RESUMO
We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.
Assuntos
Galectina 3/biossíntese , Insuficiência Cardíaca/genética , Hipertrofia Ventricular Esquerda/genética , Cadeias Pesadas de Miosina/biossíntese , Miosina Tipo II/biossíntese , Peptídeo Natriurético Encefálico/biossíntese , Animais , Modelos Animais de Doenças , Ecocardiografia , Galectina 3/genética , Regulação da Expressão Gênica , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/patologia , Frequência Cardíaca/genética , Humanos , Hipertrofia Ventricular Esquerda/induzido quimicamente , Hipertrofia Ventricular Esquerda/patologia , Isoproterenol/toxicidade , Camundongos , Miocárdio/patologia , Cadeias Pesadas de Miosina/genética , Miosina Tipo II/genética , Peptídeo Natriurético Encefálico/genética , Locos de Características Quantitativas/genética , Remodelação Ventricular/genéticaRESUMO
The chemotherapeutic effect of doxorubicin (Dox) is limited by cumulative dose-dependent cardiotoxicity in cancer survivors. Dexrazoxane (DRZ) is approved to prevent Dox-induced cardiotoxicity. Humanin and its synthetic analog HNG have a cytoprotective effect on the heart. To investigate the cardioprotective efficacy of HNG alone or in combination with DRZ against Dox-induced cardiotoxicity, 80 adult male mice were randomly divided into 8 groups to receive the following treatments via intraperitoneal injection: saline dailym HNG (5 mg/kg) daily, DRZ (60 mg/kg) weekly, Dox (3 mg/kg) weekly, DRZ + HNG, Dox + HNG, Dox + DRZ, and Dox + HNG + DRZ. Echocardiograms were performed before and at 4, 8, and 9.5 wk after the beginning of treatment. All mice were euthanized at 10 wk. In the absence of Dox, HNG, DRZ, or DRZ + HNG had no adverse effect on the heart. Dox treatment caused decreases in ejection fraction and cardiac mass and increases in cardiomyocyte apoptosis and intracardiac fibrosis. HNG or DRZ alone blunted the Dox-induced decrease in left ventricle posterior wall thickness and modestly ameliorated the Dox-induced decrease in ejection fraction. HNG + DRZ significantly ameliorated Dox-induced decreases in ejection function, cardiac fibrosis, and cardiac mass. Using a targeted analysis for the mitochondrial gene array and protein expression in heart tissues, we demonstrated that HNG + DRZ reversed DOX-induced altered transcripts that were biomarkers of cardiac damage and uncoupling protein-2. We conclude that HNG enhances the cardiac protective effect of DRZ against Dox-induced cardiotoxicity. HNG + DRZ protects mitochondria from Dox-induced cardiac damage and blunts the onset of cardiac dysfunction. Thus, HNG may be an adjuvant to DRZ in preventing Dox-induced cardiotoxicity. NEW & NOTEWORTHY Doxorubicin (Dox) is commonly used for treating a wide range of human cancers. However, cumulative dosage-dependent carditoxicity often limits its clinical applications. We demonstrated in this study that treating young adult male mice with synthetic humanin analog enhanced the cardiac protective effect of dexrazoxane against chemotherapeutic agent Dox-induced cardiac dysfunction. Thus, humanin analog can potentially serve as an adjuvant to dexrazoxane in more effectively preventing Dox-induced cardiac dysfunction and cardiomyopathy.
Assuntos
Cardiotônicos/farmacologia , Dexrazoxano/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Cardiotônicos/administração & dosagem , Cardiotoxicidade , Dexrazoxano/administração & dosagem , Doxorrubicina/toxicidade , Sinergismo Farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismoRESUMO
Body fat accumulation differs between males and females and is influenced by both gonadal sex (ovaries vs testes) and chromosomal sex (XX vs XY). We previously showed that an X chromosome gene, Kdm5c, is expressed at higher levels in females compared to males and correlates with adiposity in mice and humans. Kdm5c encodes a KDM5 histone demethylase that regulates gene expression by modulating histone methylation at gene promoters and enhancers. Here, we use chemical inhibition and genetic knockdown to identify a role for KDM5 activity during early stages of white and brown preadipocyte differentiation, with specific effects on white adipocyte clonal expansion, and white and brown adipocyte gene expression and mitochondrial activity. In white adipogenesis, KDM5 activity modulates H3K4 histone methylation at the Dlk1 gene promoter to repress gene expression and promote progression from preadipocytes to mature adipocytes. In brown adipogenesis, KDM5 activity modulates H3K4 methylation and gene expression of Ucp1, which is required for thermogenesis. Unbiased transcriptome analysis revealed that KDM5 activity regulates genes associated with cell cycle regulation and mitochondrial function, and this was confirmed by functional analyses of cell proliferation and cellular bioenergetics. Using genetic knockdown, we demonstrate that KDM5C is the likely KDM5 family member that is responsible for regulation of white and brown preadipocyte programming. Given that KDM5C levels are higher in females compared to males, our findings suggest that sex differences in white and brown preadipocyte gene regulation may contribute to sex differences in adipose tissue function.
RESUMO
Many aspects of metabolism are sex-biased, from gene expression in metabolic tissues to the prevalence and presentation of cardiometabolic diseases. The influence of hormones produced by male and female gonads has been widely documented, but recent studies have begun to elucidate the impact of genetic sex (XX or XY chromosomes) on cellular and organismal metabolism. XX and XY cells have differential gene dosage conferred by specific genes that escape X chromosome inactivation or the presence of Y chromosome genes that are absent from XX cells. Studies in mouse models that dissociate chromosomal and gonadal sex have uncovered mechanisms for sex-biased epigenetic, transcriptional, and post-transcriptional regulation of gene expression in conditions such as obesity, atherosclerosis, pulmonary hypertension, autoimmune disease, and Alzheimer's disease.
Assuntos
Doença de Alzheimer , Aterosclerose , Doenças Autoimunes , Feminino , Masculino , Animais , Camundongos , Doença de Alzheimer/genética , Modelos Animais de Doenças , EpigenômicaRESUMO
Males and females differ in body composition and fat distribution. Using a mouse model that segregates gonadal sex (ovaries and testes) from chromosomal sex (XX and XY), we showed that XX chromosome complement in combination with a high-fat diet led to enhanced weight gain in the presence of male or female gonads. We identified the genomic dosage of Kdm5c, an X chromosome gene that escapes X chromosome inactivation, as a determinant of the X chromosome effect on adiposity. Modulating Kdm5c gene dosage in XX female mice to levels that are normally present in males resulted in reduced body weight, fat content, and food intake to a degree similar to that seen with altering the entire X chromosome dosage. In cultured preadipocytes, the levels of KDM5C histone demethylase influenced chromatin accessibility (ATAC-Seq), gene expression (RNA-Seq), and adipocyte differentiation. Both in vitro and in vivo, Kdm5c dosage influenced gene expression involved in extracellular matrix remodeling, which is critical for adipocyte differentiation and adipose tissue expansion. In humans, adipose tissue KDM5C mRNA levels and KDM5C genetic variants were associated with body mass. These studies demonstrate that the sex-dependent dosage of Kdm5c contributes to male/female differences in adipocyte biology and highlight X-escape genes as a critical component of female physiology.
Assuntos
Adipócitos/enzimologia , Adiposidade , Dosagem de Genes , Regulação Enzimológica da Expressão Gênica , Histona Desmetilases , Caracteres Sexuais , Cromossomo X , Animais , Montagem e Desmontagem da Cromatina , Feminino , Histona Desmetilases/biossíntese , Histona Desmetilases/genética , Humanos , Masculino , Camundongos , Camundongos Mutantes , Cromossomo X/genética , Cromossomo X/metabolismoRESUMO
Intensive research is underway to find new agents that can successfully mitigate the acute effects of radiation exposure. This is primarily in response to potential counterthreats of radiological terrorism and nuclear accidents but there is some hope that they might also be of value for cancer patients treated with radiation therapy. Research into mitigation countermeasures typically employs classic animal models of acute radiation syndromes (ARS) that develop after whole-body irradiation (WBI). While agents are available that successfully mitigate ARS when given after radiation exposure, their success raises questions as to whether they simply delay lethality or unmask potentially lethal radiation pathologies that may appear later in time. Life shortening is a well-known consequence of WBI in humans and experimental animals, but it is not often examined in a mitigation setting and its causes, other than cancer, are not well-defined. This is in large part because delayed effects of acute radiation exposure (DEARE) do not follow the strict time-dose phenomena associated with ARS and present as a diverse range of symptoms and pathologies with low mortality rates that can be evaluated only with the use of large cohorts of subjects, as in this study. Here, we describe chronically increased mortality rates up to 660 days in large numbers of mice given LD70/30 doses of WBI. Systemic myeloid cell activation after WBI persists in some mice and is associated with late immunophenotypic changes and hematopoietic imbalance. Histopathological changes are largely of a chronic inflammatory nature and variable incidence, as are the clinical symptoms, including late diarrhea that correlates temporally with changes in the content of the microbiome. We also describe the acute and long-term consequences of mitigating hematopoietic ARS (H-ARS) lethality after LD70/30 doses of WBI in multiple cohorts of mice treated uniformly with radiation mitigators that have a common 4-nitro-phenylsulfonamide (NPS) pharmacophore. Effective NPS mitigators dramatically decrease ARS mortality. There is slightly increased subacute mortality, but the rate of late mortalities is slowed, allowing some mice to live a normal life span, which is not the case for WBI controls. The study has broad relevance to radiation late effects and their potential mitigation and epitomizes the complex interaction between radiation-damaged tissues and immune homeostasis.
Assuntos
Síndrome Aguda da Radiação/imunologia , Síndrome Aguda da Radiação/prevenção & controle , Sistema Hematopoético/efeitos dos fármacos , Sistema Hematopoético/efeitos da radiação , Protetores contra Radiação/farmacologia , Síndrome Aguda da Radiação/microbiologia , Síndrome Aguda da Radiação/mortalidade , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos da radiação , Coração/efeitos dos fármacos , Coração/efeitos da radiação , Masculino , Camundongos , Neoplasias Induzidas por Radiação/imunologia , Neoplasias Induzidas por Radiação/microbiologia , Neoplasias Induzidas por Radiação/mortalidade , Neoplasias Induzidas por Radiação/prevenção & controle , Sulfonamidas/farmacologia , Análise de SobrevidaRESUMO
BACKGROUND: Chronic stress-induced cardiac pathology exhibits both a wide range in severity and a high degree of heterogeneity in clinical manifestation in human patients. This variability is contributed to by complex genetic and environmental etiologies within the human population. Genetic approaches to elucidate the genetics underlying the acquired forms of cardiomyopathies, including genome-wide association studies, have been largely unsuccessful, resulting in limited knowledge as to the contribution of genetic variations for this important disease. METHODS AND RESULTS: Using the ß-adrenergic agonist isoproterenol as a specific pathological stressor to circumvent the problem of etiologic heterogeneity, we performed a genome-wide association study for genes influencing cardiac hypertrophy and fibrosis in a large panel of inbred mice. Our analyses revealed 7 significant loci and 17 suggestive loci, containing an average of 14 genes, affecting cardiac hypertrophy, fibrosis, and surrogate traits relevant to heart failure. Several loci contained candidate genes which are known to contribute to Mendelian cardiomyopathies in humans or have established roles in cardiac pathology based on molecular or genetic studies in mouse models. In particular, we identify Abcc6 as a novel gene underlying a fibrosis locus by validating that an allele with a splice mutation of Abcc6 dramatically and rapidly promotes isoproterenol-induced cardiac fibrosis. CONCLUSIONS: Genetic variants significantly contribute to the phenotypic heterogeneity of stress-induced cardiomyopathy. Systems genetics is an effective approach to identify genes and pathways underlying the specific pathological features of cardiomyopathies. Abcc6 is a previously unrecognized player in the development of stress-induced cardiac fibrosis.