tumorigenic PCa cell lines reduced Akt phosphorylation and selectively activated a panel of receptor tyrosine kinases. Similarly, overexpression of GRB10 in PTEN wild-type PCa cell lines accelerated tumorigenesis and induced Akt phosphorylation. In PTEN wild-type PCa, GRB10 overexpression promoted mediated PTEN interaction and degradation. PI3K (but not mTOR) inhibitors reduced GRB10 expression, suggesting primarily PI3K-driven regulation of GRB10. In summary, our results suggest that GRB10 acts as a major downstream effector of PI3K and has tumor-promoting effects in prostate cancer.-Khan, M. I., Al Johani, A., Hamid, A., Ateeq, B., Manzar, N., Adhami, V. M., Lall, R. K., Rath, S., Sechi, M., Siddiqui, I. A., Choudhry, H., Zamzami, M. A., Havighurst, T. C., Huang, W., Ntambi, J. M., Mukhtar, H. Proproliferatve function of adaptor protein GRB10 in prostate carcinoma.


Assuntos
Proteína Adaptadora GRB10/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Carcinógenos/antagonistas & inibidores , Carcinógenos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteína Adaptadora GRB10/antagonistas & inibidores , Proteína Adaptadora GRB10/genética , Técnicas de Silenciamento de Genes , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Modelos Biológicos , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/genética , RNA Mensageiro , Transdução de Sinais
9.
Bioorg Med Chem Lett ; 29(21): 126672, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31570209

RESUMO

The synthesis of novel N-heterocyclic carbene complexes derived from a tripeptide ligand (L), containing non-natural amino acid, thiazolylalanine is described here. The peptide ligand was reacted with suitable precursors to generate gold and mercury carbene complexes. The plausible structures of both complexes were predicted by spectroscopic data and DFT calculations. The binding energy data was also analyzed to predict their stability. The gold carbene complex (1A), showed activity against MCF7 breast cancer cell line due to mitochondrial triggered caspase-3 mediated programmed cell death. Its internalization inside cells could be observed due to autofluorescence. This study affords a methodology for successful generation of peptide carbene complexes for their therapeutic potential.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 3/química , Complexos de Coordenação/síntese química , Ouro/química , Metano/análogos & derivados , Peptídeos/química , Células A549 , Aminoácidos/química , Caspase 3/metabolismo , Complexos de Coordenação/metabolismo , Teoria da Densidade Funcional , Corantes Fluorescentes/química , Humanos , Ligantes , Células MCF-7 , Metano/química , Metano/metabolismo , Modelos Moleculares , Estrutura Molecular , Imagem Óptica , Peptídeos/metabolismo
10.
Soft Matter ; 14(31): 6537-6553, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30051119

RESUMO

Theranostic nanostructures serve a dual purpose of therapy and diagnosis. A major fraction of these are based on polymer coated magnetic nanostructures of iron oxides (magnetite and maghemite), owing to the efficient drug loading capacity of polymer shells and enhanced magnetic contrast effects of the iron oxide core. In the current work we are proposing poly(2-ethyl-2-oxazoline) coated linear thermoresponsive nanostructures of maghemite (γ-Fe2O3) for potential application in targeted cancer therapy. The polymer coating was obtained via a modified sol-gel technique based on entropically driven phase separation of poly(2-ethyl-2-oxazoline) above its cloud point (CP) temperature of 63 °C in water. The developed nanostructures were further loaded with paclitaxel, a polar anticancer compound at room temperature (25 °C). The entropically driven release of paclitaxel at various concentrations and physiological temperatures was modeled and their application to the PC3 prostrate cancer cell line was investigated by treating in vitro. The steering efficiency of the magnetic nanostructures during their navigation through large blood vessels was also analyzed with the help of a synthetic model of the human axillary artery. The proposed application of these newly developed nanostructures can easily be extended towards localized delivery of additional polar anticancer drugs like cisplatin and doxorubicin.


Assuntos
Nanoestruturas/química , Neoplasias/tratamento farmacológico , Paclitaxel/química , Paclitaxel/uso terapêutico , Poliaminas/química , Polímeros/química , Animais , Cisplatino/química , Cisplatino/uso terapêutico , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Compostos Férricos/química , Humanos
11.
Environ Sci Technol ; 52(24): 14496-14507, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30512948

RESUMO

Biodiesel engines produce several intermediate species, which can potentially harm the human health. The concentration of these species and their health risk potential varies depending on engine technology, fuel, and engine operating condition. In this study, experiments were performed on a large number of engines having different configurations (emissions norms/fuel used), which were operated at part load/full load using B20 (20% v/v biodiesel blended with mineral diesel) and mineral diesel. Experiments included measurement of gaseous emissions, and physical, chemical, and biological characterization of exhaust particulate matter (PM). Chemical characterization of PM was carried out for detecting polycyclic aromatic hydrocarbons (PAH's) and PM bound trace metals. The biological toxicity associated with PM was assessed using human embryonic kidney 293T cells (HEK 293T). The mutagenic potential of the PM was tested at three different concentrations (500, 100, and 50 µg/mL) using two different  Salmonella strains, TA98 and TA100, with and without liver S9 metabolic enzyme fraction. PM samples exhibited cytotoxic effect on HEK 293T cells (IC50 < 100 µg/mL) and there was significant potential for reactive oxygen species (ROS) generation. Comparison of different engines showed that modern engines (Euro-III and Euro-IV compliant) produced relatively cleaner exhaust compared to older engines (Euro-II compliant). Biodiesel-fueled engines emitted lower number of particles compared to diesel-fueled engines. However, chemical characterization revealed that biodiesel-fueled engines exhaust PM contained several harmful PAHs and trace metals, which affected the biological activity of these PM, as reflected in the biological investigations. Mutagenicity and cytotoxicity of PM from biodiesel-fueled engines were relatively higher compared to their diesel counterparts, indicating the need for exhaust gas after-treatment.


Assuntos
Poluentes Atmosféricos , Material Particulado , Biocombustíveis , Gasolina , Humanos , Mutagênicos , Emissões de Veículos
12.
Nature ; 487(7406): 239-43, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22722839

RESUMO

Characterization of the prostate cancer transcriptome and genome has identified chromosomal rearrangements and copy number gains and losses, including ETS gene family fusions, PTEN loss and androgen receptor (AR) amplification, which drive prostate cancer development and progression to lethal, metastatic castration-resistant prostate cancer (CRPC). However, less is known about the role of mutations. Here we sequenced the exomes of 50 lethal, heavily pre-treated metastatic CRPCs obtained at rapid autopsy (including three different foci from the same patient) and 11 treatment-naive, high-grade localized prostate cancers. We identified low overall mutation rates even in heavily treated CRPCs (2.00 per megabase) and confirmed the monoclonal origin of lethal CRPC. Integrating exome copy number analysis identified disruptions of CHD1 that define a subtype of ETS gene family fusion-negative prostate cancer. Similarly, we demonstrate that ETS2, which is deleted in approximately one-third of CRPCs (commonly through TMPRSS2:ERG fusions), is also deregulated through mutation. Furthermore, we identified recurrent mutations in multiple chromatin- and histone-modifying genes, including MLL2 (mutated in 8.6% of prostate cancers), and demonstrate interaction of the MLL complex with the AR, which is required for AR-mediated signalling. We also identified novel recurrent mutations in the AR collaborating factor FOXA1, which is mutated in 5 of 147 (3.4%) prostate cancers (both untreated localized prostate cancer and CRPC), and showed that mutated FOXA1 represses androgen signalling and increases tumour growth. Proteins that physically interact with the AR, such as the ERG gene fusion product, FOXA1, MLL2, UTX (also known as KDM6A) and ASXL1 were found to be mutated in CRPC. In summary, we describe the mutational landscape of a heavily treated metastatic cancer, identify novel mechanisms of AR signalling deregulated in prostate cancer, and prioritize candidates for future study.


Assuntos
Neoplasias da Próstata/genética , Proliferação de Células , Células Cultivadas , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Orquiectomia , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Alinhamento de Sequência , Transdução de Sinais
13.
Prostate ; 75(10): 1051-62, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25809148

RESUMO

BACKGROUND: Molecular stratification of prostate cancer (PCa) based on genetic aberrations including ETS or RAF gene-rearrangements, PTEN deletion, and SPINK1 over-expression show clear prognostic and diagnostic utility. Gene rearrangements involving ETS transcription factors are frequent pathogenetic somatic events observed in PCa. Incidence of ETS rearrangements in Caucasian PCa patients has been reported, however, occurrence in Indian population is largely unknown. The aim of this study was to determine the prevalence of the ETS and RAF kinase gene rearrangements, SPINK1 over-expression, and PTEN deletion in this cohort. METHODS: In this multi-center study, formalin-fixed paraffin embedded (FFPE) PCa specimens (n = 121) were procured from four major medical institutions in India. The tissues were sectioned and molecular profiling was done using immunohistochemistry (IHC), RNA in situ hybridization (RNA-ISH) and/or fluorescence in situ hybridization (FISH). RESULTS: ERG over-expression was detected in 48.9% (46/94) PCa specimens by IHC, which was confirmed in a subset of cases by FISH. Among other ETS family members, while ETV1 transcript was detected in one case by RNA-ISH, no alteration in ETV4 was observed. SPINK1 over-expression was observed in 12.5% (12/96) and PTEN deletion in 21.52% (17/79) of the total PCa cases. Interestingly, PTEN deletion was found in 30% of the ERG-positive cases (P = 0.017) but in only one case with SPINK1 over-expression (P = 0.67). BRAF and RAF1 gene rearrangements were detected in ∼1% and ∼4.5% of the PCa cases, respectively. CONCLUSIONS: This is the first report on comprehensive molecular profiling of the major spectrum of the causal aberrations in Indian men with PCa. Our findings suggest that ETS gene rearrangement and SPINK1 over-expression patterns in North Indian population largely resembled those observed in Caucasian population but differed from Japanese and Chinese PCa patients. The molecular profiling data presented in this study could help in clinical decision-making for the pursuit of surgery, diagnosis, and in selection of therapeutic intervention.


Assuntos
Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas de Transporte/genética , Deleção de Genes , Expressão Gênica , Perfilação da Expressão Gênica , Rearranjo Gênico/genética , Humanos , Imuno-Histoquímica , Hibridização In Situ , Hibridização in Situ Fluorescente , Índia , Masculino , PTEN Fosfo-Hidrolase , Prognóstico , Transativadores/genética , Regulador Transcricional ERG , Inibidor da Tripsina Pancreática de Kazal , Quinases raf/genética
14.
iScience ; 27(3): 108794, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38384854

RESUMO

Elevated serine peptidase inhibitor, Kazal type 1 (SPINK1) levels in ∼10%-25% of prostate cancer (PCa) patients associate with aggressive phenotype, for which there are limited treatment choices and dismal clinical outcomes. Using an integrative proteomics approach involving label-free phosphoproteome and proteome profiling, we delineated the downstream signaling pathways involved in SPINK1-mediated tumorigenesis and identified tyrosine kinase KIT as highly enriched. Furthermore, high to moderate levels of KIT expression were detected in ∼85% of SPINK1-positive PCa specimens. We show KIT signaling orchestrates SPINK1-mediated oncogenesis, and treatment with KIT inhibitor reduces tumor growth and metastases in preclinical mice models. Mechanistically, KIT signaling modulates WNT/ß-catenin pathway and confers stemness-related features in PCa. Notably, inhibiting KIT signaling led to restoration of AR/REST levels, forming a feedback loop enabling SPINK1 repression. Overall, we uncover the role of KIT signaling downstream of SPINK1 in maintaining lineage plasticity and provide distinct treatment modalities for advanced-stage SPINK1-positive patients.

15.
Cancer Res Commun ; 3(10): 2044-2061, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37812088

RESUMO

PARP inhibitors (PARPi) have emerged as a promising targeted therapeutic intervention for metastatic castrate-resistant prostate cancer (mCRPC). However, the clinical utility of PARPi is limited to a subset of patients who harbor aberrations in the genes associated with the homologous recombination (HR) pathway. Here, we report that targeting metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), an oncogenic long noncoding RNA (lncRNA), contrives a BRCAness-like phenotype, and augments sensitivity to PARPi. Mechanistically, we show that MALAT1 silencing reprograms the homologous recombination (HR) transcriptome and makes prostate cancer cells more vulnerable to PARPi. Particularly, coinhibition of MALAT1 and PARP1 exhibits a decline in clonogenic survival, delays resolution of γH2AX foci, and reduces tumor burden in mice xenograft model. Moreover, we show that miR-421, a tumor suppressor miRNA, negatively regulates the expression of HR genes, while in aggressive prostate cancer cases, miR-421 is sequestered by MALAT1, leading to increased expression of HR genes. Conclusively, our findings suggest that MALAT1 ablation confers sensitivity to PARPi, thus highlighting an alternative therapeutic strategy for patients with castration-resistant prostate cancer (CRPC), irrespective of the alterations in HR genes. SIGNIFICANCE: PARPi are clinically approved for patients with metastatic CRPC carrying mutations in HR genes, but are ineffective for HR-proficient prostate cancer. Herein, we show that oncogenic lncRNA, MALAT1 is frequently overexpressed in advanced stage prostate cancer and plays a crucial role in maintaining genomic integrity. Importantly, we propose a novel therapeutic strategy that emphasizes MALAT1 inhibition, leading to HR dysfunction in both HR-deficient and -proficient prostate cancer, consequently augmenting their susceptibility to PARPi.


Assuntos
MicroRNAs , Neoplasias de Próstata Resistentes à Castração , RNA Longo não Codificante , Masculino , Humanos , Animais , Camundongos , RNA Longo não Codificante/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Recombinação Homóloga/genética
16.
Prostate ; 72(14): 1542-9, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22415461

RESUMO

BACKGROUND: Androgens play a crucial role in prostate cancer, hence the androgenic pathway has become an important target of therapeutic intervention. Previously we discovered that gene fusions between the 5'-untranslated region of androgen regulated gene TMPRSS2 and the ETS transcription factor family members were present in a majority of the prostate cancer cases. The resulting aberrant overexpression of ETS genes drives tumor progression. METHODS: Here, we evaluated the expression levels of 5α-reductase isoenzymes in prostate cancer cell lines and tissues. We tested the effect of dutasteride, a 5α-reductase inhibitor, in TMPRSS2-ERG fusion-positive VCaP cell proliferation and cell invasion. We also evaluated the effect of dutasteride on the TMPRSS2-ERG fusion gene expression. Finally, we tested dutasteride alone or in combination with an anti-androgen in VCaP cell xenografts tumor model. RESULTS: Our data showed that 5α-reductase SRD5A1 and SRD5A3 isoenzymes that are responsible for the conversion of testosterone to DHT, are highly expressed in metastatic prostate cancer compared to benign and localized prostate cancer. Dutasteride treatment attenuated VCaP cell proliferation and invasion. VCaP cells pre-treated with dutasteride showed a reduction in ERG and PSA expression. In vivo studies demonstrated that dutasteride in combination with the anti-androgen bicalutamide significantly decreased tumor burden in VCaP cell xenograft model. CONCLUSIONS: Our findings suggest that dutasteride can inhibit ERG fusion-positive cell growth and in combination with anti-androgen, significantly reduce the tumor burden. Our study suggests that anti-androgens used in combination with dutasteride could synergistically augment the therapeutic efficacy in the treatment of ETS-positive prostate cancer.


Assuntos
Inibidores de 5-alfa Redutase/farmacologia , Azasteroides/farmacologia , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dutasterida , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Isoenzimas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Neoplasias Hormônio-Dependentes/enzimologia , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/metabolismo , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Neoplásico/química , RNA Neoplásico/genética , Distribuição Aleatória , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Proc Natl Acad Sci U S A ; 106(25): 10284-9, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19487683

RESUMO

Breast cancer patients have benefited from the use of targeted therapies directed at specific molecular alterations. To identify additional opportunities for targeted therapy, we searched for genes with marked overexpression in subsets of tumors across a panel of breast cancer profiling studies comprising 3,200 microarray experiments. In addition to prioritizing ERBB2, we found AGTR1, the angiotensin II receptor type I, to be markedly overexpressed in 10-20% of breast cancer cases across multiple independent patient cohorts. Validation experiments confirmed that AGTR1 is highly overexpressed, in several cases more than 100-fold. AGTR1 overexpression was restricted to estrogen receptor-positive tumors and was mutually exclusive with ERBB2 overexpression across all samples. Ectopic overexpression of AGTR1 in primary mammary epithelial cells, combined with angiotensin II stimulation, led to a highly invasive phenotype that was attenuated by the AGTR1 antagonist losartan. Similarly, losartan reduced tumor growth by 30% in AGTR1-positive breast cancer xenografts. Taken together, these observations indicate that marked AGTR1 overexpression defines a subpopulation of ER-positive, ERBB2-negative breast cancer that may benefit from targeted therapy with AGTR1 antagonists, such as losartan.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Losartan/farmacologia , Receptor Tipo 1 de Angiotensina/biossíntese , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Receptor ErbB-2/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Front Cell Dev Biol ; 10: 780176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186918

RESUMO

Epithelial cancer cells that lose attachment from the extracellular matrix (ECM) to seed in a distant organ often undergo anoikis's specialized form of apoptosis. Recently, KDM3A (H3K9 demethylase) has been identified as a critical effector of anoikis in cancer cells. However, whether other histone demethylases are involved in promoting or resisting anoikis remains elusive. We screened the major histone demethylases and found that both H3K27 histone demethylases, namely, KDM6A/B were highly expressed during ECM detachment. Inhibition of the KDM6A/B activity by using a specific inhibitor results in reduced sphere formation capacity and increased apoptosis. Knockout of KDM6B leads to the loss of stem cell properties in solitary cells. Furthermore, we found that KDM6B maintains stemness by transcriptionally regulating the expression of stemness genes SOX2, SOX9, and CD44 in detached cells. KDM6B occupies the promoter region of both SOX2 and CD44 to regulate their expression epigenetically. We also noticed an increased occupancy of the HIF1α promoter by KDM6B, suggesting its regulatory role in maintaining hypoxia in detached cancer cells. This observation was further strengthened as we found a significant positive association in the expression of both KDM6B and HIF1α in various cancer types. Overall, our results reveal a novel transcriptional program that regulates resistance against anoikis and maintains stemness-like properties.

19.
Metabolites ; 12(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35323710

RESUMO

Tumor cells detached from the extracellular matrix (ECM) undergo anoikis resistance and metabolic reprogramming to facilitate cancer cell survival and promote metastasis. During ECM detachment, cancer cells utilize genomic methylation to regulate transcriptional events. One-carbon (1C) metabolism is a well-known contributor of SAM, a global substrate for methylation reactions, especially DNA methylation. DNA methylation-mediated repression of NK cell ligands MICA and MICB during ECM detachment has been overlooked. In the current work, we quantitated the impact of ECM detachment on one-carbon metabolites, expression of 1C regulatory pathway genes, and total methylation levels. Our results showed that ECM detachment promotes the accumulation of one-carbon metabolites and induces regulatory pathway genes and total DNA methylation. Furthermore, we measured the expression of well-known targets of DNA methylation in NK cell ligands in cancer cells, namely, MICA/B, during ECM detachment and observed low expression compared to ECM-attached cancer cells. Finally, we treated the ECM-detached cancer cells with vitamin C (a global methylation inhibitor) and observed a reduction in the promoter methylation of NK cell ligands, resulting in MICA/B re-expression. Treatment with vitamin C was also found to reduce global DNA methylation levels in ECM-detached cancer cells.

20.
Biomater Adv ; 140: 213088, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36037763

RESUMO

Fluorescent probes based on semiconducting polymer nanoparticles (NPs) such as polyaniline (PANI) usually require external fluorophore doping to provide fluorescence function. Direct use of PANI-based NPs for bioimaging applications has been limited by PANI's weak blue fluorescence and aggregation-induced quenching in physiological medium. In this report, we developed a facile solid-state synthesis method to produce fluorescent polyaniline nanoparticles (FPNs) that are not only water-soluble but also exhibit high intensity and pH-sensitive red fluorescence. The FPNs showed high photoluminescence quantum yield (PLQY) of 19.3 % at physiological pH, which makes FPNs ideal for application as fluorescent nanoprobes in bioimaging. Moreover, we performed an in-depth study of photoluminescence dependence on pH and the phenomena of exciton-polaron quenching at low pH was highlighted. We also found that the ratio of emission intensity at 600 nm and 650 nm increased from 0.04 to 1.65 as pH was raised from 2.6 to 11.8, which could find its application in ratiometric pH sensing. FPNs exhibited excellent biocompatibility with >85 % cell viability for fibroblasts NIH/3 T3 and prostate cancer 22RV1 cells even at concentrations as high as 1000 µg/mL. In addition, fluorescence microscopy demonstrated concentration-dependent red fluorescence in the cytoplasm owing to the cellular uptake of FPNs in prostate cancer cells.


Assuntos
Nanopartículas , Neoplasias da Próstata , Compostos de Anilina , Corantes Fluorescentes , Humanos , Concentração de Íons de Hidrogênio , Masculino , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa