Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neuroimage ; 205: 116278, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31614221

RESUMO

Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, we report the reproducible identification of several large-scale resting-state networks (RSN), including a mouse default-mode network, in the majority of datasets. A combination of factors was associated with enhanced reproducibility in functional connectivity parameter estimation, including animal handling procedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that can critically guide the design and analysis of future rodent rsfMRI investigations.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Animais , Encéfalo/diagnóstico por imagem , Conectoma/normas , Feminino , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/diagnóstico por imagem , Reprodutibilidade dos Testes
2.
Neuroimage Clin ; 21: 101606, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30503215

RESUMO

Obesity is recognized as a significant risk factor for Alzheimer's disease (AD). Studies have supported that obesity accelerates AD-related pathophysiology and memory impairment in mouse models of AD. However, the nature of the brain structure-behaviour relationship mediating this acceleration remains unclear. In this manuscript we evaluated the impact of adolescent obesity on the brain morphology of the triple transgenic mouse model of AD (3xTg) and a non-transgenic control model of the same background strain (B6129s) using longitudinally acquired structural magnetic resonance imaging (MRI). At 8 weeks of age, animals were placed on a high-fat diet (HFD) or an ingredient-equivalent control diet (CD). Structural images were acquired at 8, 16, and 24 weeks. At 25 weeks, animals underwent the novel object recognition (NOR) task and the Morris water maze (MWM) to assess short-term non-associative memory and spatial memory, respectively. All analyses were carried out across four groups: B6129s-CD and -HFD and 3xTg-CD and -HFD. Neuroanatomical changes in MRI-derived brain morphology were assessed using volumetric and deformation-based analyses. HFD-induced obesity during adolescence exacerbated brain volume alterations by adult life in the 3xTg mouse model in comparison to control-fed mice and mediated volumetric alterations of select brain regions, such as the hippocampus. Further, HFD-induced obesity aggravated memory in all mice, lowering certain memory measures of B6129s control mice to the level of 3xTg mice maintained on a CD. Moreover, decline in the volumetric trajectories of hippocampal regions for all mice were associated with the degree of spatial memory impairments on the MWM. Our results suggest that obesity may interact with the brain changes associated with AD-related pathology in the 3xTg mouse model to aggravate brain atrophy and memory impairments and similarly impair brain structural integrity and memory capacity of non-transgenic mice. Further insight into this process may have significant implications in the development of lifestyle interventions for treatment of AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Comportamento Animal/fisiologia , Disfunção Cognitiva/fisiopatologia , Dieta Hiperlipídica , Neuroimagem , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/patologia , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Feminino , Imageamento por Ressonância Magnética/métodos , Masculino , Transtornos da Memória/fisiopatologia , Memória de Curto Prazo/fisiologia , Camundongos , Memória Espacial/fisiologia , Proteínas tau/metabolismo
3.
Brain Struct Funct ; 223(7): 3365-3382, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948190

RESUMO

Animal models of Alzheimer's disease (AD) can be used to determine the progressive neurodegeneration characteristics of AD in vivo using magnetic resonance imaging (MRI). Given the need for therapeutic interventions before the onset of frank AD, it is critical to examine if AD models demonstrate neuroanatomical remodeling in an equivalent preclinical phase. This manuscript examines the trajectories of brain and behavioural changes in the Triple transgenic mouse model (3xTg) prior to the development of AD-like behaviours. The 3xTg mimics both ß-amyloid plaques and neurofibrillary tangles through three mutations associated with familial AD, namely: PS1M146V, APPSwe, and tauP301L transgenes. We performed detailed investigation using longitudinal structural MRI at 6, 8, 12, 16, 20, and 24 weeks old to assess neuroanatomical changes using volumetric and deformation-based analyses. Learning- and memory-related behaviour were assessed through the Morris water maze at 9, 17, and 25 weeks of age. There was the absence of major memory deficits with the notable exception of water maze conducted at 17 weeks old, where 3xTg group spent significantly less time in the quadrant of interest in the probe trial. Through volumetric and deformation-based analyses, we observed relative decrease over time in the 3xTg group in the third ventricle, piriform cortex, fornix, and fimbria relative to the control group. We also observed decreases over time in the control mice in the hippocampus, entorhinal cortex, cerebellum, and olfactory bulb. In many of these cases, we note a delay in the attainment of peak volume in the 3xTgs relative to the control group, suggesting a possible neurodevelopmental and maturational delay given the likely over-expression of AD-related pathology from birth. Importantly, neuroanatomical alterations are observed prior to the manifestation of AD-like behaviours, suggesting that mutated amyloid and tau are, indeed, sufficient to cause changes in the neuroanatomy in 3xTg mice, but potentially insufficient to be responsible for behavioural changes in the earlier stages of life.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Comportamento Animal , Encéfalo/diagnóstico por imagem , Aprendizagem , Imageamento por Ressonância Magnética , Fatores Etários , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/patologia , Feminino , Predisposição Genética para Doença , Masculino , Aprendizagem em Labirinto , Memória , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/patologia , Fenótipo , Placa Amiloide , Presenilina-1/genética , Fatores de Tempo , Proteínas tau/genética
4.
Front Psychiatry ; 5: 170, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538632

RESUMO

Comorbidity is a major issue in psychiatry that notably associates with more severe symptoms, longer illness duration, and higher service utilization. Therefore, identifying key clusters of comorbidity and exploring the underlying pathophysiological mechanisms represent important steps toward improving mental health care. In the present review, we focus on the frequent association between addiction and depression. In particular, we summarize the large body of evidence from preclinical models indicating that the kappa opioid receptor (KOR), a member of the opioid neuromodulatory system, represents a central player in the regulation of both reward and mood processes. Current data suggest that the KOR modulates overlapping neuronal networks linking brainstem monoaminergic nuclei with forebrain limbic structures. Rewarding properties of both drugs of abuse and natural stimuli, as well as the neurobiological effects of stressful experiences, strongly interact at the level of KOR signaling. In addiction models, activity of the KOR is potentiated by stressors and critically controls drug-seeking and relapse. In depression paradigms, KOR signaling is responsive to a variety of stressors, and mediates despair-like responses. Altogether, the KOR represents a prototypical substrate of comorbidity, whereby life experiences converge upon common brain mechanisms to trigger behavioral dysregulation and increased risk for distinct but interacting psychopathologies.

5.
Neuropsychopharmacology ; 39(11): 2694-705, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24874714

RESUMO

Addiction is a chronic disorder involving recurring intoxication, withdrawal, and craving episodes. Escaping this vicious cycle requires maintenance of abstinence for extended periods of time and is a true challenge for addicted individuals. The emergence of depressive symptoms, including social withdrawal, is considered a main cause for relapse, but underlying mechanisms are poorly understood. Here we establish a mouse model of protracted abstinence to heroin, a major abused opiate, where both emotional and working memory deficits unfold. We show that delta and kappa opioid receptor (DOR and KOR, respectively) knockout mice develop either stronger or reduced emotional disruption during heroin abstinence, establishing DOR and KOR activities as protective and vulnerability factors, respectively, that regulate the severity of abstinence. Further, we found that chronic treatment with the antidepressant drug fluoxetine prevents emergence of low sociability, with no impact on the working memory deficit, implicating serotonergic mechanisms predominantly in emotional aspects of abstinence symptoms. Finally, targeting the main serotonergic brain structure, we show that gene knockout of mu opioid receptors (MORs) in the dorsal raphe nucleus (DRN) before heroin exposure abolishes the development of social withdrawal. This is the first result demonstrating that intermittent chronic MOR activation at the level of DRN represents an essential mechanism contributing to low sociability during protracted heroin abstinence. Altogether, our findings reveal crucial and distinct roles for all three opioid receptors in the development of emotional alterations that follow a history of heroin exposure and open the way towards understanding opioid system-mediated serotonin homeostasis in heroin abuse.


Assuntos
Dependência de Heroína/fisiopatologia , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Comportamento Social , Síndrome de Abstinência a Substâncias/fisiopatologia , Animais , Antidepressivos de Segunda Geração/farmacologia , Depressão/metabolismo , Modelos Animais de Doenças , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Fluoxetina/farmacologia , Heroína/farmacologia , Dependência de Heroína/psicologia , Masculino , Transtornos da Memória/fisiopatologia , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Entorpecentes/farmacologia , Receptores Opioides kappa/genética , Receptores Opioides mu/genética , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/psicologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa