Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicon ; 220: 106922, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36167141

RESUMO

The mechanisms of pathogenesis of acute kidney injury (AKI) in snakebites is multifactorial and involves hemodynamic disturbances, with release of free radical causing cytotoxic effects. The phosphodiesterase-3 (PDE3) inhibitor, Cilostazol, has been reported to provide protection against renal oxidative stress. OBJECTIVE: We evaluated the protective effects of cilostazol against Bothrops alternatus snake venom (BaV)-induced nephrotoxicity. METHODS: Wistar rat kidneys (n = 6, 260-300 g) were isolated and perfused with Krebs-Henseleit solution containing 6 g/100 mL of bovine serum albumin. After 30 min, the kidneys were perfused with BaV to a final concentration of 1 and 3 µg/mL, and subsequently evaluated for perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR), and percentage of electrolyte tubular sodium and chloride transport (%TNa+, %TCl-). Oxidative stress and renal histological analyses were performed. RESULTS: BaV caused a reduction in all the evaluated renal parameters (PP, RVR, GFR, UF, %TNa+, and %TCl-). Although only the effects on PP and UF were reversed with cilostazol treatment, the decrease in the malondialdehyde levels, without changes in glutathione levels, further reduced the venom-induced renal tissue changes. CONCLUSION: Our data suggest that PDE3 is involved in BaV-induced nephrotoxicity, as cilostazol administration significantly ameliorated these effects.


Assuntos
Injúria Renal Aguda , Bothrops , Venenos de Crotalídeos , Animais , Ratos , Venenos de Crotalídeos/farmacologia , Cilostazol/farmacologia , Inibidores da Fosfodiesterase 3/farmacologia , Ratos Wistar , Rim , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Venenos de Serpentes/farmacologia , Oxirredução , Diester Fosfórico Hidrolases/farmacologia
2.
Toxicon ; 51(2): 181-90, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17953979

RESUMO

Bothrops insularis venom contains a variety of substances presumably responsible for several pharmacological effects. We investigated the biochemical and biological effects of phospholipase A(2) protein isolated from B. insularis venom and the chromatographic profile showed 7 main fractions and the main phospholipase A(2) (PLA(2)) enzymatic activity was detected in fractions IV and V. Fraction IV was submitted to a new chromatographic procedure on ion exchange chromatography, which allowed the elution of 5 main fractions designated as IV-1 to IV-5, from which IV-4 constituted the main fraction. The molecular homogeneity of this fraction was characterized by high-performance liquid chromatography (HPLC) and demonstrated by mass spectrometry (MS), which showed a molecular mass of 13984.20 Da; its N-terminal sequence presented a high amino acid identity (up to 95%) with the PLA(2) of Bothrops jararaca and Bothrops asper. Phospholipase A(2) isolated from B. insularis (Bi PLA(2) ) venom (10 microg/mL) was also studied as to its effect on the renal function of isolated perfused kidneys of Wistar rats (n=6). Bi PLA(2) increased perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF) and glomerular filtration rate (GFR). Sodium (%TNa(+)) and chloride tubular reabsorption (%TCl(-)) decreased at 120 min, without alteration in potassium transport. In conclusion, PLA(2) isolated from B. insularis venom promoted renal alterations in the isolated perfused rat kidney.


Assuntos
Bothrops , Venenos de Crotalídeos/toxicidade , Túbulos Renais/efeitos dos fármacos , Fosfolipases A2/toxicidade , Sequência de Aminoácidos , Animais , Venenos de Crotalídeos/química , Túbulos Renais/irrigação sanguínea , Masculino , Dados de Sequência Molecular , Fosfolipases A2/química , Ratos , Ratos Wistar , Circulação Renal/efeitos dos fármacos , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa