Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Molecules ; 28(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36838557

RESUMO

Gd@C82OxHy endohedral complexes for advanced biomedical applications (computer tomography, cancer treatment, etc.) were synthesized using high-frequency arc plasma discharge through a mixture of graphite and Gd2O3 oxide. The Gd@C82 endohedral complex was isolated by high-efficiency liquid chromatography and consequently oxidized with the formation of a family of Gd endohedral fullerenols with gross formula Gd@C82O8(OH)20. Fourier-transformed infrared (FTIR) spectroscopy was used to study the structure and spectroscopic properties of the complexes in combination with the DFTB3 electronic structure calculations and infrared spectra simulations. It was shown that the main IR spectral features are formed by a fullerenole C82 cage that allows one to consider the force constants at the DFTB3 level of theory without consideration of gadolinium endohedral ions inside the carbon cage. Based on the comparison of experimental FTIR and theoretical DFTB3 IR spectra, it was found that oxidation of the C82 cage causes the formation of Gd@C82O28H20, with a breakdown of the integrity of the parent C82 cage with the formation of pores between neighboring carbonyl and carboxyl groups. The Gd@C82O6(OOH)2(OH)18 endohedral complex with epoxy, carbonyl and carboxyl groups was considered the most reliable fullerenole structural model.


Assuntos
Fulerenos , Análise Espectral , Fulerenos/química , Carbono , Isomerismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-33834429

RESUMO

Active hydromedusan and ctenophore Ca2+-regulated photoproteins form complexes consisting of apoprotein and strongly non-covalently bound 2-hydroperoxycoelenterazine (an oxygenated intermediate of coelenterazine). Whereas the absorption maximum of hydromedusan photoproteins is at 460-470 nm, ctenophore photoproteins absorb at 437 nm. Finding out a physical reason for this blue shift is the main objective of this work, and, to achieve it, the whole structure of the protein-substrate complex was optimized using a linear scaling quantum-mechanical method. Electronic excitations pertinent to the spectra of the 2-hydroperoxy adduct of coelenterazine were simulated with time-dependent density functional theory. The dihedral angle of 60° of the 6-(p-hydroxy)-phenyl group relative to the imidazopyrazinone core of 2-hydroperoxycoelenterazine molecule was found to be the key factor determining the absorption of ctenophore photoproteins at 437 nm. The residues relevant to binding of the substrate and its adopting the particular rotation were also identified.

3.
Phys Chem Chem Phys ; 22(16): 8289-8295, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32285892

RESUMO

Two-dimensional (2D) materials have gained a lot of attention being a new class of materials with unique properties that could influence future technologies. Concomitant computational design and discovery of new two-dimensional materials have therefore become a significant part of modern materials research. The stability of these predicted materials has emerged as the main issue due to drawbacks of the periodic boundary condition approximation that allow one to pass common criteria of stability. Here, based on first-principle calculations, we demonstrate structural stability and instability of several recently proposed 2D materials with pentagonal morphology including the experimentally exfoliated single-layer PdSe2. It is found that an appropriate orientation of the central Pd sublattice with respect to Se2 dimers effectively compensates all mechanical stress and preserves the planar structure of the PdSe2 nanoclusters, while the flakes of all other materials having pentagonal morphology exhibit non-zero curvature induced by excessive interatomic forces. The relative energies of the PdSe2 monolayer and nanotubes per formula unit also confirm that the planar monolayer is a global energy minimum. Like the monolayer, (n,0) PdSe2 tubes are indirect band gap semiconductors with similar band gaps, while (n,n) tubes reveal indirect-direct band gap transitions following the increase of the tube diameter. Small strain energies of large diameter tubes propose their possible experimental realization for various optoelectronic applications.

4.
J Phys Chem A ; 122(2): 505-515, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29257862

RESUMO

The photophysical and isomerization properties of hybrid molecular compounds that consist of photochromic nitro-substituted and halogenated spiropyran derivatives bonded to the surface of the [60]fullerene cage through the pyrrolidine bridge were investigated using various functionals and basis sets of TD-DFT and semiempirical quantum-chemical approaches. The role of nπ* states formed by the lone pairs of substituents in changing of the electronic structure and photochromic properties of spiropyran derivatives was evaluated. The Sππ(spiropyran) → intermediate nπ* states → Sππ(merocyanine) channel for phototransformation of the hybrid compound containing a nitro-substituted spiropyran moiety was established and compared with similar systems of halogenated spiropyrans attached to the [60]fullerene bulk where photoinduced isomerization does not process due to high probability of internal conversion from the excited electronic state localized on the spiropyran fragment to the states of the pyrrolidino[60]fullerene.

5.
Nanotechnology ; 28(8): 085205, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28114121

RESUMO

Here we present an investigation of new quasi-two-dimensional heterostructures based on the alternation of bounded carbon and boron nitride layers (C/BN). We carried out a theoretical study of the atomic structure, stability and electronic properties of the proposed heterostructures. Such ultrathin quasi-two-dimensional C/BN films can be synthesized by means of chemically induced phase transition by connection of the layers of multilayered h-BN/graphene van der Waals heterostructures, which is indicated by the negative phase transition pressure in the calculated phase diagrams (P, T) of the films. It was shown that the band gap value of the C/BN films spans the infrared and visible spectrum. We hope that the proposed films and fabrication method can be considered as a possible route to obtain nanostructures with a controllable band gap in wide energy range. This makes these materials potentially suitable for a variety of applications, including photovoltaics, photoelectronics and more.

6.
J Phys Chem Lett ; 12(32): 7812-7817, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34378392

RESUMO

Using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations, we directly determine the spatial and energetic distributions of superatom molecular orbitals (SAMOs) of an Li@C60 monolayer adsorbed on a Cu(111) surface. Utilizing a weakly bonded [Li+@C60] NTf2- (NTf2-: bis(trifluoromethanesulfonyl)imide) salt makes it possible to produce a Li@C60 monolayer with high concentration of Li@C60 molecules. Because of the very uniform adsorption geometry of Li@C60 on Cu(111), the pz-SAMO, populated above the upper hemisphere of the molecule, exhibits an isotropic and delocalized nature, with an energy that is significantly lower compared to that of C60. The isotropic overlapping of pz-SAMOs in the condensed monolayer of Li@C60 results in a laterally homogeneous STM image contributing to the formation of a free-electron-like states. These findings make an important step toward further basic research and applicative utilization of Li@C60 SAMOs.

7.
J Nanosci Nanotechnol ; 10(8): 4992-7, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21125840

RESUMO

The atomic structure and elastic properties of silicon carbide nanowires of different shapes and effective sizes were studied using density functional theory and classical molecular mechanics. Upon surface relaxation, surface reconstruction led to the splitting of the wire geometry, forming both hexagonal (surface) and cubic phases (bulk). The behavior of the pristine SiC wires under compression and stretching was studied and Young's moduli were obtained. For Y-shaped SiC nanowires the effective Young's moduli and behavior in inelastic regime were elucidated.

8.
Adv Mater ; 32(6): e1905734, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31793057

RESUMO

Graphene-based vertical spin valves (SVs) are expected to offer a large magnetoresistance effect without impairing the electrical conductivity, which can pave the way for the next generation of high-speed and low-power-consumption storage and memory technologies. However, the graphene-based vertical SV has failed to prove its competence due to the lack of a graphene/ferromagnet heterostructure, which can provide highly efficient spin transport. Herein, the synthesis and spin-dependent electronic properties of a novel heterostructure consisting of single-layer graphene (SLG) and a half-metallic Co2 Fe(Ge0.5 Ga0.5 ) (CFGG) Heusler alloy ferromagnet are reported. The growth of high-quality SLG with complete coverage by ultrahigh-vacuum chemical vapor deposition on a magnetron-sputtered single-crystalline CFGG thin film is demonstrated. The quasi-free-standing nature of SLG and robust magnetism of CFGG at the SLG/CFGG interface are revealed through depth-resolved X-ray magnetic circular dichroism spectroscopy. Density functional theory (DFT) calculation results indicate that the inherent electronic properties of SLG and CFGG such as the linear Dirac band and half-metallic band structure are preserved in the vicinity of the interface. These exciting findings suggest that the SLG/CFGG heterostructure possesses distinctive advantages over other reported graphene/ferromagnet heterostructures, for realizing effective transport of highly spin-polarized electrons in graphene-based vertical SV and other advanced spintronic devices.

9.
J Phys Chem A ; 112(40): 9955-64, 2008 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-18785695

RESUMO

The quantum confinement effect (QCE) of linear junctions of silicon icosahedral quantum dots (IQD) and pentagonal nanowires (PNW) was studied using DFT and semiempirical AM1 methods. The formation of complex IQD/PNW structures leads to the localization of the HOMO and LUMO on different parts of the system and to a pronounced blue shift of the band gap; the typical QCE with a monotonic decrease of the band gap upon the system size breaks down. A simple one-electron one-dimensional Schrodinger equation model is proposed for the description and explanation of the unconventional quantum confinement behavior of silicon IQD/PNW systems. On the basis of the theoretical models, the experimentally discovered deviations from the typical QCE for nanocrystalline silicon are explained.


Assuntos
Nanofios/química , Silício/química , Elétrons , Pontos Quânticos , Teoria Quântica
10.
Nanoscale ; 9(6): 2369-2375, 2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28145546

RESUMO

We report the structural analysis and spin-dependent band structure of hydrogenated boron nitride adsorbed on Ni(111). The atomic displacement studied by using the normal incidence X-ray standing wave (NIXSW) technique supports the H-B(fcc):N(top) model, in which hydrogen atoms are site-selectively chemisorbed on boron atoms and N atoms remain on top of Ni atoms. The distance between the Ni plane and nitrogen plane did not change after hydrogenation, which implies that the interaction between Ni and N is 3d-π orbital mixing (donation and back-donation) even after hydrogenation of boron. The remaining π* peaks in near-edge X-ray absorption fine structure (NEXAFS) spectra are a manifestation of the rehybridization of sp2 into sp3 states, which is consistent with the N-B-N bonding angle derived from NIXSW measurement. The SPMDS measurement revealed the spin asymmetry appearing on hydrogenated h-BN, which was originated from a π related orbital with back donation from the Ni 3d state. Even though the atomic displacement is reproduced by the density functional theory (DFT) calculation with the H-B(fcc):N(top) model, the experimental spin-dependent band structure was not reproduced by DFT possibly due to the self-interaction error (SIE). These results reinforce the site-selective hydrogenation of boron and pave the way for efficient design of BN nanomaterials for hydrogen storage.

11.
Nanoscale ; 9(2): 621-630, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27942666

RESUMO

Half-metallic ferromagnetic materials with planar forms are promising for spintronics applications. A wide range of 2D lattices like graphene, h-BN, transition metal dichalcogenides, etc. are non-magnetic or weakly magnetic. Using first principles calculations, the existence of graphene-like hexagonal chromium nitride (h-CrN) with an almost flat atomically thin structure is predicted. We find that freestanding h-CrN has a 100% spin-polarized half-metallic nature with possible ferromagnetic ordering and a high rate of optical transparency. As a possible method for stabilization and synthesis, deposition of h-CrN on 2D MoSe2 or on MoS2 is proposed. The formation of composites retains the half-metallic properties and leads to the reduction of spin-down band gaps to 1.43 and 1.71 eV for energetically favorable h-CrN/MoSe2 and h-CrN/MoS2 configurations, respectively. Calculation of the dielectric functions of h-CrN, h-CrN/MoSe2 and h-CrN/MoS2 exhibit the high transparency of all three low-dimensional nanomaterials. The honeycomb CrN may be considered as a promising fundamental 2D material for a variety of potential applications of critical importance.

12.
ACS Nano ; 10(8): 7532-41, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27438899

RESUMO

The role of proximity contact with magnetic oxides is of particular interest from the expectations of the induced spin polarization and weak interactions at the graphene/magnetic oxide interfaces, which would allow us to achieve efficient spin-polarized injection in graphene-based spintronic devices. A combined approach of topmost-surface-sensitive spectroscopy utilizing spin-polarized metastable He atoms and ab initio calculations provides us direct evidence for the magnetic proximity effect in the junctions of single-layer graphene and half-metallic manganite La0.7Sr0.3MnO3 (LSMO). It is successfully demonstrated that in the graphene/LSMO junctions a sizable spin polarization is induced at the Fermi level of graphene in parallel to the spin polarization direction of LSMO without giving rise to a significant modification in the π band structure.

13.
ACS Nano ; 4(5): 2784-90, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20411911

RESUMO

The atomic structure and elastic properties of Y-shaped silicon nanowires of "fork"- and "bough"-types were theoretically studied, and effective Young moduli were calculated using Tersoff interatomic potential. The oscillation of fork Y-type branched nanowires with various branch lengths and diameters was studied. In the final stages of the bending, the formation of new bonds between different parts of the wires was observed. It was found that the stiffness of the nanowires is comparable with the stiffness of Y-shaped carbon nanotubes.


Assuntos
Elasticidade , Modelos Moleculares , Nanofios/química , Silício/química , Módulo de Elasticidade , Conformação Molecular , Estresse Mecânico
14.
J Phys Chem A ; 111(8): 1508-14, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17274606

RESUMO

The mechanism of interaction of low-energy atoms and ions of light elements (H, H+, He, Li, the kinetic energy of the particles 2-40 eV) with C6H6, C6F12, C60, and C60F48 molecules was studied by ab initio MD simulations and quantum-chemical calculations. It was shown that starting from 6 A from the carbon skeleton for the "C6H6 + proton" and "C60 + proton" systems, the electronic charge transfer from the aromatic molecule to H+ occurs with a probability close to 1. The process transforms the H+ to a hydrogen atom and the neutral C6H6 and C60 molecules to cation radicals. The mechanism of interaction of low-energy protons with C6F12 and C60F48 molecules has a substantially different character and can be considered qualitatively as the interaction between a neutral molecule and a point charge. The Coulomb perturbation of the system arising from the interaction of the uncompensated proton charge with the Mulliken charges of fluorine atoms results in an inversion of the energies of the electronic states localized on the proton and on the C6F12 and C60F48 molecules and makes the electronic charge transfer energetically unfavorable. On the different levels of theory, the barriers of the proton penetration for the C6F12 and C60F48 molecules are from two to four times lower than those for the corresponding parent systems (C6H6 and C60). The penetration barriers of the He atom and Li+ ion depend mainly on the effective radii of the bombarding particles. The theoretical penetration and escaped barriers for the "Li+ + C60" process qualitatively explain the experimental conditions of synthesis of the Li@C60 complex.

15.
J Phys Chem A ; 109(28): 6294-302, 2005 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16833971

RESUMO

The reaction paths for formation and isomerization of a set of silica SimOn (m = 2,3, n = 1-5) nanoclusters have been investigated using second-order perturbation theory (MP2) with the 6-31G(d) basis set. The MP2/6-31G(d) calculations have predicted singlet ground states for all clusters excluding Si3O2. The total energies of the most important points on the potential energy surfaces (PES) have been determined using the completely renormalized (CR) singles and doubles coupled cluster method including perturbative triples, CR-CCSD(T) with the cc-pVTZ basis set. Although transition states have been located for many isomerization reactions, only for Si3O3 and Si3O4 have some transition states been found for the formation of a cluster from the separated reactants. In all other cases, the process of formation of SimOn clusters appears to proceed without potential energy barriers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa