Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 671: 132-139, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37302286

RESUMO

Pancreatic cancer (PC) continues to be devastating due to its highly malignant nature and poor prognosis. The limited benefits of the chemotherapeutic drugs and increasing resistance pose a critical challenge to overcome and warrant investigations for new therapeutic agents. Several preclinical and clinical studies have suggested a possible role of the androgen receptor (AR) signaling pathway in PC development and progression. Nevertheless, the studies are limited and inconclusive in explaining the molecular link between AR signaling and PC. Selective androgen receptor modulators (SARMs) are small molecule drugs with high affinity for the androgen receptor. SARMs elicit selective anabolic activities while abrogating undesired androgenic side effects. There is no study focusing on the utility of SARMs as inhibitors of PC. Here, we report the first study evaluating the possible anti-carcinogenic influences of andarine, a member of the SARMs, on PC. The data we presented here has illustrated that andarine repressed PC cell growth and proliferation via cell cycle arrest at G0/G1 phase. Gene expression analysis revealed that it downregulates CDKN1A expression level accordingly. Furthermore, we established that the anti-carcinogenic activity of andarine is not mediated by the PI3K/AKT/mTOR signaling pathway, a crucial regulator of cell survival. Our findings suggest that andarine might be considered as a prospective drug for PC.


Assuntos
Anticarcinógenos , Receptores Androgênicos , Receptores Androgênicos/metabolismo , Anticarcinógenos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Androgênios/farmacologia , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Fase G1 , Linhagem Celular Tumoral
2.
Biochem Biophys Res Commun ; 680: 194-210, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37748252

RESUMO

Cancer stem cells (CSCs) are the most important cause of cancer treatment failure. Traditional cancer treatments, such as chemotherapy and radiotherapy, damage healthy cells alongside malignant cells, leading to severe adverse effects. Therefore, inducing cellular senescence without triggering apoptosis, which further damages healthy cells, may be an alternative strategy. However, there is insufficient knowledge regarding senescence induction in CSCs that show resistance to treatment and stemness properties. The present study aims to elucidate the effects of senescence induction on proliferation, cell cycle, and apoptosis in prostate CSCs and non-CSCs. Prostate CSCs were isolated from DU145 cancer cells using the FACS method. Subsequently, senescence induction was performed in RWPE-1, DU145, prostate CSCs, and non-CSCs by using different concentrations of Doxorubicin (DOX). Cellular senescence was detected using the senescence markers SA-ß-gal, Ki67, and senescence-associated heterochromatin foci (SAHF). The effects of senescence on cell cycle and apoptosis were evaluated using the Muse Cell Analyzer, and genes in signaling pathways associated with the apoptotic/necrotic pathway were analyzed by real-time PCR. Prostate CSCs were isolated with 95.6 ± 1.4% purity according to CD133+/CD44+ characteristics, and spheroid formation belonging to stem cells was observed. After DOX-induced senescence, we observed morphological changes, SA-ß-gal positivity, SAHF, and the lack of Ki67 in senescent cells. Furthermore; we detected G2/M cell cycle arrest and downregulation of various apoptosis-related genes in senescent prostate CSCs. Our results showed that DOX is a potent inducer of senescence for prostate CSCs, inhibits proliferation by arresting the cell cycle, and senescent prostate CSCs develop resistance to apoptosis.

3.
Cardiovasc Diabetol ; 22(1): 247, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697288

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play a crucial role in regulating adaptive and maladaptive responses in cardiovascular diseases, making them attractive targets for potential biomarkers. However, their potential as novel biomarkers for diagnosing cardiovascular diseases requires systematic evaluation. METHODS: In this study, we aimed to identify a key set of miRNA biomarkers using integrated bioinformatics and machine learning analysis. We combined and analyzed three gene expression datasets from the Gene Expression Omnibus (GEO) database, which contains peripheral blood mononuclear cell (PBMC) samples from individuals with myocardial infarction (MI), stable coronary artery disease (CAD), and healthy individuals. Additionally, we selected a set of miRNAs based on their area under the receiver operating characteristic curve (AUC-ROC) for separating the CAD and MI samples. We designed a two-layer architecture for sample classification, in which the first layer isolates healthy samples from unhealthy samples, and the second layer classifies stable CAD and MI samples. We trained different machine learning models using both biomarker sets and evaluated their performance on a test set. RESULTS: We identified hsa-miR-21-3p, hsa-miR-186-5p, and hsa-miR-32-3p as the differentially expressed miRNAs, and a set including hsa-miR-186-5p, hsa-miR-21-3p, hsa-miR-197-5p, hsa-miR-29a-5p, and hsa-miR-296-5p as the optimum set of miRNAs selected by their AUC-ROC. Both biomarker sets could distinguish healthy from not-healthy samples with complete accuracy. The best performance for the classification of CAD and MI was achieved with an SVM model trained using the biomarker set selected by AUC-ROC, with an AUC-ROC of 0.96 and an accuracy of 0.94 on the test data. CONCLUSIONS: Our study demonstrated that miRNA signatures derived from PBMCs could serve as valuable novel biomarkers for cardiovascular diseases.


Assuntos
Doença da Artéria Coronariana , MicroRNAs , Infarto do Miocárdio , Humanos , Leucócitos Mononucleares , MicroRNAs/genética , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/genética , Biomarcadores , Aprendizado de Máquina
4.
J Integr Neurosci ; 22(4): 88, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37519159

RESUMO

Ischaemic stroke is a sudden neurological disorder caused by localised cerebral ischaemia and persistent cerebral infarction. Occlusion of large arteries due to atherothrombosis, cerebral embolism (i.e., embolic infarction), no thrombotic occlusion in small, deep cerebral arteries (i.e., lacunar infarction), and stenosis of proximal arteries due to hypotension leading to decreased cerebral blood flow in arterial supply zones are the most common causes of ischemic stroke (i.e., hemodynamic stroke). It is now known that organelles play an important role in various signaling events and cellular functions. The molecular mechanisms of mitochondria are involved in cerebral ischemia by generating and scavenging reactive oxygen species, apoptosis, biogenesis, mitochondrial dynamics, and inflammation are all examples of electron transport chain dysfunction. More knowledge about the involvement of mitochondria in ischemia-induced neuronal death and neuronal protection will contribute to the development of better treatment programs for stroke syndromes such as ischemic stroke.

5.
Cell Biochem Funct ; 40(5): 430-438, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35647674

RESUMO

The pandemic of COVID-19 caused worldwide concern. Due to the lack of appropriate medications and the inefficiency of commercially available vaccines, lots of efforts are being made to develop de novo therapeutic modalities. Besides this, the possibility of several genetic mutations in the viral genome has led to the generation of resistant strains such as Omicron against neutralizing antibodies and vaccines, leading to worsening public health status. Exosomes (Exo), nanosized vesicles, possess several therapeutic properties that participate in intercellular communication. The discovery and application of Exo in regenerative medicine have paved the way for the alleviation of several pathologies. These nanosized particles act as natural bioshuttles and transfer several biomolecules and anti-inflammatory cytokines. To date, several approaches are available for the administration of Exo into the targeted site inside the body, although the establishment of standard administration routes remains unclear. As severe acute respiratory syndrome coronavirus 2 primarily affects the respiratory system, we here tried to highlight the transplantation of Exo in the alleviation of COVID-19 pathologies.


Assuntos
COVID-19 , Exossomos , COVID-19/terapia , Citocinas , Exossomos/transplante , Humanos , SARS-CoV-2
6.
J Nanobiotechnology ; 20(1): 310, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35765003

RESUMO

BACKGROUND: Hydrogels based on organic/inorganic composites have been at the center of attention for the fabrication of engineered bone constructs. The establishment of a straightforward 3D microenvironment is critical to maintaining cell-to-cell interaction and cellular function, leading to appropriate regeneration. Ionic cross-linkers, Ca2+, Ba2+, and Sr2+, were used for the fabrication of Alginate-Nanohydroxyapatite-Collagen (Alg-nHA-Col) microspheres, and osteogenic properties of human osteoblasts were examined in in vitro and in vivo conditions after 21 days. RESULTS: Physicochemical properties of hydrogels illustrated that microspheres cross-linked with Sr2+ had reduced swelling, enhanced stability, and mechanical strength, as compared to the other groups. Human MG-63 osteoblasts inside Sr2+ cross-linked microspheres exhibited enhanced viability and osteogenic capacity indicated by mineralization and the increase of relevant proteins related to bone formation. PCR (Polymerase Chain Reaction) array analysis of the Wnt (Wingless-related integration site) signaling pathway revealed that Sr2+ cross-linked microspheres appropriately induced various signaling transduction pathways in human osteoblasts leading to osteogenic activity and dynamic growth. Transplantation of Sr2+ cross-linked microspheres with rat osteoblasts into cranium with critical size defect in the rat model accelerated bone formation analyzed with micro-CT and histological examination. CONCLUSION: Sr2+ cross-linked Alg-nHA-Col hydrogel can promote functionality and dynamic growth of osteoblasts.


Assuntos
Osteogênese , Estrôncio , Alginatos/farmacologia , Animais , Colágeno , Durapatita , Hidrogéis/farmacologia , Ratos , Estrôncio/farmacologia
7.
Cell Tissue Res ; 384(2): 389-401, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33459880

RESUMO

Human endothelial progenitor cells (EPCs) were isolated from cord blood samples and enriched by magnetic activated cell sorting method based on the CD133 marker. Cells were incubated with different doses of bacterial lipopolysaccharide, ranging from 2, 5, 10, 50, 100, 200, 250, 500, to 1000 µg/ml, for 48 h. The cell survival rate was determined by using MTT assay. To confirm activation of the toll-like receptor signaling pathway, PCR array analysis was performed. Protein levels of ERK1/2, p-ERK1/2, NF-ƙB and TRIF proteins were measured using western blotting. The content of TNF-α and lipoprotein lipase activity were analyzed by immunofluorescence imaging. Flow cytometric analysis of CD31 was performed to assess the maturation rate. Cell migration was studied by the Transwell migration assay. The expression of genes related to exosome biogenesis was measured using real-time PCR analysis. In vivo gel plug angiogenesis assay was done in nude mice. Lipopolysaccharide changed endothelial progenitor cells' survival in a dose-dependent manner with maximum viable cells in groups treated with 2 µg/ml. PCR array analysis showed the activation of toll-like signaling pathways after exposure to LPS (p<0.05). Western blotting analysis indicated an induction of p-ERK1/2 and Erk1/2, NF-kB and TRIF in LPS-treated EPCs compared with the control (p<0.05). Immunofluorescence staining showed an elevation of TNF-α and lipoprotein lipase activity after lipopolysaccharide treatment (p<0.05). Lipopolysaccharide increased EPC migration and expression of exosome biogenesis-related genes (p<0.05). In vivo gel plug analysis revealed enhanced angiogenesis in cells exposed to bacterial lipopolysaccharide. Data highlighted the close relationship between the toll-like receptor signaling pathway and functional activity in EPCs.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Receptores Toll-Like/metabolismo , Animais , Humanos , Camundongos , Transdução de Sinais
8.
Mol Biol Rep ; 48(4): 3567-3578, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33948856

RESUMO

Cancer stem cells (CSCs) are a unique population that has been linked to drug resistance and metastasis and recurrence of prostate cancer. The sonic hedgehog (SHH) signal regulates stem cells in normal prostate epithelium by affecting cell behavior, survival, proliferation, and maintenance. Aberrant SHH pathway activation leads to an unsuitable expansion of stem cell lineages in the prostate epithelium and the transformation of prostate CSCs (PCSCs). Zoledronic acid (ZOL), one of the third-generation bisphosphonates, effectively prevented bone metastasis and treated advanced prostate cancer despite androgen deprivation therapy. Despite strong evidence for the involvement of the SHH in human PCSCs survival and drug resistance, the roles of SHH in the PCSCs-related resistance to ZOL remain to be fully elucidated. The present study aimed to investigate the role of the SHH pathway in ZOL resistance of PCSCs in 2D and three 3D cell culture conditions. For this purpose, we isolated CD133high/ CD44high PCSCs using a flow cytometer. Following ZOL treatment, mRNA and protein expressions of the components of the SHH signaling pathway in PCSCs and non-CSCs were analyzed using qRT-PCR and Immunofluorescence staining, respectively. Our finding suggested that SHH signaling may be activated by different mechanisms that lead to avoidance of the inhibition effect of ZOL. Thereby, SHH pathways may be associated with the resistance to ZOL developed by prostate CSCs. Inhibition of CSCs-related SHH signaling along with ZOL treatment should be considered to achieve improvement in survival or delayed treatment failure and prevention of the CSCs-related drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas Hedgehog/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/metabolismo , Antígeno AC133/genética , Antígeno AC133/metabolismo , Antineoplásicos/toxicidade , Conservadores da Densidade Óssea/toxicidade , Linhagem Celular Tumoral , Proteínas Hedgehog/genética , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Masculino , Transdução de Sinais , Ácido Zoledrônico/toxicidade
9.
Mol Biol Rep ; 48(8): 6085-6091, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34374891

RESUMO

BACKGROUND: Thyroid cancer is the most common malignant tumor of the endocrine system seen in the thyroid gland. More than 90% of thyroid cancers comprise papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC). Although anaplastic thyroid carcinoma (ATC) accounts for less than 2% of thyroid cancer. But patients' lifespan after diagnosis is about 6 months. Surgical interventions, radioactive iodine use, and chemotherapy are not sufficient in the treatment of ATC, so alternative therapies are needed. METHODS AND RESULTS: The WST-1 assay test was performed to evaluate the anti-proliferative effects of Valproic acid (VPA). Also, the effect of VPA on miRNAs affecting histone deacetylase was determined by Quantitative RT-PCR. In the SW1736 cell line, IC50 dose for VPA was found 1.6 mg/ml. In our study, the level of oncogenic genes expression in cells treated with VPA, including miR-184, miR-222-5p, miR-124-3p, and miR-328-3p, decreased. Also, the expression of tumor inhibitory genes including miR-323-5p, miR-182-5p, miR-138-5p, miR-217, miR-15a-5p, miR-29b-3p, miR-324-5p and miR-101-5p increased significantly. CONCLUSIONS: VPA can ad-just countless gene expression patterns, including microRNAs (miRNAs), by targeting histone deacetylase (HDAC). However, further studies are required for more accurate results.


Assuntos
MicroRNAs/efeitos dos fármacos , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Ácido Valproico/farmacologia , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , MicroRNAs/genética , Modelos Biológicos , Carcinoma Anaplásico da Tireoide/genética , Glândula Tireoide/metabolismo , Transcriptoma/genética , Ácido Valproico/metabolismo
10.
Mol Biol Rep ; 47(8): 6127-6133, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32740796

RESUMO

Etiopathogenesis of acquired and congenital cholesteatoma is still unclear. The clinical behavior of adult acquired, pediatric acquired and congenital cholesteatomas show differences. The scope of the this study was to detect the matrix metalloproteinase (MMP), tissue inhibitors of metalloproteinase (TIMP) and epidermal growth factor receptor (EGFR) gene expression changes in cholesteatoma perimatrix and to compare these changes among congenital cholesteatoma, adult acquired cholesteatoma and pediatric acquired cholesteatoma. A total of 16 genes including MMPs, TIMPs and EGFR were analyzed in the samples of 32 cholesteatoma tissues. Real-time PCR was used for detection of the gene expression levels. Data analyses were achieved by ΔΔCT method (Light Cycler 480 Quantification Software) and Statistical Package for Social Sciences (SPSS) version 22.0. The expression levels of MMP-2, -9, -10, -11, -13, -14, -15, -16 and EGFR genes were significantly higher in acquired cholesteatoma than healthy tissue (p < 0.05). There was a statistically significant decrease (3.34 times more) in the mean TIMP-2 gene expression level in acquired cholesteatoma compared to healthy tissue (p < 0.05). There was a significant increase in the mean expression level of MMP-7 gene and a decrease in the mean expression level of TIMP-1 gene (3.12 times more) in congenital cholesteatoma compared to healthy tissue (p < 0.05). This study indicates that increased expression levels of some particular MMP genes and EGFR gene and decreased expression levels of TIMP genes may play an important role in the development of cholesteatoma. Further, MMP-9, MMP-13 and MMP-14 genes may have a remarkable role in the development of more aggressive cholesteatoma forms. The authors concluded that overexpression of MMP-9, MMP-13 and MMP-14 may cause stronger inflammation associated with cholesteatoma.


Assuntos
Colesteatoma/genética , Regulação da Expressão Gênica , Adolescente , Adulto , Idade de Início , Idoso , Criança , Colesteatoma/congênito , Colesteatoma/etiologia , Colesteatoma/metabolismo , Doença Crônica , Receptores ErbB/biossíntese , Feminino , Seguimentos , Genes erbB-1 , Humanos , Masculino , Metaloproteinases da Matriz/biossíntese , Metaloproteinases da Matriz/genética , Pessoa de Meia-Idade , Otite Média/complicações , Estudos Prospectivos , Inibidores Teciduais de Metaloproteinases/biossíntese , Inibidores Teciduais de Metaloproteinases/genética , Adulto Jovem
12.
Cell Tissue Res ; 376(3): 377-388, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30758710

RESUMO

In the current experiment, the combined regime of resveratrol and a Wnt-3a inhibitor, sulindac, were examined on the angiogenic potential of cancer stem cells from human colon adenocarcinoma cell line HT-29 during 7 days. Cancer stem cells were enriched via a magnetic-activated cell sorter technique and cultured in endothelial induction medium containing sulindac and resveratrol. Expression of endothelial markers such as the von Willebrand factor (vWF) and vascular endothelial cadherin (VE-cadherin) and genes participating in mesenchymal-to-epithelial transition was studied by real-time PCR assay. Protein levels of Wnt-3a and angiogenic factor YKL-40 were examined by western blotting. ELISA was used to determine the level of N-acetylgalactosaminyltransferase 11 (GALNT11) during mesenchymal-endothelial transition. Autophagy status was monitored by PCR array under treatment with the resveratrol plus sulindac. Results showed that resveratrol and sulindac had the potential to decrease the cell survival of HT-29 cancer cells and the clonogenic capacity of cancer stem cells compared with the control (p < 0.05). The expression of VE-cadherin and vWF was induced in cancer stem cells incubated with endothelial differentiation medium enriched with resveratrol (p < 0.05). Interestingly, the Wnt-3a level was increased in the presence of resveratrol and sulindac (p < 0.05). YKL-40 was reduced after cell exposure to sulindac and resveratrol. The intracellular content of resistance factor GALNT11 was diminished after treatment with resveratrol (p < 0.05). Resveratrol had the potential to induce the transcription of autophagy signaling genes in cancer stem cells during endothelial differentiation (p < 0.05). These data show that resveratrol could increase cancer stem cell trans-differentiation toward endothelial lineage while decrease cell resistance by modulation of autophagy signaling and GALNT11 synthesis.


Assuntos
Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Resveratrol/farmacologia , Sulindaco/farmacologia , Proteína Wnt3A/antagonistas & inibidores , Antígenos CD/metabolismo , Autofagia/efeitos dos fármacos , Caderinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proteína 1 Semelhante à Quitinase-3/metabolismo , Células HT29 , Humanos , N-Acetilgalactosaminiltransferases/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de von Willebrand/metabolismo
13.
Adv Exp Med Biol ; 1152: 65-73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456180

RESUMO

The term "autophagy", which means "self (auto) - eating (phagy)", describes a catabolic process that is evolutionarially conserved among all eukaryotes. Although autophagy is mainly accepted as a cell survival mechanism, it also modulates the process known as "type II cell death". AKT/mTOR pathway is an upstream activator of autophagy and it is tightly regulated by the ATG (autophagy-related genes) signaling cascade. In addition, wide ranging cell signaling pathways and non-coding RNAs played essential roles in the control of autophagy. Autophagy is closely related to pathological processes such as neurodegenerative diseases and cancer as well as physiological conditions. After the Nobel Prize in Physiology or Medicine 2016 was awarded to Yoshinori Ohsumi "for his discoveries of mechanisms for autophagy", there was an explosion in the field of autophagy and molecular biologists started to pay considerable attention to the mechanistic insights related to autophagy in different diseases. Since autophagy behaved dualistically, both as a cell death and a cell survival mechanism, it opened new horizons for a deeper analysis of cell type and context dependent behavior of autophagy in different types of cancers. There are numerous studies showing that the induction of autophagy mechanism will promote survival of cancer cells. Since autophagy is mainly a mechanism to keep the cells alive, it may protect breast cancer cells against stress conditions such as starvation and hypoxia. For these reasons, autophagy was noted to be instrumental in metastasis and drug resistance. In this chapter we have emphasized on role of role of autophagy in breast cancer. Additionally we have partitioned this chapter into exciting role of microRNAs in modulation of autophagy in breast cancer. We have also comprehensively summarized how TRAIL-mediated signaling and autophagy operated in breast cancer cells.


Assuntos
Autofagia , Neoplasias da Mama/patologia , MicroRNAs/genética , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Progressão da Doença , Humanos
14.
J Cell Biochem ; 119(12): 9752-9763, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30129212

RESUMO

The formation of atherosclerotic changes leads to dysfunction in numerous cell types, especially endothelial cells. In the current experiment, we aimed to show the therapeutic effect of Docosahexaenoic acid on palmitic-induced atherosclerotic changes in the human endothelial lineage. Human Umbilical Vein Endothelial cells were incubated with 1 mM palmitic acid for 48 hours and then exposed to 40 µM docosahexaenoic acid for next 24 hours. Cellular atherosclerosis and lipid removal were confirmed by the application of Oil red O solution. The cell survival rate was studied by using MTT assay and flow cytometry analysis of Annexin V. We also measured the protein level of tumor necrosis factor-α and granulocyte-macrophage colony-stimulating factor by immunofluorescence imaging. The transcription level of genes participating in the atherosclerosis signaling pathway was monitored in atherosclerotic endothelial cells before and after treatment with docosahexaenoic acid. The viability of the cells was reduced after 48 hours incubation with palmitic acid. It is noteworthy that the number of viable endothelial cells was increased after exposure to docosahexaenoic acid. Compared with the cells that received palmitic acid, Oil red O staining showed a decrease in the cellular content of fatty acid after incubation with docosahexaenoic acid (P < 0.05). PCR array indicated that the modulation of key genes played a role in atherosclerosis and reached near-control levels. These data support the notion that incubation of atherosclerotic human endothelial cells with docosahexaenoic acid could return the detrimental effects of palmitic acid by modulation of the atherosclerosis signaling pathway.


Assuntos
Aterosclerose/genética , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Palmítico/efeitos adversos , Apoptose/efeitos dos fármacos , Aterosclerose/metabolismo , Aterosclerose/patologia , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Palmítico/farmacocinética , Reação em Cadeia da Polimerase , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Lasers Med Sci ; 33(5): 1131-1145, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29603107

RESUMO

The distinct role of low-level laser irradiation (LLLI) on endothelial exosome biogenesis remains unclear. We hypothesize that laser irradiation of high dose in human endothelial cells (ECs) contributes to the modulation of exosome biogenesis via Wnt signaling pathway. When human ECs were treated with LLLI at a power density of 80 J/cm2, the survival rate reduced. The potential of irradiated cells to release exosomes was increased significantly by expressing genes CD63, Alix, Rab27a, and b. This occurrence coincided with an enhanced acetylcholine esterase activity, pseudopodia formation, and reduced zeta potential value 24 h post-irradiation. Western blotting showed the induction of LC3 and reduced level of P62, confirming autophagy response. Flow cytometry and electron microscopy analyses revealed the health status of the mitochondrial function indicated by normal ΔΨ activity without any changes in the transcription level of PINK1 and Optineurin. When cells exposed to high power laser irradiation, p-Akt/Akt ratio and in vitro tubulogenesis capacity were blunted. PCR array and bioinformatics analyses showed the induction of transcription factors promoting Wnt signaling pathways and GTPase activity. Thus, LLLI at high power intensity increased exosome biogenesis by the induction of autophagy and Wnt signaling. LLLI at high power intensity increases exosome biogenesis by engaging the transcription factors related to Wnt signaling and autophagy stimulate.


Assuntos
Exossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Via de Sinalização Wnt , Acetilcolinesterase/metabolismo , Autofagia/efeitos da radiação , Exossomos/genética , Expressão Gênica , Regulação da Expressão Gênica/efeitos da radiação , Redes Reguladoras de Genes , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Terapia com Luz de Baixa Intensidade , Neovascularização Fisiológica , Tetraspanina 30/metabolismo
16.
J Cell Biochem ; 118(6): 1518-1530, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27918077

RESUMO

The current study aimed to address the impact of serum from type 2 diabetes patients on the angiogenic properties of human bone marrow mesenchymal stem cells and its relationship to autophagy signaling. Human primary stem cells were enriched and incubated with serum from diabetic and normal subjects for 7 days. Compared to data from the control group, diabetic serum was found to induce a higher cellular death rate (P < 0.001) and apoptotic changes (P < 0.01). We also showed that diabetic condition significantly abolished angiogenesis tube formation on Matrigel substrate, decreased cell chemotaxis (P < 0.01) in response to SDF-1α, and inhibited endothelial differentiation rate (P < 0.0001). Western blotting showed autophagic status by high levels of P62 (P < 0.0001), beclin-1 (P < 0.0001), and increase in LC3II/I ratio (P < 0.001). In vivo Matrigel plug assay revealed that supernatant conditioned media prepared from cells exposed to diabetic serum caused a marked reduction in the recruitment of VE-cadherin- (P < 0.01) and α-SMA-positive (P < 0.0001) cells 7 days after subcutaneous injection. PCR expression array analysis confirmed the overexpression of autophagy and apoptosis genes in cultured cells in response to a diabetic condition (P < 0.05). Using bioinformatic analysis, we noted a crosstalk network between DM2, angiogenesis, and autophagy signaling. DM2 could potently modulate angiogenesis by the interaction of IL-1ß with downstream insulin receptor and upstream androgen receptor. Corroborating to data, diabetic serum led to abnormal regulation of P62 during the angiogenic response. These data demonstrate that diabetic serum decreased human mesenchymal stem cell angiogenic properties directly on angiogenesis pathways or by the induction of autophagy signaling. J. Cell. Biochem. 118: 1518-1530, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Diabetes Mellitus Tipo 2/sangue , Células-Tronco Mesenquimais/classificação , Neovascularização Fisiológica/efeitos dos fármacos , Adulto , Autofagia/efeitos dos fármacos , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Adulto Jovem
17.
Microvasc Res ; 114: 101-113, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28732797

RESUMO

Diabetes mellitus type 2 predisposes patients to various microvascular complications. In the current experiment, the potent role of diabetes mellitus was investigated on the content of VEGFR-1, -2, Tie-1 and -2, and Akt in human endothelial progenitor cells. The gene expression profile of mTOR and Hedgehog signaling pathways were measured by PCR array. The possible crosstalk between RTKs, mTOR and Hedgehog signaling was also studied by bioinformatic analysis. Endothelial progenitor cells were incubated with serum from normal and diabetic for 7days. Compared to non-treated cells, diabetic serum-induced cell apoptosis (~2-fold) and prohibited cell migration toward bFGF (p<0.001). ELISA analysis showed that diabetes exposed cells had increased abundance of Tie-1, -2 and VEGFR-2 and reduced amount of VEGFR-1 (p<0.0001) in diabetic cells. Western blotting showed a marked reduction in the protein level of Akt after cells exposure to serum from diabetic subjects (p<0.0001). PCR array revealed a significant stimulation of both mTOR and Hedgehog signaling pathways in diabetic cells (p<0.05). According to data from bioinformatic datasets, we showed VEGFR-1, -2 and Tie-2, but not Tie-1, are master regulators of angiogenesis. There is a crosstalk between RTKs and mTOR signaling by involving P62, GABARAPL1, and HTT genes. It seems that physical interaction and co-expression of Akt decreased the level of VEGFR-1 in diabetic cells. Regarding data from the present experiment, diabetic serum contributed to uncontrolled induction of both mTOR and Hedgehog signaling in endothelial progenitor cells. Diabetes mellitus induces mTOR pathway by involving receptor tyrosine kinases while Hedgehog stimulation is independent of these receptors.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Células Progenitoras Endoteliais/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto , Apoptose , Estudos de Casos e Controles , Movimento Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Células Progenitoras Endoteliais/patologia , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Masculino , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-akt/genética , Receptor Cross-Talk , Receptor de TIE-1/metabolismo , Receptor TIE-2/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
Tumour Biol ; 37(2): 1933-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26334619

RESUMO

Ferulic acid (4-hydroxy-3-methoxycinnamic acid; FA), a common dietary plant phenolic compound, is abundant in fruits and vegetables. The aim of present study is to investigate the effects of FA on cell cycle, apoptosis, invasion, migration, and colony formation in the TT medullary thyroid cancer cell line. The effect of FA on cell viability was determined by using CellTiter-Glo assay. IC50 dose in the TT cells was detected as 150 µM. URG4/URGCP (upregulated gene-4/upregulator of cell proliferation) is a novel gene in full-length mRNA of 3.607 kb located on 7p13. It was determined that FA caused a decrease in the expression of novel gene URG4/URGCP, CCND1, CDK4, CDK6, BCL2, MMP2, and MMP9, a significant increase in the expression of p53, PARP, PUMA, NOXA, BAX, BID, CASP3, CASP9, and TIMP1 genes in TT human thyroid cancer cell line by using real-time PCR. It was found that FA in TT cells suppressed invasion, migration, and colony formation by using matrigel invasion chamber, wound healing, and colony formation assay, respectively. In conclusion, it is thought that FA indicates anticarcinogenesis activity by affecting cell cycle arrest, apoptosis, invasion, migration, and colony formation on TT cells.


Assuntos
Carcinoma Neuroendócrino/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácidos Cumáricos/farmacologia , Proteínas de Neoplasias/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Apoptose/efeitos dos fármacos , Carcinoma Neuroendócrino/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Glândula Tireoide/metabolismo , Regulação para Cima/efeitos dos fármacos
19.
Tumour Biol ; 37(2): 1573-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26298727

RESUMO

Ruxolitinib is the first agent used in myelofibrosis treatment with its potent JAK2 inhibitory effect. In this novel study, we aimed to discover the anti-leukemic effect of ruxolitinib in K-562 human chronic myeloid leukemia cell line compared to NCI-BL 2171 human healthy B lymphocyte cell line. Cytotoxic effect of ruxolitinib was determined by using WST-1 assay. IC50 values for K-562 and NCI-BL 2171 cell lines were defined as 20 and 23.6 µM at the 48th hour, respectively. Autophagic effects of ruxolitinib were detected by measuring LC3B-II protein formation. Ruxolitinib induced autophagic cell death in K-562 and NCI-BL 2171 cell lines 2.11- and 1.79-fold compared to control groups, respectively. To determine the autophagy-related gene expression changes, total RNA was isolated from K-562 and NCI-BL 2171 cells treated with ruxolitinib and untreated cells as control group. Reverse transcription procedure was performed for cDNA synthesis, and gene expressions were shown by RT-qPCR. Ruxolitinib treatment caused a notable decrease in expression of AKT, mTOR, and STAT autophagy inhibitor genes in K-562 cells, contrariwise control cell line. Ruxolitinib is a promising agent in chronic myeloid leukemia treatment by blocking JAK/STAT pathway known as downstream of BCR-ABL and triggering autophagy. This is the first study that reveals the relationship between ruxolitinib and autophagy induction.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Pirazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Nitrilas , Reação em Cadeia da Polimerase , Pirimidinas , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
20.
Mol Biol Rep ; 43(11): 1193-1204, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27492082

RESUMO

Parkinson's disease (PD) is considered as a high prevalence neurodegenerative disorders worldwide. Pathologically, the demise of dopamine-producing cells, in large part due to an abnormal accumulation of the α-synuclein in the substantia nigra, is one of the main causes of the disease. Up until now, many de novo investigations have been conducted to disclose the mechanisms underlying in PD. Among them, impacts of non-coding RNAs (ncRNAs) on the pathogenesis and/or progression of PD need to be highlighted. microRNAs (miRNAs) and long ncRNAs (lncRNAs) are more noteworthy in this context. miRNAs are small ncRNAs (with 18-25 nucleotide in length) that control the expression of multiple genes at post-transcriptional level, while lncRNAs have longer size (over 200 nucleotides) and are involved in some key biological processes through various mechanisms. Involvement of miRNAs has been well documented in the development of PD, particularly gene expression. Hence, in this current review, we will discuss the impacts of miRNAs in regulation of the expression of PD-related genes and the role of lncRNAs in the pathogenesis of PD.


Assuntos
Regulação da Expressão Gênica , Doença de Parkinson/genética , RNA não Traduzido/genética , Cromossomos Humanos/genética , Progressão da Doença , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa