Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pain Med ; 23(1): 67-75, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34534337

RESUMO

OBJECTIVE: To investigate the safety and feasibility of a fluoroscopy-guided, high-intensity focused ultrasound system for zygapophyseal joint denervation as a treatment for chronic low back pain. METHODS: The clinical pilot study was performed on 10 participants diagnosed with lumbar zygapophyseal joint syndrome. Each participant had a documented positive response to a diagnostic block or a previous, clinically beneficial radiofrequency ablation. For a descriptive study, the primary outcome was the safety question. All device- or procedure-related adverse events were collected. Secondary outcome variables included the average numeric rating scale for pain, the Roland-Morris Disability Questionnaire, the Brief Pain Inventory, the Patient Global Impression of Change, the morphine equivalent dose, and the finding of the neurological examination. RESULTS: All participants tolerated the procedure well with no significant device- or procedure-related adverse events; there was one episode of transient pain during the procedure. The average numeric rating scale score for pain decreased from 6.2 at baseline to 2.1 (n = 10) after 1 month, 4.9 (n = 9) after 3 months, 3.0 (n = 8) after 6 months, and 3.0 (n = 6) after 12 months. The ratio of participants who were considered a treatment success was 90% at 1 month, 50% at 3 months, 60% at 6 months, and 40% at 12 months. CONCLUSIONS: The first clinical pilot study using a noninvasive, fluoroscopy-guided, high-intensity focused ultrasound lumbar zygapophyseal neurotomy resulted in no significant device- or procedure-related adverse events and achieved clinical success comparable with that of routine radiofrequency ablation.


Assuntos
Dor Lombar , Articulação Zigapofisária , Denervação/métodos , Fluoroscopia , Humanos , Dor Lombar/cirurgia , Vértebras Lombares/cirurgia , Projetos Piloto , Resultado do Tratamento , Articulação Zigapofisária/cirurgia
2.
Adv Exp Med Biol ; 1364: 397-409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508885

RESUMO

Focused ultrasound holds great promise in therapy for its ability to target non-invasively deep seated tissues with non-ionizing therapeutic beams. Nevertheless, brain applications have been hampered for decades by the presence of the skull. The skull indeed strongly reflects, refracts and absorbs ultrasound, which defocuses the therapeutic ultrasound beams. In this chapter, we will first show how the structure of the skull impacts the ultrasound beams and how it narrows the frequency range that can be envisioned for transcranial therapy. We will then introduce different methods that have been developed and optimized to compensate the defocusing effect of the bone. Finally, we will provide an overview of past, current and future treatments of brain disorders.


Assuntos
Encefalopatias , Terapia por Ultrassom , Encéfalo/diagnóstico por imagem , Encefalopatias/diagnóstico por imagem , Encefalopatias/terapia , Humanos , Crânio/diagnóstico por imagem , Ultrassonografia
3.
J Acoust Soc Am ; 152(2): 1003, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36050189

RESUMO

Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons.


Assuntos
Benchmarking , Transdutores , Simulação por Computador , Crânio/diagnóstico por imagem , Ultrassonografia/métodos
4.
Neuroimage ; 235: 118017, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794355

RESUMO

Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem/métodos , Animais , Humanos , Optogenética , Primatas
5.
Neuroimage ; 204: 116236, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31597085

RESUMO

BACKGROUND: Transcranial focus ultrasound applications applied under MRI-guidance benefit from unrivaled monitoring capabilities, allowing the recording of real-time anatomical information and biomarkers like the temperature rise and/or displacement induced by the acoustic radiation force. Having both of these measurements could allow for better targeting of brain structures, with improved therapy monitoring and safety. METHOD: We investigated the use of a novel MRI-pulse sequence described previously in Bour et al., (2017) to quantify both the displacement and temperature changes under various ultrasound sonication conditions and in different regions of the brain. The method was evaluated in vivo in a non-human primate under anesthesia using a single-element transducer (f = 850 kHz) in a setting that could mimic clinical applications. Acquisition was performed at 3 T on a clinical imaging system using a modified single-shot gradient echo EPI sequence integrating a bipolar motion-sensitive encoding gradient. Four slices were acquired sequentially perpendicularly or axially to the direction of the ultrasound beam with a 1-Hz update frequency and an isotropic spatial resolution of 2-mm. A total of twenty-four acquisitions were performed in three different sets of experiments. Measurement uncertainty of the sequence was investigated under different acoustic power deposition and in different regions of the brain. Acoustic simulation and thermal modeling were performed and compared to experimental data. RESULTS: The sequence simultaneously provides relevant information about the focal spot location and visualization of heating of brain structures: 1) The sequence localized the acoustic focus both along as well as perpendicular to the ultrasound direction. Tissue displacements ranged from 1 to 2 µm. 2) Thermal rise was only observed at the vicinity of the skull. Temperature increase ranged between 1 and 2 °C and was observed delayed relative the sonication due to thermal diffusion. 3) The fast frame rate imaging was able to highlight magnetic susceptibility artifacts related to breathing, for the most caudal slices. We demonstrated that respiratory triggering successfully restored the sensitivity of the method (from 0.7 µm to 0.2 µm). 4) These results were corroborated by acoustic simulations. CONCLUSIONS: The current rapid, multi-slice acquisition and real-time implementation of temperature and displacement visualization may be useful in clinical practices. It may help defining operational safety margins, improving therapy precision and efficacy. Simulations were in good agreement with experimental data and may thus be used prior treatment for procedure planning.


Assuntos
Temperatura Corporal/fisiologia , Imagem Ecoplanar/métodos , Neuroimagem/métodos , Termometria/métodos , Terapia por Ultrassom , Animais , Encéfalo , Simulação por Computador , Macaca mulatta
6.
Int J Hyperthermia ; 37(1): 1238-1247, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33164625

RESUMO

BACKGROUND: Varicose veins are a common disease that may significantly affect quality of life. Different approaches are currently used in clinical practice to treat this pathology. MATERIALS AND METHODS: In thermal therapy (radiofrequency or laser therapy), the vein is directly heated to a high temperature to induce vein wall coagulation, and the heat induces denaturation of the intramural collagen, which results macroscopically in vein shrinkage. Thermal vein shrinkage is a physical indicator of the efficiency of endovenous treatment. High-intensity focused ultrasound (HIFU) is a noninvasive technique that can thermally coagulate vein walls and induce vein shrinkage. In this study, we evaluated the vein shrinkage induced in vivo by extracorporeal HIFU ablation of sheep veins: six lateral saphenous veins (3.4mm mean diameter) were sonicated for 8 s with 3MHz continuous waves. Ultrasound imaging was performed before and immediately post-HIFU to quantify the HIFU-induced shrinkage. RESULTS: Luminal constriction was observed in 100% (6/6) of the treated veins. The immediate findings showed a mean diameter constriction of 53%. The experimental HIFU-induced shrinkage data were used to validate a numerical model developed to predict the thermally induced vein contraction during HIFU treatment. CONCLUSIONS: This model is based on the use of the k-wave library and published contraction rates of vessels immersed in hot water baths. The simulation results agreed well with those of in vivo experiments, showing a mean percent difference of 5%. The numerical model could thus be a valuable tool for optimizing ultrasound parameters as functions of the vein diameter, and future clinical trials are anticipated.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Terapia a Laser , Varizes , Animais , Qualidade de Vida , Veia Safena/diagnóstico por imagem , Veia Safena/cirurgia , Ovinos
7.
Int J Hyperthermia ; 37(1): 231-244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133898

RESUMO

Purpose: Varicose veins are a common pathology that can be treated by endovenous thermal procedures like radiofrequency ablation (RFA). Such catheter-based techniques consist in raising the temperature of the vein wall to 70 to 120 °C to induce vein wall coagulation. Although effective, this treatment option is not suited for all types of veins and can be technically challenging.Materials and methods: In this study, we used High-Intensity Focused Ultrasound (HIFU) as a non-invasive thermal ablation procedure to treat varicose veins and we assessed the long-term efficacy and safety of the procedure in a sheep model. In vivo experiments were first conducted on two saphenous veins to measure the temperature rise induced at the vein wall during HIFU ablation and were compared with reported RFA-induced thermal rise. Thermocouples were inserted in situ to perform 20 measurements during 8-s ultrasound pulses at 3 MHz. Eighteen saphenous veins of nine anesthetized sheep (2-2.5 % Isoflurane) were then exposed to similar pulses (85 W acoustic, 8 s). After treatments, animals recovered from anesthesia and were followed up 30, 60 and 90 days post-treatment (n = 3 animals per group). At the end of the follow-up, vein segments and perivenous tissues were harvested and histologically examined.Results: Temperatures induced by HIFU pulses were found to be comparable to reported RFA treatments. Likewise, histological findings were similar to the ones reported after RFA and laser-based coagulation necrosis of the vein wall, thrombotic occlusions and vein wall fibrosis.Conclusion: These results support strongly the effectiveness and safety of HIFU for ablating non-invasively veins.


Assuntos
Ablação por Cateter/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Ultrassonografia/métodos , Varizes/diagnóstico por imagem , Varizes/terapia , Animais , Modelos Animais de Doenças , Feminino , Temperatura Alta , Ovinos
8.
Magn Reson Med ; 78(5): 1911-1921, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28090656

RESUMO

PURPOSE: The therapy endpoint most commonly used in MR-guided high intensity focused ultrasound is the thermal dose. Although namely correlated with nonviable tissue, it does not account for changes in mechanical properties of tissue during ablation. This study presents a new acquisition sequence for multislice, subsecond and simultaneous imaging of tissue temperature and displacement during ablation. METHODS: A single-shot echo planar imaging sequence was implemented using a pair of motion-encoding gradients, with alternated polarities. A first ultrasound pulse was synchronized on the second lobe of the motion-encoding gradients and followed by continuous sonication to induce a local temperature increase in ex vivo muscle and in vivo on pig liver. Lastly, the method was evaluated in the brain of two volunteers to assess method's precision. RESULTS: For thermal doses higher than the lethal threshold, displacement amplitude was reduced by 21% and 28% at the focal point in muscle and liver, respectively. Displacement value remained nearly constant for nonlethal thermal doses values. The mean standard deviation of temperature and displacement in the brain of volunteers remained below 0.8 °C and 2.5 µm. CONCLUSION: This new fast imaging sequence provides real-time measurement of temperature distribution and displacement at the focus during HIFU ablation. Magn Reson Med 78:1911-1921, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Cirurgia Assistida por Computador/métodos , Termografia/métodos , Animais , Temperatura Corporal , Encéfalo/diagnóstico por imagem , Humanos , Fígado/diagnóstico por imagem , Suínos
9.
Adv Exp Med Biol ; 880: 97-111, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26486334

RESUMO

Previous chapters introduced the ability of using focused ultrasound to ablate tissues. It has led to various clinical applications in the treatment of uterine fibroid, prostate or liver cancers. Nevertheless, treating the brain non-invasively with focused ultrasound has been considered beyond reach for almost a century: The skull bone protects the brain from mechanical injuries, but it also reflects and refracts ultrasound, making it difficult to target the brain with focused ultrasound. Fortunately, aberration correction techniques have been developed recently and thermal lesioning in the thalamus has been achieved clinically. This chapter introduces the aberration effect of the skull bone and how it can be corrected non-invasively. It also presents the latest clinical results obtained with thermal ablation and introduces novel non-thermal approaches that could revolutionize brain therapy in the future.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Imagem por Ressonância Magnética Intervencionista/métodos , Crânio/patologia , Tálamo/cirurgia , Humanos
10.
Proc Natl Acad Sci U S A ; 110(38): 15360-4, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003145

RESUMO

Acoustic communication is widespread in animals. According to the sensory drive hypothesis [Endler JA (1993) Philos Trans R Soc Lond B Biol Sci 340(1292):215-225], communication signals and perceptual systems have coevolved. A clear illustration of this is the evolution of the tetrapod middle ear, adapted to life on land. Here we report the discovery of a bone conduction-mediated stimulation of the ear by wave propagation in Sechellophryne gardineri, one of the world's smallest terrestrial tetrapods, which lacks a middle ear yet produces acoustic signals. Based on X-ray synchrotron holotomography, we measured the biomechanical properties of the otic tissues and modeled the acoustic propagation. Our models show how bone conduction enhanced by the resonating role of the mouth allows these seemingly deaf frogs to communicate effectively without a middle ear.


Assuntos
Anuros/fisiologia , Condução Óssea/fisiologia , Orelha Interna/anatomia & histologia , Audição/fisiologia , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Boca/anatomia & histologia , Boca/fisiologia , Síncrotrons , Vocalização Animal/fisiologia
11.
ArXiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38410648

RESUMO

As transcranial ultrasound stimulation (TUS) advances as a precise, non-invasive neuromodulatory method, there is a need for consistent reporting standards to enable comparison and reproducibility across studies. To this end, the International Transcranial Ultrasonic Stimulation Safety and Standards Consortium (ITRUSST) formed a subcommittee of experts across several domains to review and suggest standardised reporting parameters for low intensity TUS, resulting in the guide presented here. The scope of the guide is limited to reporting the ultrasound aspects of a study. The guide and supplementary material provide a simple checklist covering the reporting of: (1) the transducer and drive system, (2) the drive system settings, (3) the free field acoustic parameters, (4) the pulse timing parameters, (5) in situ estimates of exposure parameters in the brain, and (6) intensity parameters. Detailed explanations for each of the parameters, including discussions on assumptions, measurements, and calculations, are also provided.

12.
Brain Stimul ; 17(3): 607-615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670224

RESUMO

As transcranial ultrasound stimulation (TUS) advances as a precise, non-invasive neuromodulatory method, there is a need for consistent reporting standards to enable comparison and reproducibility across studies. To this end, the International Transcranial Ultrasonic Stimulation Safety and Standards Consortium (ITRUSST) formed a subcommittee of experts across several domains to review and suggest standardised reporting parameters for low intensity TUS, resulting in the guide presented here. The scope of the guide is limited to reporting the ultrasound aspects of a study. The guide and supplementary material provide a simple checklist covering the reporting of: (1) the transducer and drive system, (2) the drive system settings, (3) the free field acoustic parameters, (4) the pulse timing parameters, (5) in situ estimates of exposure parameters in the brain, and (6) intensity parameters. Detailed explanations for each of the parameters, including discussions on assumptions, measurements, and calculations, are also provided.


Assuntos
Consenso , Humanos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Terapia por Ultrassom/normas , Terapia por Ultrassom/métodos
13.
Phys Med Biol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776944

RESUMO

OBJECTIVE: Magnetic resonance guided transcranial focused ultrasound holds great promises for treating neurological disorders. This technique relies on skull aberration correction which requires computed tomography (CT) scans of the skull of the patients. Recently, ultra-short time-echo (UTE) magnetic resonance (MR) sequences have unleashed the MRI potential to reveal internal bone structures. In this study, we measure the efficacy of transcranial aberration correction using UTE images. Approach. We compare the efficacy of transcranial aberration correction using UTE scans to CT based correction on four skulls and two targets using a clinical device (Exablate Neuro, Insightec, Israel). We also evaluate the performance of a custom ray tracing algorithm using both UTE and CT estimates of acoustic properties and compare these against the performance of the manufacturer's proprietary aberration correction software. Main results. UTE estimated skull maps in Hounsfield units (HU) had a mean absolute error of 242 ± 20 HU (n=4). The UTE skull maps were sufficiently accurate to improve pressure at the target (no correction: 0.44 ± 0.10, UTE correction: 0.79 ± 0.05, manufacturer CT: 0.80 ± 0.05), pressure confinement ratios (no correction: 0.45 ± 0.10, UTE correction: 0.80 ± 0.05, manufacturer CT: 0.81 ± 0.05), and targeting error (no correction: 1.06 ± 0.42 mm, UTE correction 0.30 ± 0.23 mm, manufacturer CT: 0.32 ± 0.22) (n=8 for all values). When using CT, our ray tracing algorithm performed slightly better than UTE based correction with pressure at the target (UTE: 0.79 ± 0.05, CT: 0.84 ± 0.04), pressure confinement ratios (UTE: 0.80 ± 0.05, CT: 0.84 ± 0.04), and targeting error (UTE: 0.30 ± 0.23 mm, CT: 0.17 ± 0.15). Significance. These 3D transcranial measurements suggest that UTE sequences could replace CT scans in the case of MR guided focused ultrasound with minimal reduction in performance which will avoid ionizing radiation exposure to the patients and reduce procedure time and cost. .

14.
Ultrasound Med Biol ; 50(4): 474-483, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38195266

RESUMO

OBJECTIVE: Despite recent improvements in medical imaging, the final diagnosis and biopathologic characterization of breast cancers currently still requires biopsies. Ultrasound is commonly used for clinical examination of breast masses. B-Mode and shear wave elastography (SWE) are already widely used to detect suspicious masses and differentiate benign lesions from cancers. But additional ultrasound modalities such as backscatter tensor imaging (BTI) could provide relevant biomarkers related to tissue organization. Here we describe a 3-D multiparametric ultrasound approach applied to breast carcinomas in the aims of (i) validating the ability of BTI to reveal the underlying organization of collagen fibers and (ii) assessing the complementarity of SWE and BTI to reveal biopathologic features of diagnostic interest. METHODS: Three-dimensional SWE and BTI were performed ex vivo on 64 human breast carcinoma samples using a linear ultrasound probe moved by a set of motors. Here we describe a 3-D multiparametric representation of the breast masses and quantitative measurements combining B-mode, SWE and BTI. RESULTS: Our results reveal for the first time that BTI can capture the orientation of the collagen fibers around tumors. BTI was found to be a relevant marker for assessing cancer stages, revealing a more tangent tissue orientation for in situ carcinomas than for invasive cancers. In invasive cases, the combination of BTI and SWE parameters allowed for classification of invasive tumors with respect to their grade with an accuracy of 95.7%. CONCLUSION: Our results highlight the potential of 3-D multiparametric ultrasound imaging for biopathologic characterization of breast tumors.


Assuntos
Neoplasias da Mama , Técnicas de Imagem por Elasticidade , Feminino , Humanos , Neoplasias da Mama/patologia , Técnicas de Imagem por Elasticidade/métodos , Ultrassonografia Mamária/métodos , Abordagem GRADE , Mama/diagnóstico por imagem , Mama/patologia , Colágeno , Sensibilidade e Especificidade , Reprodutibilidade dos Testes , Diagnóstico Diferencial
15.
Reg Anesth Pain Med ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508592

RESUMO

BACKGROUND: Radiofrequency ablation (RFA) is a common method for alleviating chronic back pain by targeting and ablating of facet joint sensory nerves. High-intensity focused ultrasound (HIFU) is an emerging, non-invasive, image-guided technology capable of providing thermal tissue ablation. While HIFU shows promise as a potentially superior option for ablating sensory nerves, its efficacy needs validation and comparison with existing methods. METHODS: Nine adult pigs underwent fluoroscopy-guided HIFU ablation of eight lumbar medial branch nerves, with varying acoustic energy levels: 1000 (N=3), 1500 (N=3), or 2000 (N=3) joules (J). An additional three animals underwent standard RFA (two 90 s long lesions at 80°C) of the same eight nerves. Following 2 days of neurobehavioral observation, all 12 animals were sacrificed. The targeted tissue was excised and subjected to macropathology and micropathology, with a primary focus on the medial branch nerves. RESULTS: The percentage of ablated nerves with HIFU was 71%, 86%, and 96% for 1000 J, 1500 J, and 2000 J, respectively. In contrast, RFA achieved a 50% ablation rate. No significant adverse events occurred during the procedure or follow-up period. CONCLUSIONS: These findings suggest that HIFU may be more effective than RFA in inducing thermal necrosis of the nerve.

16.
Brain Stimul ; 17(3): 636-647, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38734066

RESUMO

BACKGROUND: Transcranial ultrasound stimulation (TUS) is a non-invasive brain stimulation technique; when skull aberrations are compensated for, this technique allows, with millimetric accuracy, circumvention of the invasive surgical procedure associated with deep brain stimulation (DBS) and the limited spatial specificity of transcranial magnetic stimulation. OBJECTIVE: /hypothesis: We hypothesize that MR-guided low-power TUS can induce a sustained decrease of tremor power in patients suffering from medically refractive essential tremor. METHODS: The dominant hand only was targeted, and two anatomical sites were sonicated in this exploratory study: the ventral intermediate nucleus of the thalamus (VIM) and the dentato-rubro-thalamic tract (DRT). Patients (N = 9) were equipped with MR-compatible accelerometers attached to their hands to monitor their tremor in real-time during TUS. RESULTS: VIM neurostimulations followed by a low-duty cycle (5 %) DRT stimulation induced a substantial decrease in the tremor power in four patients, with a minimum of 89.9 % reduction when compared with the baseline power a few minutes after the DRT stimulation. The only patient stimulated in the VIM only and with a low duty cycle (5 %) also experienced a sustained reduction of the tremor (up to 93.4 %). Four patients (N = 4) did not respond. The temperature at target was 37.2 ± 1.4 °C compared to 36.8 ± 1.4 °C for a 3 cm away control point. CONCLUSIONS: MR-guided low power TUS can induce a substantial and sustained decrease of tremor power. Follow-up studies need to be conducted to reproduce the effect and better to understand the variability of the response amongst patients. MR thermometry during neurostimulations showed no significant thermal rise, supporting a mechanical effect.


Assuntos
Tremor Essencial , Humanos , Tremor Essencial/terapia , Tremor Essencial/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Núcleos Ventrais do Tálamo/fisiologia , Resultado do Tratamento , Imageamento por Ressonância Magnética , Estimulação Encefálica Profunda/métodos , Estimulação Encefálica Profunda/instrumentação
17.
Int J Hyperthermia ; 29(6): 598-608, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23941242

RESUMO

PURPOSE: Transcranial high intensity focused ultrasound (HIFU) therapy guided by magnetic resonance imaging (MRI) is a promising approach for the treatment of brain tumours. Our objective is to validate a dedicated therapy monitoring system for rodents for transcranial HIFU therapy under MRI guidance in an in vivo brain tumour model. MATERIALS AND METHODS: A dedicated MR-compatible ultrasound therapy system and positioning frame was developed. Three MR-compatible prefocused ultrasonic monoelement transducers were designed, operating at 1.5 MHz and 2.5 MHz with different geometries. A full protocol of transcranial HIFU brain therapy under MRI guidance was applied in n = 19 rats without and n = 6 rats with transplanted tumours (RG2). Different heating strategies were tested. After treatment, histological study of the brain was performed in order to confirm thermal lesions. RESULTS: Relying on a larger aperture and a higher frequency, the 2.5 MHz transducer was found to give better results than other ones. This single element transducer optimised the ratio of the temperature elevation at the focus to the one at the skull surface. Using optimised transducer and heating strategies enabled thermal necrosis both in normal and tumour tissues as verified by histology while limiting overheating in the tissues in contact with the skull. CONCLUSIONS: In this study, a system for transcranial HIFU therapy guided by MRI was developed and tested in an in vivo rat brain tumour model. The feasibility of this therapy set-up to induce thermal lesions within brain tumours was demonstrated.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Ablação por Ultrassom Focalizado de Alta Intensidade , Imageamento por Ressonância Magnética , Animais , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Estudos de Viabilidade , Glioma/patologia , Masculino , Ratos , Ratos Endogâmicos F344 , Transdutores
18.
J Acoust Soc Am ; 134(2): 1632-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23927203

RESUMO

High-intensity focused ultrasound causes selective tissue necrosis efficiently and safely, namely, in the prostate, liver, and uterine fibroid. Nevertheless, ablation of brain tissue using focused ultrasound remains limited due to strong aberrations induced by the skull. To achieve ultrasonic transcranial brain ablation, such aberrations have to be compensated. In this study, non-invasive therapy was performed on monkeys using adaptive correction of the therapeutic beam and 3D simulations of transcranial wave propagation based on 3D computed tomographic (CT) scan information. The aim of the study was two-fold: induce lesions in a non-human primate brain non-invasively and investigate the potential side effects. Stereotactic targeting was performed on five Macaca fascicularis individuals. Each hemisphere was treated separately with a 15-day interval and animals were sacrificed two days after the last treatment. The ultrasonic dose delivered at the focus was increased from one treatment location to the other to estimate the thermal dose for tissue alteration. Thermal doses in the brain were determined by numerical computations. Treatment efficiency and safety were evaluated histologically. The threshold for tissue damage in the brain was measured to be between 90 and 280 cumulative equivalent minutes at 43 °C. Intravenous injection of corticoids before the treatment limited the side effects.


Assuntos
Cérebro/cirurgia , Procedimentos Neurocirúrgicos/métodos , Procedimentos Cirúrgicos Ultrassônicos/métodos , Corticosteroides/administração & dosagem , Animais , Cérebro/diagnóstico por imagem , Cérebro/efeitos dos fármacos , Cérebro/patologia , Simulação por Computador , Esquema de Medicação , Desenho de Equipamento , Temperatura Alta , Imageamento Tridimensional , Injeções Intravenosas , Macaca fascicularis , Modelos Animais , Procedimentos Neurocirúrgicos/efeitos adversos , Procedimentos Neurocirúrgicos/instrumentação , Análise Numérica Assistida por Computador , Cuidados Pré-Operatórios , Interpretação de Imagem Radiográfica Assistida por Computador , Técnicas Estereotáxicas , Cirurgia Assistida por Computador , Fatores de Tempo , Tomografia Computadorizada por Raios X , Transdutores , Procedimentos Cirúrgicos Ultrassônicos/efeitos adversos , Procedimentos Cirúrgicos Ultrassônicos/instrumentação
19.
Ultrasound Med Biol ; 49(1): 269-277, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36441031

RESUMO

High-intensity focused ultrasound (HIFU) transducer acoustic output can vary over time as a result of an inconsistent power supply, damage to the transducer or deterioration over time. Therefore, easy implementation of a daily quality assurance (DQA) method is of great importance for pre-clinical research and clinical applications. We present here a thermochromic material-based phantom validated by thermal simulations and found to provide repeatable visual power output assessments in fewer than 15 s that are accurate to within 10%. Whereas current available methods such as radiation force balance measurements provide an estimate of the total acoustic power, we explain here that the thermochromic phantom is sensitive to the shape of the acoustic field at focus by changing the aperture of a multi-element transducer with a fixed acoustic power. The proposed phantom allows the end user to visually assess the transducer's functionality without resorting to expensive, time-consuming hydrophone measurements or image analysis.


Assuntos
Terapia por Ultrassom , Imagens de Fantasmas , Transdutores , Acústica , Processamento de Imagem Assistida por Computador
20.
Brain Stimul ; 16(1): 48-55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36549480

RESUMO

Transcranial ultrasound stimulation (TUS) has been shown to be a safe and effective technique for non-invasive superficial and deep brain stimulation. Safe and efficient translation to humans requires estimating the acoustic attenuation of the human skull. Nevertheless, there are no international guidelines for estimating the impact of the skull bone. A tissue independent, arbitrary derating was developed by the U.S. Food and Drug Administration to take into account tissue absorption (0.3 dB/cm-MHz) for diagnostic ultrasound. However, for the case of transcranial ultrasound imaging, the FDA model does not take into account the insertion loss induced by the skull bone, nor the absorption by brain tissue. Therefore, the estimated absorption is overly conservative which could potentially limit TUS applications if the same guidelines were to be adopted. Here we propose a three-layer model including bone absorption to calculate the maximum pressure transmission through the human skull for frequencies ranging between 100 kHz and 1.5 MHz. The calculated pressure transmission decreases with the frequency and the thickness of the bone, with peaks for each thickness corresponding to a multiple of half the wavelength. The 95th percentile maximum transmission was calculated over the accessible surface of 20 human skulls for 12 typical diameters of the ultrasound beam on the skull surface, and varies between 40% and 78%. To facilitate the safe adjustment of the acoustic pressure for short ultrasound pulses, such as transcranial imaging or transcranial ultrasound stimulation, a table summarizes the maximum pressure transmission for each ultrasound beam diameter and each frequency.


Assuntos
Encéfalo , Crânio , Humanos , Crânio/diagnóstico por imagem , Ultrassonografia , Acústica , Cabeça
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa