Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2540: 251-268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35980582

RESUMO

Proteins are typically not expressed homogeneously in all cells of a complex organism. Within cells, proteins can dynamically change locations, be transported to their destinations, or be degraded upon external signals. Thus, revealing the cellular and subcellular localizations as well as the temporal dynamics of a protein provides important insights into the possible function of the studied protein. Tagging a protein of interest with a genetically encoded fluorophore enables us to follow its expression dynamics in the living organism. Here, we summarize the genetic resources available for tagged Drosophila proteins that assist in studying protein expression and dynamics. We also review the various techniques used in the past and at present to tag a protein of interest with a genetically encoded fluorophore. Comparing the pros and cons of the various techniques guides the reader to judge the suitable applications possible with these tagged proteins in Drosophila.


Assuntos
Proteínas de Drosophila , Animais , Sistemas CRISPR-Cas , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Corantes Fluorescentes
2.
Nat Commun ; 12(1): 2091, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828099

RESUMO

Complex animals build specialised muscles to match specific biomechanical and energetic needs. Hence, composition and architecture of sarcomeres and mitochondria are muscle type specific. However, mechanisms coordinating mitochondria with sarcomere morphogenesis are elusive. Here we use Drosophila muscles to demonstrate that myofibril and mitochondria morphogenesis are intimately linked. In flight muscles, the muscle selector spalt instructs mitochondria to intercalate between myofibrils, which in turn mechanically constrain mitochondria into elongated shapes. Conversely in cross-striated leg muscles, mitochondria networks surround myofibril bundles, contacting myofibrils only with thin extensions. To investigate the mechanism causing these differences, we manipulated mitochondrial dynamics and found that increased mitochondrial fusion during myofibril assembly prevents mitochondrial intercalation in flight muscles. Strikingly, this causes the expression of cross-striated muscle specific sarcomeric proteins. Consequently, flight muscle myofibrils convert towards a partially cross-striated architecture. Together, these data suggest a biomechanical feedback mechanism downstream of spalt synchronizing mitochondria with myofibril morphogenesis.


Assuntos
Mitocôndrias/metabolismo , Morfogênese/fisiologia , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Animais , Fenômenos Biomecânicos , Drosophila , Proteínas de Drosophila , Drosophila melanogaster , Retroalimentação , Voo Animal/fisiologia , Masculino , Fenômenos Mecânicos , Mitocôndrias/ultraestrutura , Desenvolvimento Muscular , Músculo Esquelético/citologia , Miofibrilas/ultraestrutura , Fatores de Regulação Miogênica , Sarcômeros/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa