Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(9): e3002311, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37695771

RESUMO

Noncommunicable diseases (NCDs) are on the rise worldwide. Obesity, cardiovascular disease, and type 2 diabetes are among a long list of "lifestyle" diseases that were rare throughout human history but are now common. The evolutionary mismatch hypothesis posits that humans evolved in environments that radically differ from those we currently experience; consequently, traits that were once advantageous may now be "mismatched" and disease causing. At the genetic level, this hypothesis predicts that loci with a history of selection will exhibit "genotype by environment" (GxE) interactions, with different health effects in "ancestral" versus "modern" environments. To identify such loci, we advocate for combining genomic tools in partnership with subsistence-level groups experiencing rapid lifestyle change. In these populations, comparisons of individuals falling on opposite extremes of the "matched" to "mismatched" spectrum are uniquely possible. More broadly, the work we propose will inform our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and cultures.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Suscetibilidade a Doenças , Diabetes Mellitus Tipo 2/genética , Evolução Biológica , Genômica
2.
PLoS Genet ; 19(7): e1010833, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410774

RESUMO

Gene expression variance has been linked to organismal function and fitness but remains a commonly neglected aspect of molecular research. As a result, we lack a comprehensive understanding of the patterns of transcriptional variance across genes, and how this variance is linked to context-specific gene regulation and gene function. Here, we use 57 large publicly available RNA-seq data sets to investigate the landscape of gene expression variance. These studies cover a wide range of tissues and allowed us to assess if there are consistently more or less variable genes across tissues and data sets and what mechanisms drive these patterns. We show that gene expression variance is broadly similar across tissues and studies, indicating that the pattern of transcriptional variance is consistent. We use this similarity to create both global and within-tissue rankings of variation, which we use to show that function, sequence variation, and gene regulatory signatures contribute to gene expression variance. Low-variance genes are associated with fundamental cell processes and have lower levels of genetic polymorphisms, have higher gene-gene connectivity, and tend to be associated with chromatin states associated with transcription. In contrast, high-variance genes are enriched for genes involved in immune response, environmentally responsive genes, immediate early genes, and are associated with higher levels of polymorphisms. These results show that the pattern of transcriptional variance is not noise. Instead, it is a consistent gene trait that seems to be functionally constrained in human populations. Furthermore, this commonly neglected aspect of molecular phenotypic variation harbors important information to understand complex traits and disease.


Assuntos
Regulação da Expressão Gênica , Humanos , Regulação da Expressão Gênica/genética , RNA-Seq , Fenótipo , Expressão Gênica
3.
Proc Natl Acad Sci U S A ; 120(1): e2207544120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574663

RESUMO

A growing body of work has addressed human adaptations to diverse environments using genomic data, but few studies have connected putatively selected alleles to phenotypes, much less among underrepresented populations such as Amerindians. Studies of natural selection and genotype-phenotype relationships in underrepresented populations hold potential to uncover previously undescribed loci underlying evolutionarily and biomedically relevant traits. Here, we worked with the Tsimane and the Moseten, two Amerindian populations inhabiting the Bolivian lowlands. We focused most intensively on the Tsimane, because long-term anthropological work with this group has shown that they have a high burden of both macro and microparasites, as well as minimal cardiometabolic disease or dementia. We therefore generated genome-wide genotype data for Tsimane individuals to study natural selection, and paired this with blood mRNA-seq as well as cardiometabolic and immune biomarker data generated from a larger sample that included both populations. In the Tsimane, we identified 21 regions that are candidates for selective sweeps, as well as 5 immune traits that show evidence for polygenic selection (e.g., C-reactive protein levels and the response to coronaviruses). Genes overlapping candidate regions were strongly enriched for known involvement in immune-related traits, such as abundance of lymphocytes and eosinophils. Importantly, we were also able to draw on extensive phenotype information for the Tsimane and Moseten and link five regions (containing PSD4, MUC21 and MUC22, TOX2, ANXA6, and ABCA1) with biomarkers of immune and metabolic function. Together, our work highlights the utility of pairing evolutionary analyses with anthropological and biomedical data to gain insight into the genetic basis of health-related traits.


Assuntos
Genética Populacional , Nível de Saúde , Humanos , Biomarcadores , Bolívia , Genômica , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Genoma Humano
4.
Genome Res ; 32(10): 1826-1839, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36229124

RESUMO

There is increasing appreciation that, in addition to being shaped by an individual's genotype and environment, most complex traits are also determined by poorly understood interactions between these two factors. So-called "genotype × environment" (G×E) interactions remain difficult to map at the organismal level but can be uncovered using molecular phenotypes. To do so at large scale, we used TM3'seq to profile transcriptomes across 12 cellular environments in 544 immortalized B cell lines from the 1000 Genomes Project. We mapped the genetic basis of gene expression levels across environments and revealed a context-dependent genetic architecture: The average heritability of gene expression levels increased in treatment relative to control conditions, and on average, each treatment revealed new expression quantitative trait loci (eQTLs) at 11% of genes. Across our experiments, 22% of all identified eQTLs were context-dependent, and this group was enriched for trait- and disease-associated loci. Further, evolutionary analyses suggested that positive selection has shaped G×E loci involved in responding to immune challenges and hormones but not to man-made chemicals. We hypothesize that this reflects a reduced opportunity for selection to act on responses to molecules recently introduced into human environments. Together, our work highlights the importance of considering an exposure's evolutionary history when studying and interpreting G×E interactions, and provides new insight into the evolutionary mechanisms that maintain G×E loci in human populations.


Assuntos
Locos de Características Quantitativas , Transcriptoma , Humanos , Fenótipo , Genótipo
5.
Mol Ecol ; 33(11): e17370, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38682799

RESUMO

The composition of mammalian gut microbiomes is highly conserved within species, yet the mechanisms by which microbiome composition is transmitted and maintained within lineages of wild animals remain unclear. Mutually compatible hypotheses exist, including that microbiome fidelity results from inherited dietary habits, shared environmental exposure, morphophysiological filtering and/or maternal effects. Interspecific hybrids are a promising system in which to interrogate the determinants of microbiome composition because hybrids can decouple traits and processes that are otherwise co-inherited in their parent species. We used a population of free-living hybrid zebras (Equus quagga × grevyi) in Kenya to evaluate the roles of these four mechanisms in regulating microbiome composition. We analysed faecal DNA for both the trnL-P6 and the 16S rRNA V4 region to characterize the diets and microbiomes of the hybrid zebra and of their parent species, plains zebra (E. quagga) and Grevy's zebra (E. grevyi). We found that both diet and microbiome composition clustered by species, and that hybrid diets and microbiomes were largely nested within those of the maternal species, plains zebra. Hybrid microbiomes were less variable than those of either parent species where they co-occurred. Diet and microbiome composition were strongly correlated, although the strength of this correlation varied between species. These patterns are most consistent with the maternal-effects hypothesis, somewhat consistent with the diet hypothesis, and largely inconsistent with the environmental-sourcing and morphophysiological-filtering hypotheses. Maternal transmittance likely operates in conjunction with inherited feeding habits to conserve microbiome composition within species.


Assuntos
Dieta , Equidae , Fezes , Microbioma Gastrointestinal , RNA Ribossômico 16S , Animais , RNA Ribossômico 16S/genética , Quênia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Equidae/microbiologia , Hibridização Genética , Feminino , Microbiota/genética , Masculino
6.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34497122

RESUMO

Some of the most spectacular adaptive radiations begin with founder populations on remote islands. How genetically limited founder populations give rise to the striking phenotypic and ecological diversity characteristic of adaptive radiations is a paradox of evolutionary biology. We conducted an evolutionary genomics analysis of genus Metrosideros, a landscape-dominant, incipient adaptive radiation of woody plants that spans a striking range of phenotypes and environments across the Hawaiian Islands. Using nanopore-sequencing, we created a chromosome-level genome assembly for Metrosideros polymorpha var. incana and analyzed whole-genome sequences of 131 individuals from 11 taxa sampled across the islands. Demographic modeling and population genomics analyses suggested that Hawaiian Metrosideros originated from a single colonization event and subsequently spread across the archipelago following the formation of new islands. The evolutionary history of Hawaiian Metrosideros shows evidence of extensive reticulation associated with significant sharing of ancestral variation between taxa and secondarily with admixture. Taking advantage of the highly contiguous genome assembly, we investigated the genomic architecture underlying the adaptive radiation and discovered that divergent selection drove the formation of differentiation outliers in paired taxa representing early stages of speciation/divergence. Analysis of the evolutionary origins of the outlier single nucleotide polymorphisms (SNPs) showed enrichment for ancestral variations under divergent selection. Our findings suggest that Hawaiian Metrosideros possesses an unexpectedly rich pool of ancestral genetic variation, and the reassortment of these variations has fueled the island adaptive radiation.


Assuntos
Adaptação Fisiológica , Evolução Molecular , Especiação Genética , Myrtaceae/fisiologia , Polimorfismo Genético , Tolerância a Radiação , Radiação Ionizante , Genética Populacional , Myrtaceae/efeitos da radiação , Fenótipo
7.
PLoS Genet ; 16(10): e1009165, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33104702

RESUMO

BACKGROUND: The majority of quantitative genetic models used to map complex traits assume that alleles have similar effects across all individuals. Significant evidence suggests, however, that epistatic interactions modulate the impact of many alleles. Nevertheless, identifying epistatic interactions remains computationally and statistically challenging. In this work, we address some of these challenges by developing a statistical test for polygenic epistasis that determines whether the effect of an allele is altered by the global genetic ancestry proportion from distinct progenitors. RESULTS: We applied our method to data from mice and yeast. For the mice, we observed 49 significant genotype-by-ancestry interaction associations across 14 phenotypes as well as over 1,400 Bonferroni-corrected genotype-by-ancestry interaction associations for mouse gene expression data. For the yeast, we observed 92 significant genotype-by-ancestry interactions across 38 phenotypes. Given this evidence of epistasis, we test for and observe evidence of rapid selection pressure on ancestry specific polymorphisms within one of the cohorts, consistent with epistatic selection. CONCLUSIONS: Unlike our prior work in human populations, we observe widespread evidence of ancestry-modified SNP effects, perhaps reflecting the greater divergence present in crosses using mice and yeast.


Assuntos
Epistasia Genética , Evolução Molecular , Herança Multifatorial/genética , Seleção Genética/genética , Alelos , Animais , Genótipo , Humanos , Camundongos , Modelos Genéticos , Fenótipo , Locos de Características Quantitativas/genética , Saccharomyces cerevisiae/genética
8.
Mol Ecol ; 31(22): 5861-5871, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36094780

RESUMO

Microbiomes affect many aspects of host biology, but the eco-evolutionary forces that shape their diversity in natural populations remain poorly understood. Geographical gradients, such as latitudinal clines, generate predictable patterns in biodiversity at macroecological scales, but whether these macroscale processes apply to host-microbiome interactions is an open question. To address this question, we sampled the microbiomes of 13 natural populations of Drosophila melanogaster along a latitudinal cline in the eastern United States. The microbiomes were surprisingly consistent across the cline, as latitude did not predict either alpha or beta diversity. Only a narrow taxonomic range of bacteria were present in all microbiomes, indicating that strict taxonomic filtering by the host and neutral ecological dynamics are the primary factors shaping the fly microbiome. Our findings reveal the complexity of eco-evolutionary interactions shaping microbial variation in D. melanogaster and highlight the need for additional sampling of the microbiomes in natural populations along environmental gradients.


Assuntos
Drosophila melanogaster , Microbiota , Animais , Estados Unidos , Drosophila melanogaster/genética , Variação Genética , Evolução Biológica , Geografia , Microbiota/genética
9.
BMC Microbiol ; 21(1): 108, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836662

RESUMO

BACKGROUND: Experimental evolution has a long history of uncovering fundamental insights into evolutionary processes, but has largely neglected one underappreciated component--the microbiome. As eukaryotic hosts evolve, the microbiome may also respond to selection. However, the microbial contribution to host evolution remains poorly understood. Here, we re-analyzed genomic data to characterize the metagenomes from ten Evolve and Resequence (E&R) experiments in Drosophila melanogaster to determine how the microbiome changed in response to host selection. RESULTS: Bacterial diversity was significantly different in 5/10 studies, primarily in traits associated with metabolism or immunity. Duration of selection did not significantly influence bacterial diversity, highlighting the importance of associations with specific host traits. CONCLUSIONS: Our genomic re-analysis suggests the microbiome often responds to host selection; thus, the microbiome may contribute to the response of Drosophila in E&R experiments. We outline important considerations for incorporating the microbiome into E&R experiments. The E&R approach may provide critical insights into host-microbiome interactions and fundamental insight into the genomic basis of adaptation.


Assuntos
Drosophila melanogaster/microbiologia , Evolução Molecular , Interações entre Hospedeiro e Microrganismos/fisiologia , Adaptação Fisiológica , Animais , Bactérias/genética , Biodiversidade , Microbiota/genética , Seleção Genética
10.
PLoS Genet ; 14(4): e1007341, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29684059

RESUMO

Hybridization and gene flow between species appears to be common. Even though it is clear that hybridization is widespread across all surveyed taxonomic groups, the magnitude and consequences of introgression are still largely unknown. Thus it is crucial to develop the statistical machinery required to uncover which genomic regions have recently acquired haplotypes via introgression from a sister population. We developed a novel machine learning framework, called FILET (Finding Introgressed Loci via Extra-Trees) capable of revealing genomic introgression with far greater power than competing methods. FILET works by combining information from a number of population genetic summary statistics, including several new statistics that we introduce, that capture patterns of variation across two populations. We show that FILET is able to identify loci that have experienced gene flow between related species with high accuracy, and in most situations can correctly infer which population was the donor and which was the recipient. Here we describe a data set of outbred diploid Drosophila sechellia genomes, and combine them with data from D. simulans to examine recent introgression between these species using FILET. Although we find that these populations may have split more recently than previously appreciated, FILET confirms that there has indeed been appreciable recent introgression (some of which might have been adaptive) between these species, and reveals that this gene flow is primarily in the direction of D. simulans to D. sechellia.


Assuntos
Drosophila simulans/genética , Drosophila/genética , Genoma de Inseto , Aprendizado de Máquina Supervisionado , Animais , Simulação por Computador , Drosophila/classificação , Drosophila simulans/classificação , Evolução Molecular , Fluxo Gênico , Especiação Genética , Variação Genética , Genética Populacional , Haplótipos , Hibridização Genética , Modelos Genéticos , Software , Especificidade da Espécie , Aprendizado de Máquina Supervisionado/estatística & dados numéricos
11.
Bioinformatics ; 35(2): 200-210, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29982387

RESUMO

Motivation: Identifying variants, both discrete and continuous, that are associated with quantitative traits, or QTs, is the primary focus of quantitative genetics. Most current methods are limited to identifying mean effects, or associations between genotype or covariates and the mean value of a quantitative trait. It is possible, however, that a variant may affect the variance of the quantitative trait in lieu of, or in addition to, affecting the trait mean. Here, we develop a general methodology to identify covariates with variance effects on a quantitative trait using a Bayesian heteroskedastic linear regression model (BTH). We compare BTH with existing methods to detect variance effects across a large range of simulations drawn from scenarios common to the analysis of quantitative traits. Results: We find that BTH and a double generalized linear model (dglm) outperform classical tests used for detecting variance effects in recent genomic studies. We show BTH and dglm are less likely to generate spurious discoveries through simulations and application to identifying methylation variance QTs and expression variance QTs. We identify four variance effects of sex in the Cardiovascular and Pharmacogenetics study. Our work is the first to offer a comprehensive view of variance identifying methodology. We identify shortcomings in previously used methodology and provide a more conservative and robust alternative. We extend variance effect analysis to a wide array of covariates that enables a new statistical dimension in the study of sex and age specific quantitative trait effects. Availability and implementation: https://github.com/b2du/bth. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Teorema de Bayes , Genômica/métodos , Modelos Lineares , Modelos Genéticos , Locos de Características Quantitativas , Análise de Variância , Biologia Computacional , Humanos , Fenótipo
12.
Nature ; 504(7478): 135-7, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24196712

RESUMO

The importance of epistasis--non-additive interactions between alleles--in shaping population fitness has long been a controversial topic, hampered in part by lack of empirical evidence. Traditionally, epistasis is inferred on the basis of non-independence of genotypic values between loci for a given trait. However, epistasis for fitness should also have a genomic footprint. To capture this signal, we have developed a simple approach that relies on detecting genotype ratio distortion as a sign of epistasis, and we apply this method to a large panel of Drosophila melanogaster recombinant inbred lines. Here we confirm experimentally that instances of genotype ratio distortion represent loci with epistatic fitness effects; we conservatively estimate that any two haploid genomes in this study are expected to harbour 1.15 pairs of epistatically interacting alleles. This observation has important implications for speciation genetics, as it indicates that the raw material to drive reproductive isolation is segregating contemporaneously within species and does not necessarily require, as proposed by the Dobzhansky-Muller model, the emergence of incompatible mutations independently derived and fixed in allopatry. The relevance of our result extends beyond speciation, as it demonstrates that epistasis is widespread but that it may often go undetected owing to lack of statistical power or lack of genome-wide scope of the experiments.


Assuntos
Drosophila melanogaster/genética , Epistasia Genética/genética , Genoma/genética , Alelos , Animais , Arabidopsis/genética , Especiação Genética , Genótipo , Mutação , Zea mays/genética
13.
Nature ; 482(7384): 173-8, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22318601

RESUMO

A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype-phenotype map were based on incomplete genotypic information. Here, we describe the Drosophila melanogaster Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the X chromosome, evidence for positive and negative selection, and rapid evolution of the X chromosome. Many variants in novel genes, most at low frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP facilitates genotype-phenotype mapping using the power of Drosophila genetics.


Assuntos
Drosophila melanogaster/genética , Estudo de Associação Genômica Ampla , Genômica , Locos de Características Quantitativas/genética , Alelos , Animais , Centrômero/genética , Cromossomos de Insetos/genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética/genética , Inanição/genética , Telômero/genética , Cromossomo X/genética
14.
Proc Natl Acad Sci U S A ; 112(21): 6706-11, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25953335

RESUMO

Quantitative genetics has primarily focused on describing genetic effects on trait means and largely ignored the effect of alternative alleles on trait variability, potentially missing an important axis of genetic variation contributing to phenotypic differences among individuals. To study the genetic effects on individual-to-individual phenotypic variability (or intragenotypic variability), we used Drosophila inbred lines and measured the spontaneous locomotor behavior of flies walking individually in Y-shaped mazes, focusing on variability in locomotor handedness, an assay optimized to measure variability. We discovered that some lines had consistently high levels of intragenotypic variability among individuals, whereas lines with low variability behaved as although they tossed a coin at each left/right turn decision. We demonstrate that the degree of variability is itself heritable. Using a genome-wide association study (GWAS) for the degree of intragenotypic variability as the phenotype across lines, we identified several genes expressed in the brain that affect variability in handedness without affecting the mean. One of these genes, Ten-a, implicates a neuropil in the central complex of the fly brain as influencing the magnitude of behavioral variability, a brain region involved in sensory integration and locomotor coordination. We validated these results using genetic deficiencies, null alleles, and inducible RNAi transgenes. Our study reveals the constellation of phenotypes that can arise from a single genotype and shows that different genetic backgrounds differ dramatically in their propensity for phenotypic variabililty. Because traditional mean-focused GWASs ignore the contribution of variability to overall phenotypic variation, current methods may miss important links between genotype and phenotype.


Assuntos
Comportamento Animal/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Animais , Animais Geneticamente Modificados , Encéfalo/fisiologia , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Genes de Insetos , Variação Genética , Estudo de Associação Genômica Ampla , Endogamia , Locomoção/genética , Locomoção/fisiologia , Masculino , Fenótipo , Locos de Características Quantitativas , Interferência de RNA , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia
15.
Nat Rev Genet ; 10(8): 565-77, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19584810

RESUMO

A major challenge in current biology is to understand the genetic basis of variation for quantitative traits. We review the principles of quantitative trait locus mapping and summarize insights about the genetic architecture of quantitative traits that have been obtained over the past decades. We are currently in the midst of a genomic revolution, which enables us to incorporate genetic variation in transcript abundance and other intermediate molecular phenotypes into a quantitative trait locus mapping framework. This systems genetics approach enables us to understand the biology inside the 'black box' that lies between genotype and phenotype in terms of causal networks of interacting genes.


Assuntos
Ligação Genética , Característica Quantitativa Herdável , Animais , Mapeamento Cromossômico , Humanos
16.
PLoS Genet ; 8(11): e1003055, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23189034

RESUMO

Understanding the relationship between genetic and phenotypic variation is one of the great outstanding challenges in biology. To meet this challenge, comprehensive genomic variation maps of human as well as of model organism populations are required. Here, we present a nucleotide resolution catalog of single-nucleotide, multi-nucleotide, and structural variants in 39 Drosophila melanogaster Genetic Reference Panel inbred lines. Using an integrative, local assembly-based approach for variant discovery, we identify more than 3.6 million distinct variants, among which were more than 800,000 unique insertions, deletions (indels), and complex variants (1 to 6,000 bp). While the SNP density is higher near other variants, we find that variants themselves are not mutagenic, nor are regions with high variant density particularly mutation-prone. Rather, our data suggest that the elevated SNP density around variants is mainly due to population-level processes. We also provide insights into the regulatory architecture of gene expression variation in adult flies by mapping cis-expression quantitative trait loci (cis-eQTLs) for more than 2,000 genes. Indels comprise around 10% of all cis-eQTLs and show larger effects than SNP cis-eQTLs. In addition, we identified two-fold more gene associations in males as compared to females and found that most cis-eQTLs are sex-specific, revealing a partial decoupling of the genomic architecture between the sexes as well as the importance of genetic factors in mediating sex-biased gene expression. Finally, we performed RNA-seq-based allelic expression imbalance analyses in the offspring of crosses between sequenced lines, which revealed that the majority of strong cis-eQTLs can be validated in heterozygous individuals.


Assuntos
Drosophila melanogaster/genética , Expressão Gênica , Variação Genética , Genoma , Desequilíbrio Alélico/genética , Animais , Mapeamento Cromossômico , Mutação INDEL , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
17.
PLoS Genet ; 8(5): e1002685, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22570636

RESUMO

Predicting organismal phenotypes from genotype data is important for plant and animal breeding, medicine, and evolutionary biology. Genomic-based phenotype prediction has been applied for single-nucleotide polymorphism (SNP) genotyping platforms, but not using complete genome sequences. Here, we report genomic prediction for starvation stress resistance and startle response in Drosophila melanogaster, using ∼2.5 million SNPs determined by sequencing the Drosophila Genetic Reference Panel population of inbred lines. We constructed a genomic relationship matrix from the SNP data and used it in a genomic best linear unbiased prediction (GBLUP) model. We assessed predictive ability as the correlation between predicted genetic values and observed phenotypes by cross-validation, and found a predictive ability of 0.239±0.008 (0.230±0.012) for starvation resistance (startle response). The predictive ability of BayesB, a Bayesian method with internal SNP selection, was not greater than GBLUP. Selection of the 5% SNPs with either the highest absolute effect or variance explained did not improve predictive ability. Predictive ability decreased only when fewer than 150,000 SNPs were used to construct the genomic relationship matrix. We hypothesize that predictive power in this population stems from the SNP-based modeling of the subtle relationship structure caused by long-range linkage disequilibrium and not from population structure or SNPs in linkage disequilibrium with causal variants. We discuss the implications of these results for genomic prediction in other organisms.


Assuntos
Drosophila melanogaster/genética , Genoma de Inseto , Genótipo , Locos de Características Quantitativas , Animais , Teorema de Bayes , Mapeamento Cromossômico , Genética Populacional , Desequilíbrio de Ligação , Modelos Genéticos , Modelos Teóricos , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Análise de Sequência de DNA
18.
Proc Natl Acad Sci U S A ; 109(39): 15553-9, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22949659

RESUMO

Epistasis-nonlinear genetic interactions between polymorphic loci-is the genetic basis of canalization and speciation, and epistatic interactions can be used to infer genetic networks affecting quantitative traits. However, the role that epistasis plays in the genetic architecture of quantitative traits is controversial. Here, we compared the genetic architecture of three Drosophila life history traits in the sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and a large outbred, advanced intercross population derived from 40 DGRP lines (Flyland). We assessed allele frequency changes between pools of individuals at the extremes of the distribution for each trait in the Flyland population by deep DNA sequencing. The genetic architecture of all traits was highly polygenic in both analyses. Surprisingly, none of the SNPs associated with the traits in Flyland replicated in the DGRP and vice versa. However, the majority of these SNPs participated in at least one epistatic interaction in the DGRP. Despite apparent additive effects at largely distinct loci in the two populations, the epistatic interactions perturbed common, biologically plausible, and highly connected genetic networks. Our analysis underscores the importance of epistasis as a principal factor that determines variation for quantitative traits and provides a means to uncover genetic networks affecting these traits. Knowledge of epistatic networks will contribute to our understanding of the genetic basis of evolutionarily and clinically important traits and enhance predictive ability at an individualized level in medicine and agriculture.


Assuntos
Epistasia Genética/fisiologia , Genes de Insetos/fisiologia , Característica Quantitativa Herdável , Animais , Drosophila melanogaster , Polimorfismo de Nucleotídeo Único
19.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37398186

RESUMO

Finding communities in gene co-expression networks is a common first step toward extracting biological insight from these complex datasets. Most community detection algorithms expect genes to be organized into assortative modules, that is, groups of genes that are more associated with each other than with genes in other groups. While it is reasonable to expect that these modules exist, using methods that assume they exist a priori is risky, as it guarantees that alternative organizations of gene interactions will be ignored. Here, we ask: can we find meaningful communities without imposing a modular organization on gene co-expression networks, and how modular are these communities? For this, we use a recently developed community detection method, the weighted degree corrected stochastic block model (SBM), that does not assume that assortative modules exist. Instead, the SBM attempts to efficiently use all information contained in the co-expression network to separate the genes into hierarchically organized blocks of genes. Using RNA-seq gene expression data measured in two tissues derived from an outbred population of Drosophila melanogaster , we show that (a) the SBM is able to find ten times as many groups as competing methods, that (b) several of those gene groups are not modular, and that (c) the functional enrichment for non-modular groups is as strong as for modular communities. These results show that the transcriptome is structured in more complex ways than traditionally thought and that we should revisit the long-standing assumption that modularity is the main driver of the structuring of gene co-expression networks.

20.
Genome Biol ; 25(1): 21, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225662

RESUMO

BACKGROUND: Current evidence suggests that cis-regulatory elements controlling gene expression may be the predominant target of natural selection in humans and other species. Detecting selection acting on these elements is critical to understanding evolution but remains challenging because we do not know which mutations will affect gene regulation. RESULTS: To address this, we devise an approach to search for lineage-specific selection on three critical steps in transcriptional regulation: chromatin activity, transcription factor binding, and chromosomal looping. Applying this approach to lymphoblastoid cells from 831 individuals of either European or African descent, we find strong signals of differential chromatin activity linked to gene expression differences between ancestries in numerous contexts, but no evidence of functional differences in chromosomal looping. Moreover, we show that enhancers rather than promoters display the strongest signs of selection associated with sites of differential transcription factor binding. CONCLUSIONS: Overall, our study indicates that some cis-regulatory adaptation may be more easily detected at the level of chromatin than DNA sequence. This work provides a vast resource of genomic interaction data from diverse human populations and establishes a novel selection test that will benefit future study of regulatory evolution in humans and other species.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Humanos , Cromatina/genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa