Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904865

RESUMO

Person re-identification, or simply re-id, is the task of identifying again a person who has been seen in the past by a perception system. Multiple robotic applications, such as tracking or navigate-and-seek, use re-identification systems to perform their tasks. To solve the re-id problem, a common practice consists in using a gallery with relevant information about the people already observed. The construction of this gallery is a costly process, typically performed offline and only once because of the problems associated with labeling and storing new data as they arrive in the system. The resulting galleries from this process are static and do not acquire new knowledge from the scene, which is a limitation of the current re-id systems to work for open-world applications. Different from previous work, we overcome this limitation by presenting an unsupervised approach to automatically identify new people and incrementally build a gallery for open-world re-id that adapts prior knowledge with new information on a continuous basis. Our approach performs a comparison between the current person models and new unlabeled data to dynamically expand the gallery with new identities. We process the incoming information to maintain a small representative model of each person by exploiting concepts of information theory. The uncertainty and diversity of the new samples are analyzed to define which ones should be incorporated into the gallery. Experimental evaluation in challenging benchmarks includes an ablation study of the proposed framework, the assessment of different data selection algorithms that demonstrate the benefits of our approach, and a comparative analysis of the obtained results with other unsupervised and semi-supervised re-id methods.

2.
Med Image Anal ; 96: 103195, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815359

RESUMO

Colorectal cancer is one of the most common cancers in the world. While colonoscopy is an effective screening technique, navigating an endoscope through the colon to detect polyps is challenging. A 3D map of the observed surfaces could enhance the identification of unscreened colon tissue and serve as a training platform. However, reconstructing the colon from video footage remains difficult. Learning-based approaches hold promise as robust alternatives, but necessitate extensive datasets. Establishing a benchmark dataset, the 2022 EndoVis sub-challenge SimCol3D aimed to facilitate data-driven depth and pose prediction during colonoscopy. The challenge was hosted as part of MICCAI 2022 in Singapore. Six teams from around the world and representatives from academia and industry participated in the three sub-challenges: synthetic depth prediction, synthetic pose prediction, and real pose prediction. This paper describes the challenge, the submitted methods, and their results. We show that depth prediction from synthetic colonoscopy images is robustly solvable, while pose estimation remains an open research question.


Assuntos
Colonoscopia , Imageamento Tridimensional , Humanos , Imageamento Tridimensional/métodos , Neoplasias Colorretais/diagnóstico por imagem , Pólipos do Colo/diagnóstico por imagem
3.
Sci Data ; 10(1): 671, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789003

RESUMO

Computer-assisted systems are becoming broadly used in medicine. In endoscopy, most research focuses on the automatic detection of polyps or other pathologies, but localization and navigation of the endoscope are completely performed manually by physicians. To broaden this research and bring spatial Artificial Intelligence to endoscopies, data from complete procedures is needed. This paper introduces the Endomapper dataset, the first collection of complete endoscopy sequences acquired during regular medical practice, making secondary use of medical data. Its main purpose is to facilitate the development and evaluation of Visual Simultaneous Localization and Mapping (VSLAM) methods in real endoscopy data. The dataset contains more than 24 hours of video. It is the first endoscopic dataset that includes endoscope calibration as well as the original calibration videos. Meta-data and annotations associated with the dataset vary from the anatomical landmarks, procedure labeling, segmentations, reconstructions, simulated sequences with ground truth and same patient procedures. The software used in this paper is publicly available.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa