Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(9): e2102569120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802443

RESUMO

In the human genome, about 750 genes contain one intron excised by the minor spliceosome. This spliceosome comprises its own set of snRNAs, among which U4atac. Its noncoding gene, RNU4ATAC, has been found mutated in Taybi-Linder (TALS/microcephalic osteodysplastic primordial dwarfism type 1), Roifman (RFMN), and Lowry-Wood (LWS) syndromes. These rare developmental disorders, whose physiopathological mechanisms remain unsolved, associate ante- and post-natal growth retardation, microcephaly, skeletal dysplasia, intellectual disability, retinal dystrophy, and immunodeficiency. Here, we report bi-allelic RNU4ATAC mutations in five patients presenting with traits suggestive of the Joubert syndrome (JBTS), a well-characterized ciliopathy. These patients also present with traits typical of TALS/RFMN/LWS, thus widening the clinical spectrum of RNU4ATAC-associated disorders and indicating ciliary dysfunction as a mechanism downstream of minor splicing defects. Intriguingly, all five patients carry the n.16G>A mutation, in the Stem II domain, either at the homozygous or compound heterozygous state. A gene ontology term enrichment analysis on minor intron-containing genes reveals that the cilium assembly process is over-represented, with no less than 86 cilium-related genes containing at least one minor intron, among which there are 23 ciliopathy-related genes. The link between RNU4ATAC mutations and ciliopathy traits is supported by alterations of primary cilium function in TALS and JBTS-like patient fibroblasts, as well as by u4atac zebrafish model, which exhibits ciliopathy-related phenotypes and ciliary defects. These phenotypes could be rescued by WT but not by pathogenic variants-carrying human U4atac. Altogether, our data indicate that alteration of cilium biogenesis is part of the physiopathological mechanisms of TALS/RFMN/LWS, secondarily to defects of minor intron splicing.


Assuntos
Ciliopatias , Spliceossomos , Feminino , Animais , Humanos , Spliceossomos/genética , RNA Nuclear Pequeno/genética , Peixe-Zebra/genética , Retardo do Crescimento Fetal/genética , Mutação , Ciliopatias/genética
2.
Am J Hum Genet ; 109(2): 361-372, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051358

RESUMO

Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurodevelopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children, H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1 variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of developmental genes.


Assuntos
Proteína BRCA1/genética , Mutação em Linhagem Germinativa , Mutação com Perda de Função , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Adolescente , Proteína BRCA1/imunologia , Criança , Pré-Escolar , Cromatina/química , Cromatina/imunologia , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/imunologia , Família , Feminino , Regulação da Expressão Gênica , Heterozigoto , Histonas/genética , Histonas/imunologia , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/imunologia , Humanos , Lactente , Masculino , Transtornos do Neurodesenvolvimento/imunologia , Transtornos do Neurodesenvolvimento/patologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/imunologia , Ubiquitina/genética , Ubiquitina/imunologia , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação
3.
Hum Mol Genet ; 31(19): 3325-3340, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35604360

RESUMO

Intellectual disability (ID) is a neurodevelopmental disorder frequently caused by monogenic defects. In this study, we collected 14 SEMA6B heterozygous variants in 16 unrelated patients referred for ID to different centers. Whereas, until now, SEMA6B variants have mainly been reported in patients with progressive myoclonic epilepsy, our study indicates that the clinical spectrum is wider and also includes non-syndromic ID without epilepsy or myoclonus. To assess the pathogenicity of these variants, selected mutated forms of Sema6b were overexpressed in Human Embryonic Kidney 293T (HEK293T) cells and in primary neuronal cultures. shRNAs targeting Sema6b were also used in neuronal cultures to measure the impact of the decreased Sema6b expression on morphogenesis and synaptogenesis. The overexpression of some variants leads to a subcellular mislocalization of SEMA6B protein in HEK293T cells and to a reduced spine density owing to loss of mature spines in neuronal cultures. Sema6b knockdown also impairs spine density and spine maturation. In addition, we conducted in vivo rescue experiments in chicken embryos with the selected mutated forms of Sema6b expressed in commissural neurons after knockdown of endogenous SEMA6B. We observed that expression of these variants in commissural neurons fails to rescue the normal axon pathway. In conclusion, identification of SEMA6B variants in patients presenting with an overlapping phenotype with ID and functional studies highlight the important role of SEMA6B in neuronal development, notably in spine formation and maturation and in axon guidance. This study adds SEMA6B to the list of ID-related genes.


Assuntos
Epilepsia , Deficiência Intelectual , Semaforinas , Animais , Orientação de Axônios , Embrião de Galinha , Espinhas Dendríticas , Epilepsia/genética , Células HEK293 , Humanos , Deficiência Intelectual/genética , Semaforinas/genética
4.
Hum Genet ; 143(3): 455-469, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526744

RESUMO

Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.


Assuntos
Proteínas Ativadoras de GTPase , Heterozigoto , Microcefalia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Humanos , Microcefalia/genética , Feminino , Masculino , Pré-Escolar , Proteínas Ativadoras de GTPase/genética , Criança , Transtornos do Neurodesenvolvimento/genética , Mutação com Perda de Função , Animais , Deficiências do Desenvolvimento/genética , Camundongos , Lactente , Fenótipo , Adolescente
5.
Am J Hum Genet ; 108(5): 951-961, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33894126

RESUMO

The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. A recurrent de novo p.Glu41Lys variant was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Functional analyses of the two missense mutations revealed impaired dendritic outgrowth processes in young developing hippocampal primary neuronal cultures. We further demonstrated that these mutations, both located in the same loop on the surface of DPYSL5 monomers and oligomers, reduced the interaction of DPYSL5 with neuronal cytoskeleton-associated proteins MAP2 and ßIII-tubulin. Our findings collectively indicate that the p.Glu41Lys and p.Gly47Arg variants impair DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and ßIII-tubulin, ultimately leading to abnormal brain development. This study adds DPYSL5 to the list of genes implicated in brain malformation and in neurodevelopmental disorders.


Assuntos
Agenesia do Corpo Caloso/genética , Cerebelo/anormalidades , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Adulto , Agenesia do Corpo Caloso/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Humanos , Hidrolases/química , Hidrolases/genética , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Masculino , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Tubulina (Proteína)/metabolismo , Adulto Jovem
6.
Blood ; 139(16): 2427-2440, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35007328

RESUMO

Inherited bone marrow failure syndromes (IBMFSs) are a group of disorders typified by impaired production of 1 or several blood cell types. The telomere biology disorders dyskeratosis congenita (DC) and its severe variant, Høyeraal-Hreidarsson (HH) syndrome, are rare IBMFSs characterized by bone marrow failure, developmental defects, and various premature aging complications associated with critically short telomeres. We identified biallelic variants in the gene encoding the 5'-to-3' DNA exonuclease Apollo/SNM1B in 3 unrelated patients presenting with a DC/HH phenotype consisting of early-onset hypocellular bone marrow failure, B and NK lymphopenia, developmental anomalies, microcephaly, and/or intrauterine growth retardation. All 3 patients carry a homozygous or compound heterozygous (in combination with a null allele) missense variant affecting the same residue L142 (L142F or L142S) located in the catalytic domain of Apollo. Apollo-deficient cells from patients exhibited spontaneous chromosome instability and impaired DNA repair that was complemented by CRISPR/Cas9-mediated gene correction. Furthermore, patients' cells showed signs of telomere fragility that were not associated with global reduction of telomere length. Unlike patients' cells, human Apollo KO HT1080 cell lines showed strong telomere dysfunction accompanied by excessive telomere shortening, suggesting that the L142S and L142F Apollo variants are hypomorphic. Collectively, these findings define human Apollo as a genome caretaker and identify biallelic Apollo variants as a genetic cause of a hitherto unrecognized severe IBMFS that combines clinical hallmarks of DC/HH with normal telomere length.


Assuntos
Disceratose Congênita , Deficiência Intelectual , Microcefalia , Disceratose Congênita/genética , Disceratose Congênita/metabolismo , Retardo do Crescimento Fetal , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Microcefalia/metabolismo , Mutação , Telômero/genética , Telômero/metabolismo
7.
Am J Med Genet A ; 194(5): e63532, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38192009

RESUMO

Alpha-mannosidosis is a rare autosomal recessive lysosomal storage disorder caused by biallelic mutations in the MAN2B1 gene and characterized by a wide clinical heterogeneity. Diagnosis for this multisystemic disorder is confirmed by the presence of either a deficiency in the lysosomal enzyme acid alpha-mannosidase or biallelic mutations in the MAN2B1 gene. This diagnosis confirmation is crucial for both clinical management and genetic counseling purposes. Here we describe a late diagnosis of alpha-mannosidosis in a patient presenting with syndromic intellectual disability, and a rare retinopathy, where reverse phenotyping played a pivotal role in interpreting the exome sequencing result. While a first missense variant was classified as a variant of uncertain significance, the phenotype-guided analysis helped us detect and interpret an in-trans apparent alu-element insertion, which appeared to be a copy number variant (CNV) not identified by the CNV caller. A biochemical analysis showing abnormal excretion of urinary mannosyloligosaccharide and an enzyme assay permitted the re-classification of the missense variant to likely pathogenic, establishing the diagnosis of alpha-mannosidosis. This work emphasizes the importance of reverse phenotyping in the context of exome sequencing.


Assuntos
alfa-Manosidose , Humanos , alfa-Manosidose/diagnóstico , alfa-Manosidose/genética , Variações do Número de Cópias de DNA/genética , alfa-Manosidase/genética , Mutação de Sentido Incorreto/genética , Fenótipo
8.
Am J Med Genet A ; 194(7): e63531, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38421086

RESUMO

Duplications of the 3q29 cytoband are rare chromosomal copy number variations (CNVs) (overlapping or recurrent ~1.6 Mb 3q29 duplications). They have been associated with highly variable neurodevelopmental disorders (NDDs) with various associated features or reported as a susceptibility factor to the development of learning disabilities and neuropsychiatric disorders. The smallest region of overlap and the phenotype of 3q29 duplications remain uncertain. We here report a French cohort of 31 families with a 3q29 duplication identified by chromosomal microarray analysis (CMA), including 14 recurrent 1.6 Mb duplications, eight overlapping duplications (>1 Mb), and nine small duplications (<1 Mb). Additional genetic findings that may be involved in the phenotype were identified in 11 patients. Focusing on apparently isolated 3q29 duplications, patients present mainly mild NDD as suggested by a high rate of learning disabilities in contrast to a low proportion of patients with intellectual disabilities. Although some are de novo, most of the 3q29 duplications are inherited from a parent with a similar mild phenotype. Besides, the study of small 3q29 duplications does not provide evidence for any critical region. Our data suggest that the overlapping and recurrent 3q29 duplications seem to lead to mild NDD and that a severe or syndromic clinical presentation should warrant further genetic analyses.


Assuntos
Duplicação Cromossômica , Cromossomos Humanos Par 3 , Variações do Número de Cópias de DNA , Fenótipo , Humanos , Feminino , Masculino , Cromossomos Humanos Par 3/genética , Duplicação Cromossômica/genética , Criança , Variações do Número de Cópias de DNA/genética , Pré-Escolar , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Adolescente , Estudos de Coortes , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Adulto , Lactente
9.
J Med Genet ; 61(1): 84-92, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37586836

RESUMO

BACKGROUND: The retinoic acid (RA) pathway plays a crucial role in both eye morphogenesis and the visual cycle. Individuals with monoallelic and biallelic pathogenic variants in retinol-binding protein 4 (RBP4), encoding a serum retinol-specific transporter, display variable ocular phenotypes. Although few families have been reported worldwide, recessive inherited variants appear to be associated with retinal degeneration, while individuals with dominantly inherited variants manifest ocular development anomalies, mainly microphthalmia, anophthalmia and coloboma (MAC). METHODS: We report here seven new families (13 patients) with isolated and syndromic MAC harbouring heterozygous RBP4 variants, of whom we performed biochemical analyses. RESULTS: For the first time, malformations that overlap the clinical spectrum of vitamin A deficiency are reported, providing a link with other RA disorders. Our data support two distinct phenotypes, depending on the nature and mode of inheritance of the variants: dominantly inherited, almost exclusively missense, associated with ocular malformations, in contrast to recessive, mainly truncating, associated with retinal degeneration. Moreover, we also confirm the skewed inheritance and impact of maternal RBP4 genotypes on phenotypical expression in dominant forms, suggesting that maternal RBP4 genetic status and content of diet during pregnancy may modify MAC occurrence and severity. Furthermore, we demonstrate that retinol-binding protein blood dosage in patients could provide a biological signature crucial for classifying RBP4 variants. Finally, we propose a novel hypothesis to explain the mechanisms underlying the observed genotype-phenotype correlations in RBP4 mutational spectrum. CONCLUSION: Dominant missense variants in RBP4 are associated with MAC of incomplete penetrance with maternal inheritance through a likely dominant-negative mechanism.


Assuntos
Anoftalmia , Microftalmia , Degeneração Retiniana , Gravidez , Feminino , Humanos , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Microftalmia/genética , Anoftalmia/genética , Tretinoína/metabolismo , Proteínas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/química , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo
10.
Hum Genomics ; 15(1): 44, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256850

RESUMO

BACKGROUND: Previous research in autism and other neurodevelopmental disorders (NDDs) has indicated an important contribution of protein-coding (coding) de novo variants (DNVs) within specific genes. The role of de novo noncoding variation has been observable as a general increase in genetic burden but has yet to be resolved to individual functional elements. In this study, we assessed whole-genome sequencing data in 2671 families with autism (discovery cohort of 516 families, replication cohort of 2155 families). We focused on DNVs in enhancers with characterized in vivo activity in the brain and identified an excess of DNVs in an enhancer named hs737. RESULTS: We adapted the fitDNM statistical model to work in noncoding regions and tested enhancers for excess of DNVs in families with autism. We found only one enhancer (hs737) with nominal significance in the discovery (p = 0.0172), replication (p = 2.5 × 10-3), and combined dataset (p = 1.1 × 10-4). Each individual with a DNV in hs737 had shared phenotypes including being male, intact cognitive function, and hypotonia or motor delay. Our in vitro assessment of the DNVs showed they all reduce enhancer activity in a neuronal cell line. By epigenomic analyses, we found that hs737 is brain-specific and targets the transcription factor gene EBF3 in human fetal brain. EBF3 is genome-wide significant for coding DNVs in NDDs (missense p = 8.12 × 10-35, loss-of-function p = 2.26 × 10-13) and is widely expressed in the body. Through characterization of promoters bound by EBF3 in neuronal cells, we saw enrichment for binding to NDD genes (p = 7.43 × 10-6, OR = 1.87) involved in gene regulation. Individuals with coding DNVs have greater phenotypic severity (hypotonia, ataxia, and delayed development syndrome [HADDS]) in comparison to individuals with noncoding DNVs that have autism and hypotonia. CONCLUSIONS: In this study, we identify DNVs in the hs737 enhancer in individuals with autism. Through multiple approaches, we find hs737 targets the gene EBF3 that is genome-wide significant in NDDs. By assessment of noncoding variation and the genes they affect, we are beginning to understand their impact on gene regulatory networks in NDDs.


Assuntos
Transtorno Autístico/genética , Predisposição Genética para Doença , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Transtorno Autístico/epidemiologia , Transtorno Autístico/patologia , Elementos Facilitadores Genéticos/genética , Exoma/genética , Feminino , Redes Reguladoras de Genes/genética , Humanos , Masculino , Hipotonia Muscular/epidemiologia , Hipotonia Muscular/patologia , Mutação/genética , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/patologia , Neurônios/metabolismo , Neurônios/patologia
11.
Breast Cancer Res ; 23(1): 79, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344426

RESUMO

BACKGROUND: Diagnostic ionizing radiation is a risk factor for breast cancer (BC). BC risk increases with increased dose to the chest and decreases with increased age at exposure, with possible effect modification related to familial or genetic predisposition. While chest X-rays increase the BC risk of BRCA1/2 mutation carriers compared to non-carriers, little is known for women with a hereditary predisposition to BC but who tested negative for a BRCA1 or BRCA2 (BRCA1/2) mutation. METHODS: We evaluated the effect of chest X-rays from diagnostic medical procedures in a dataset composed of 1552 BC cases identified through French family cancer clinics and 1363 unrelated controls. Participants reported their history of X-ray exposures in a detailed questionnaire and were tested for 113 DNA repair genes. Logistic regression and multinomial logistic regression models were used to assess the association with BC. RESULTS: Chest X-ray exposure doubled BC risk. A 3% increased BC risk per additional exposure was observed. Being 20 years old or younger at first exposure or being exposed before first full-term pregnancy did not seem to modify this risk. Birth after 1960 or carrying a rare likely deleterious coding variant in a DNA repair gene other than BRCA1/2 modified the effect of chest X-ray exposure. CONCLUSION: Ever/never chest X-ray exposure increases BC risk 2-fold regardless of age at first exposure and, by up to 5-fold when carrying 3 or more rare variants in a DNA repair gene. Further studies are needed to evaluate other DNA repair genes or variants to identify those which could modify radiation sensitivity. Identification of subpopulations that are more or less susceptible to ionizing radiation is important and potentially clinically relevant.


Assuntos
Neoplasias da Mama/etiologia , Predisposição Genética para Doença/genética , Radiografia/efeitos adversos , Adulto , Neoplasias da Mama/genética , Reparo do DNA/genética , Feminino , Genes BRCA1 , Genes BRCA2 , Humanos , Pessoa de Meia-Idade , Mutação , Radiografia/estatística & dados numéricos , Risco , Fatores de Risco , Adulto Jovem
12.
Int J Cancer ; 148(8): 1895-1909, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33368296

RESUMO

Single-nucleotide polymorphisms (SNPs) in over 180 loci have been associated with breast cancer (BC) through genome-wide association studies involving mostly unselected population-based case-control series. Some of them modify BC risk of women carrying a BRCA1 or BRCA2 (BRCA1/2) mutation and may also explain BC risk variability in BC-prone families with no BRCA1/2 mutation. Here, we assessed the contribution of SNPs of the iCOGS array in GENESIS consisting of BC cases with no BRCA1/2 mutation and a sister with BC, and population controls. Genotyping data were available for 1281 index cases, 731 sisters with BC, 457 unaffected sisters and 1272 controls. In addition to the standard SNP-level analysis using index cases and controls, we performed pedigree-based association tests to capture transmission information in the sibships. We also performed gene- and pathway-level analyses to maximize the power to detect associations with lower-frequency SNPs or those with modest effect sizes. While SNP-level analyses identified 18 loci, gene-level analyses identified 112 genes. Furthermore, 31 Kyoto Encyclopedia of Genes and Genomes and 7 Atlas of Cancer Signaling Network pathways were highlighted (false discovery rate of 5%). Using results from the "index case-control" analysis, we built pathway-derived polygenic risk scores (PRS) and assessed their performance in the population-based CECILE study and in a data set composed of GENESIS-affected sisters and CECILE controls. Although these PRS had poor predictive value in the general population, they performed better than a PRS built using our SNP-level findings, and we found that the joint effect of family history and PRS needs to be considered in risk prediction models.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Mutação , Polimorfismo de Nucleotídeo Único , Transdução de Sinais/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Estudos de Casos e Controles , Feminino , Redes Reguladoras de Genes/genética , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Mapas de Interação de Proteínas/genética , Curva ROC , Irmãos
13.
Clin Genet ; 100(4): 386-395, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34164801

RESUMO

13q12.3 microdeletion syndrome is a rare cause of syndromic intellectual disability. Identification and genetic characterization of patients with 13q12.3 microdeletion syndrome continues to expand the phenotypic spectrum associated with it. Previous studies identified four genes within the approximately 300 Kb minimal critical region including two candidate protein coding genes: KATNAL1 and HMGB1. To date, no patients carrying a sequence-level variant or a single gene deletion in HMGB1 or KATNAL1 have been described. Here we report six patients with loss-of-function variants involving HMGB1 and who had phenotypic features similar to the previously described 13q12.3 microdeletion syndrome cases. Common features included developmental delay, language delay, microcephaly, obesity and dysmorphic features. In silico analyses suggest that HMGB1 is likely to be intolerant to loss-of-function, and previous in vitro data are in line with the role of HMGB1 in neurodevelopment. These results strongly suggest that haploinsufficiency of the HMGB1 gene may play a critical role in the pathogenesis of the 13q12.3 microdeletion syndrome.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Heterozigoto , Mutação com Perda de Função , Microcefalia/diagnóstico , Microcefalia/genética , Adolescente , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Éxons , Fácies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Proteína HMGB1 , Humanos , Hibridização in Situ Fluorescente , Padrões de Herança , Cariótipo , Masculino , Fenótipo , Sequenciamento do Exoma
14.
Int J Cancer ; 144(8): 1962-1974, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30303537

RESUMO

Pathogenic variants in BRCA1 and BRCA2 only explain the underlying genetic cause of about 10% of hereditary breast and ovarian cancer families. Because of cost-effectiveness, multigene panel testing is often performed even if the clinical utility of testing most of the genes remains questionable. The purpose of our study was to assess the contribution of rare, deleterious-predicted variants in DNA repair genes in familial breast cancer (BC) in a well-characterized and homogeneous population. We analyzed 113 DNA repair genes selected from either an exome sequencing or a candidate gene approach in the GENESIS study, which includes familial BC cases with no BRCA1 or BRCA2 mutation and having a sister with BC (N = 1,207), and general population controls (N = 1,199). Sequencing data were filtered for rare loss-of-function variants (LoF) and likely deleterious missense variants (MV). We confirmed associations between LoF and MV in PALB2, ATM and CHEK2 and BC occurrence. We also identified for the first time associations between FANCI, MAST1, POLH and RTEL1 and BC susceptibility. Unlike other associated genes, carriers of an ATM LoF had a significantly higher risk of developing BC than carriers of an ATM MV (ORLoF = 17.4 vs. ORMV = 1.6; p Het = 0.002). Hence, our approach allowed us to specify BC relative risks associated with deleterious-predicted variants in PALB2, ATM and CHEK2 and to add MAST1, POLH, RTEL1 and FANCI to the list of DNA repair genes possibly involved in BC susceptibility. We also highlight that different types of variants within the same gene can lead to different risk estimates.


Assuntos
Neoplasias da Mama/genética , Reparo do DNA/genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Medição de Risco/métodos , Irmãos
16.
BMC Cancer ; 16: 13, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26758370

RESUMO

BACKGROUND: Less than 20% of familial breast cancer patients who undergo genetic testing for BRCA1 and BRCA2 carry a pathogenic mutation in one of these two genes. The GENESIS (GENE SISter) study was designed to identify new breast cancer susceptibility genes in women attending cancer genetics clinics and with no BRCA1/2 mutation. METHODS: The study involved the French national network of family cancer clinics. It was based on enrichment in genetic factors of the recruited population through case selection relying on familial criteria, but also on the consideration of environmental factors and endophenotypes like mammary density or tumor characteristics to assess potential genetic heterogeneity. One of the initial aims of GENESIS was to recruit affected sibpairs. Siblings were eligible when index cases and at least one affected sister were diagnosed with infiltrating mammary or ductal adenocarcinoma, with no BRCA1/2 mutation. In addition, unrelated controls and unaffected sisters were recruited. The enrolment of patients, their relatives and their controls, the collection of the clinical, epidemiological, familial and biological data were centralized by a coordinating center. RESULTS: Inclusion of participants started in February 2007 and ended in December 2013. A total of 1721 index cases, 826 affected sisters, 599 unaffected sisters and 1419 controls were included. 98% of participants completed the epidemiological questionnaire, 97% provided a blood sample, and 76% were able to provide mammograms. Index cases were on average 59 years old at inclusion, were born in 1950, and were 49.7 years of age at breast cancer diagnosis. The mean age at diagnosis of affected sisters was slightly higher (51.4 years). The representativeness of the control group was verified. CONCLUSIONS: The size of the study, the availability of biological specimens and the clinical data collection together with the detailed and complete epidemiological questionnaire make this a unique national resource for investigation of the missing heritability of breast cancer, by taking into account environmental and life style factors and stratifying data on endophenotypes to decrease genetic heterogeneity.


Assuntos
Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Mutação em Linhagem Germinativa , Proteínas de Neoplasias/genética , Adulto , Idoso , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/patologia , Feminino , França/epidemiologia , Predisposição Genética para Doença , Testes Genéticos , Humanos , Pessoa de Meia-Idade
17.
Hum Mutat ; 36(9): 894-902, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26077438

RESUMO

Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder associating macroglossia, abdominal wall defects, visceromegaly, and a high risk of childhood tumor. Molecular anomalies are mostly epigenetic; however, mutations of CDKN1C are implicated in 8% of cases, including both sporadic and familial forms. We aimed to describe the phenotype of BWS patients with CDKN1C mutations and develop a functional test for CDKN1C mutations. For each propositus, we sequenced the three exons and intron-exon boundaries of CDKN1C in patients presenting a BWS phenotype, including abdominal wall defects, without 11p15 methylation defects. We developed a functional test based on flow cytometry. We identified 37 mutations in 38 pedigrees (50 patients and seven fetuses). Analysis of parental samples when available showed that all mutations tested but one was inherited from the mother. The four missense mutations led to a less severe phenotype (lower frequency of exomphalos) than the other 33 mutations. The following four tumors occurred: one neuroblastoma, one ganglioneuroblastoma, one melanoma, and one acute lymphoid leukemia. Cases of BWS caused by CDKN1C mutations are not rare. CDKN1C sequencing should be performed for BWS patients presenting with abdominal wall defects or cleft palate without 11p15 methylation defects or body asymmetry, or in familial cases of BWS.


Assuntos
Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Estudos de Associação Genética , Impressão Genômica , Fenótipo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Feminino , Genótipo , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Alinhamento de Sequência
18.
Eur J Hum Genet ; 32(2): 190-199, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37872275

RESUMO

Variants of uncertain significance (VUS) are a significant issue for the molecular diagnosis of rare diseases. The publication of episignatures as effective biomarkers of certain Mendelian neurodevelopmental disorders has raised hopes to help classify VUS. However, prediction abilities of most published episignatures have not been independently investigated yet, which is a prerequisite for an informed and rigorous use in a diagnostic setting. We generated DNA methylation data from 101 carriers of (likely) pathogenic variants in ten different genes, 57 VUS carriers, and 25 healthy controls. Combining published episignature information and new validation data with a k-nearest-neighbour classifier within a leave-one-out scheme, we provide unbiased specificity and sensitivity estimates for each of the signatures. Our procedure reached 100% specificity, but the sensitivities unexpectedly spanned a very large spectrum. While ATRX, DNMT3A, KMT2D, and NSD1 signatures displayed a 100% sensitivity, CREBBP-RSTS and one of the CHD8 signatures reached <40% sensitivity on our dataset. Remaining Cornelia de Lange syndrome, KMT2A, KDM5C and CHD7 signatures reached 70-100% sensitivity at best with unstable performances, suffering from heterogeneous methylation profiles among cases and rare discordant samples. Our results call for cautiousness and demonstrate that episignatures do not perform equally well. Some signatures are ready for confident use in a diagnostic setting. Yet, it is imperative to characterise the actual validity perimeter and interpretation of each episignature with the help of larger validation sample sizes and in a broader set of episignatures.


Assuntos
Transtornos do Neurodesenvolvimento , Patologia Molecular , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Metilação de DNA , Biomarcadores
20.
Eur J Cancer ; 179: 76-86, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509001

RESUMO

BACKGROUND: Three partially overlapping breast cancer polygenic risk scores (PRS) comprising 77, 179 and 313 SNPs have been proposed for European-ancestry women by the Breast Cancer Association Consortium (BCAC) for improving risk prediction in the general population. However, the effect of these SNPs may vary from one country to another and within a country because of other factors. OBJECTIVE: To assess their associated risk and predictive performance in French women from (1) the CECILE population-based case-control study, (2) BRCA1 or BRCA2 (BRCA1/2) pathogenic variant (PV) carriers from the GEMO study, and (3) familial breast cancer cases with no BRCA1/2 PV and unrelated controls from the GENESIS study. RESULTS: All three PRS were associated with breast cancer in all studies, with odds ratios per standard deviation varying from 1.7 to 2.0 in CECILE and GENESIS, and hazard ratios varying from 1.1 to 1.4 in GEMO. The predictive performance of PRS313 in CECILE was similar to that reported in BCAC but lower than that in GENESIS (area under the receiver operating characteristic curve (AUC) = 0.67 and 0.75, respectively). PRS were less performant in BRCA2 and BRCA1 PV carriers (AUC = 0.58 and 0.54 respectively). CONCLUSION: Our results are in line with previous validation studies in the general population and in BRCA1/2 PV carriers. Additionally, we showed that PRS may be of clinical utility for women with a strong family history of breast cancer and no BRCA1/2 PV, and for those carrying a predicted PV in a moderate-risk gene like ATM, CHEK2 or PALB2.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Predisposição Genética para Doença , Fatores de Risco , Genes BRCA2
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa