Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Syst Biol ; 71(3): 547-569, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-34329460

RESUMO

Reticulation, caused by hybridization and allopolyploidization, is considered an important and frequent phenomenon in the evolution of numerous plant lineages. Although both processes represent important driving forces of evolution, they are mostly ignored in phylogenetic studies involving a large number of species. Indeed only a scattering of methods exists to recover a comprehensive reticulated evolutionary history for a broad taxon sampling. Among these methods, comparisons of topologies obtained from plastid markers with those from a few nuclear sequences are favored, even though they restrict in-depth studies of hybridization and polyploidization. The genus Rosa encompasses c. 150 species widely distributed throughout the northern hemisphere and represents a challenging taxonomic group in which hybridization and polyploidization are prominent. Our main objective was to develop a general framework that would take patterns of reticulation into account in the study of the phylogenetic relationships among Rosa species. Using amplicon sequencing, we targeted allele variation in the nuclear genome as well as haploid sequences in the chloroplast genome. We successfully recovered robust plastid and nuclear phylogenies and performed in-depth tests for several scenarios of hybridization using a maximum pseudo-likelihood approach on taxon subsets. Our diploid-first approach followed by hybrid and polyploid grafting resolved most of the evolutionary relationships among Rosa subgenera, sections, and selected species. Based on these results, we provide new directions for a future revision of the infrageneric classification in Rosa. The stepwise strategy proposed here can be used to reconstruct the phylogenetic relationships of other challenging taxonomic groups with large numbers of hybrid and polyploid taxa. [Amplicon sequencing; interspecific hybridization; polyploid detection; reticulate evolution.].


Assuntos
Rosa , Hibridização Genética , Funções Verossimilhança , Filogenia , Poliploidia , Rosa/genética
2.
Nature ; 546(7656): 148-152, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538728

RESUMO

The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs.


Assuntos
Evolução Molecular , Flores/genética , Flores/fisiologia , Genoma de Planta/genética , Helianthus/genética , Helianthus/metabolismo , Óleos de Plantas/metabolismo , Aclimatação/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Genômica , Helianthus/classificação , Análise de Sequência de DNA , Estresse Fisiológico/genética , Óleo de Girassol , Transcriptoma/genética
3.
Theor Appl Genet ; 133(3): 993-1008, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31932953

RESUMO

KEY MESSAGE: In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K+ accumulation capacities.


Assuntos
Ácidos/metabolismo , Frutas/genética , Genes de Plantas , Potássio/metabolismo , Vitis/genética , Alelos , Mapeamento Cromossômico , Mudança Climática , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Temperatura Alta , Concentração de Íons de Hidrogênio , Malatos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Locos de Características Quantitativas
4.
BMC Genomics ; 20(1): 302, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30999856

RESUMO

BACKGROUND: Genomic selection accuracy increases with the use of high SNP (single nucleotide polymorphism) coverage. However, such gains in coverage come at high costs, preventing their prompt operational implementation by breeders. Low density panels imputed to higher densities offer a cheaper alternative during the first stages of genomic resources development. Our study is the first to explore the imputation in a tree species: black poplar. About 1000 pure-breed Populus nigra trees from a breeding population were selected and genotyped with a 12K custom Infinium Bead-Chip. Forty-three of those individuals corresponding to nodal trees in the pedigree were fully sequenced (reference), while the remaining majority (target) was imputed from 8K to 1.4 million SNPs using FImpute. Each SNP and individual was evaluated for imputation errors by leave-one-out cross validation in the training sample of 43 sequenced trees. Some summary statistics such as Hardy-Weinberg Equilibrium exact test p-value, quality of sequencing, depth of sequencing per site and per individual, minor allele frequency, marker density ratio or SNP information redundancy were calculated. Principal component and Boruta analyses were used on all these parameters to rank the factors affecting the quality of imputation. Additionally, we characterize the impact of the relatedness between reference population and target population. RESULTS: During the imputation process, we used 7540 SNPs from the chip to impute 1,438,827 SNPs from sequences. At the individual level, imputation accuracy was high with a proportion of SNPs correctly imputed between 0.84 and 0.99. The variation in accuracies was mostly due to differences in relatedness between individuals. At a SNP level, the imputation quality depended on genotyped SNP density and on the original minor allele frequency. The imputation did not appear to result in an increase of linkage disequilibrium. The genotype densification not only brought a better distribution of markers all along the genome, but also we did not detect any substantial bias in annotation categories. CONCLUSIONS: This study shows that it is possible to impute low-density marker panels to whole genome sequence with good accuracy under certain conditions that could be common to many breeding populations.


Assuntos
Cruzamento , Polimorfismo de Nucleotídeo Único , Populus/genética , Análise de Sequência , Desequilíbrio de Ligação , Anotação de Sequência Molecular
5.
BMC Genomics ; 19(1): 119, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402214

RESUMO

BACKGROUND: Maize is well known for its exceptional structural diversity, including copy number variants (CNVs) and presence/absence variants (PAVs), and there is growing evidence for the role of structural variation in maize adaptation. While PAVs have been described in this important crop species, they have been only scarcely characterized at the sequence level and the extent of presence/absence variation and relative chromosomal landscape of inbred-specific regions remain to be elucidated. RESULTS: De novo genome sequencing of the French F2 maize inbred line revealed 10,044 novel genomic regions larger than 1 kb, making up 88 Mb of DNA, that are present in F2 but not in B73 (PAV). This set of maize PAV sequences allowed us to annotate PAV content and to analyze sequence breakpoints. Using PAV genotyping on a collection of 25 temperate lines, we also analyzed Linkage Disequilibrium in PAVs and flanking regions, and PAV frequencies within maize genetic groups. CONCLUSIONS: We highlight the possible role of MMEJ-type double strand break repair in maize PAV formation and discover 395 new genes with transcriptional support. Pattern of linkage disequilibrium within PAVs strikingly differs from this of flanking regions and is in accordance with the intuition that PAVs may recombine less than other genomic regions. We show that most PAVs are ancient, while some are found only in European Flint material, thus pinpointing structural features that may be at the origin of adaptive traits involved in the success of this material. Characterization of such PAVs will provide useful material for further association genetic studies in European and temperate maize.


Assuntos
Cromossomos de Plantas , Variação Genética , Genoma de Planta , Endogamia , Zea mays/genética , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Elementos de DNA Transponíveis , Evolução Molecular , Genômica/métodos , Desequilíbrio de Ligação , Poaceae/genética , Análise de Sequência de DNA
6.
Plant J ; 84(6): 1257-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26590015

RESUMO

Single nucleotide polymorphism (SNP) arrays represent important genotyping tools for innovative strategies in both basic research and applied breeding. Pea is an important food, feed and sustainable crop with a large (about 4.45 Gbp) but not yet available genome sequence. In the present study, 12 pea recombinant inbred line populations were genotyped using the newly developed GenoPea 13.2K SNP Array. Individual and consensus genetic maps were built providing insights into the structure and organization of the pea genome. Largely collinear genetic maps of 3918-8503 SNPs were obtained from all mapping populations, and only two of these exhibited putative chromosomal rearrangement signatures. Similar distortion patterns in different populations were noted. A total of 12 802 transcript-derived SNP markers placed on a 15 079-marker high-density, high-resolution consensus map allowed the identification of ohnologue-rich regions within the pea genome and the localization of local duplicates. Dense syntenic networks with sequenced legume genomes were further established, paving the way for the identification of the molecular bases of important agronomic traits segregating in the mapping populations. The information gained on the structure and organization of the genome from this research will undoubtedly contribute to the understanding of the evolution of the pea genome and to its assembly. The GenoPea 13.2K SNP Array and individual and consensus genetic maps are valuable genomic tools for plant scientists to strengthen pea as a model for genetics and physiology and enhance breeding.


Assuntos
Cromossomos de Plantas/genética , Pisum sativum/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Transcriptoma
7.
BMC Plant Biol ; 16: 74, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27005772

RESUMO

BACKGROUND: As for many crops, new high-quality grapevine varieties requiring less pesticide and adapted to climate change are needed. In perennial species, breeding is a long process which can be speeded up by gaining knowledge about quantitative trait loci linked to agronomic traits variation. However, due to the long juvenile period of these species, establishing numerous highly recombinant populations for high resolution mapping is both costly and time-consuming. Genome wide association studies in germplasm panels is an alternative method of choice, since it allows identifying the main quantitative trait loci with high resolution by exploiting past recombination events between cultivars. Such studies require adequate panel design to represent most of the available genetic and phenotypic diversity. Assessing linkage disequilibrium extent and panel power is also needed to determine the marker density required for association studies. RESULTS: Starting from the largest grapevine collection worldwide maintained in Vassal (France), we designed a diversity panel of 279 cultivars with limited relatedness, reflecting the low structuration in three genetic pools resulting from different uses (table vs wine) and geographical origin (East vs West), and including the major founders of modern cultivars. With 20 simple sequence repeat markers and five quantitative traits, we showed that our panel adequately captured most of the genetic and phenotypic diversity existing within the entire Vassal collection. To assess linkage disequilibrium extent and panel power, we genotyped single nucleotide polymorphisms: 372 over four genomic regions and 129 distributed over the whole genome. Linkage disequilibrium, measured by correlation corrected for kinship, reached 0.2 for a physical distance between 9 and 458 Kb depending on genetic pool and genomic region, with varying size of linkage disequilibrium blocks. This panel achieved reasonable power to detect associations between traits with high broad-sense heritability (> 0.7) and causal loci with intermediate allelic frequency and strong effect (explaining > 10 % of total variance). CONCLUSIONS: Our association panel constitutes a new, highly valuable resource for genetic association studies in grapevine, and deserves dissemination to diverse field and greenhouse trials to gain more insight into the genetic control of many agronomic traits and their interaction with the environment.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla/métodos , Vitis/genética , Genes de Plantas , Marcadores Genéticos , Genótipo , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
8.
BMC Genomics ; 14: 791, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24228636

RESUMO

BACKGROUND: One of the goals of genomics is to identify the genetic loci responsible for variation in phenotypic traits. The completion of the tomato genome sequence and recent advances in DNA sequencing technology allow for in-depth characterization of genetic variation present in the tomato genome. Like many self-pollinated crops, cultivated tomato accessions show a low molecular but high phenotypic diversity. Here we describe the whole-genome resequencing of eight accessions (four cherry-type and four large fruited lines) chosen to represent a large range of intra-specific variability and the identification and annotation of novel polymorphisms. RESULTS: The eight genomes were sequenced using the GAII Illumina platform. Comparison of the sequences with the reference genome yielded more than 4 million single nucleotide polymorphisms (SNPs). This number varied from 80,000 to 1.5 million according to the accessions. Almost 128,000 InDels were detected. The distribution of SNPs and InDels across and within chromosomes was highly heterogeneous revealing introgressions from wild species and the mosaic structure of the genomes of the cherry tomato accessions. In-depth annotation of the polymorphisms identified more than 16,000 unique non-synonymous SNPs. In addition 1,686 putative copy-number variations (CNVs) were identified. CONCLUSIONS: This study represents the first whole genome resequencing experiment in cultivated tomato. Substantial genetic differences exist between the sequenced tomato accessions and the reference sequence. The heterogeneous distribution of the polymorphisms may be related to introgressions that occurred during domestication or breeding. The annotated SNPs, InDels and CNVs identified in this resequencing study will serve as useful genetic tools, and as candidate polymorphisms in the search for phenotype-altering DNA variations.


Assuntos
Genoma de Planta , Solanum lycopersicum/genética , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Variações do Número de Cópias de DNA , Evolução Molecular , Heterozigoto , Mutação INDEL , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
9.
Transgenic Res ; 22(3): 461-76, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23400878

RESUMO

Reliable quantitative methods are needed to comply with current EU regulations on the mandatory labeling of genetically modified organisms (GMOs) and GMO-derived food and feed products with a minimum GMO content of 0.9 %. The implementation of EU Commission Recommendation 2004/787/EC on technical guidance for sampling and detection which meant as a helpful tool for the practical implementation of EC Regulation 1830/2003, which states that "the results of quantitative analysis should be expressed as the number of target DNA sequences per target taxon specific sequences calculated in terms of haploid genomes". This has led to an intense debate on the type of calibrator best suitable for GMO quantification. The main question addressed in this review is whether reference materials and calibrators should be matrix based or whether pure DNA analytes should be used for relative quantification in GMO analysis. The state of the art, including the advantages and drawbacks, of using DNA plasmid (compared to genomic DNA reference materials) as calibrators, is widely described. In addition, the influence of the genetic structure of seeds on real-time PCR quantitative results obtained for seed lots is discussed. The specific composition of a seed kernel, the mode of inheritance, and the ploidy level ensure that there is discordance between a GMO % expressed as a haploid genome equivalent and a GMO % based on numbers of seeds. This means that a threshold fixed as a percentage of seeds cannot be used as such for RT-PCR. All critical points that affect the expression of the GMO content in seeds are discussed in this paper.


Assuntos
Análise de Alimentos/métodos , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sementes/genética , Calibragem , Alimentos Geneticamente Modificados , Dosagem de Genes , Genoma de Planta , Haploidia , Plasmídeos/genética , Reação em Cadeia da Polimerase em Tempo Real/normas
10.
Plant Cell Rep ; 32(1): 117-28, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23052591

RESUMO

KEY MESSAGE : Here, we describe a new developed quantitative real-time PCR method for the detection and quantification of a new specific endogenous reference gene used in GMO analysis. The key requirement of this study was the identification of a new reference gene used for the differentiation of the four genomic sections of the sugar beet (Beta vulgaris L.) (Beta, Corrollinae, Nanae and Procumbentes) suitable for quantification of genetically modified sugar beet. A specific qualitative polymerase chain reaction (PCR) assay was designed to detect the sugar beet amplifying a region of the adenylate transporter (ant) gene only from the species of the genomic section I of the genus Beta (cultivated and wild relatives) and showing negative PCR results for 7 species of the 3 other sections, 8 related species and 20 non-sugar beet plants. The sensitivity of the assay was 15 haploid genome copies (HGC). A quantitative real-time polymerase chain reaction (QRT-PCR) assay was also performed, having high linearity (R (2) > 0.994) over sugar beet standard concentrations ranging from 20,000 to 10 HGC of the sugar beet DNA per PCR. The QRT-PCR assay described in this study was specific and more sensitive for sugar beet quantification compared to the validated test previously reported in the European Reference Laboratory. This assay is suitable for GMO quantification in routine analysis from a wide variety of matrices.


Assuntos
Beta vulgaris/genética , Genes de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Primers do DNA/metabolismo , Dosagem de Genes/genética , Variação Genética , Plantas Geneticamente Modificadas , Padrões de Referência , Reprodutibilidade dos Testes
11.
BMC Genomics ; 13: 13, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22233093

RESUMO

BACKGROUND: With the increasing availability of EST databases and whole genome sequences, SNPs have become the most abundant and powerful polymorphic markers. However, SNP chip data generally suffers from ascertainment biases caused by the SNP discovery and selection process in which a small number of individuals are used as discovery panels. The ongoing International Citrus Genome Consortium sequencing project of the highly heterozygous Clementine and sweet orange genomes will soon result in the release of several hundred thousand SNPs. The primary goals of this study were: (i) to estimate the transferability within the genus Citrus of SNPs discovered from Clementine BACend sequencing (BES), (ii) to estimate bias associated with the very narrow discovery panel, and (iii) to evaluate the usefulness of the Clementine-derived SNP markers for diversity analysis and comparative mapping studies between the different cultivated Citrus species. RESULTS: Fifty-four accessions covering the main Citrus species and 52 interspecific hybrids between pummelo and Clementine were genotyped on a GoldenGate array platform using 1,457 SNPs mined from Clementine BES and 37 SNPs identified between and within C. maxima, C. medica, C. reticulata and C. micrantha. Consistent results were obtained from 622 SNP loci. Of these markers, 116 displayed incomplete transferability primarily in C. medica, C. maxima and wild Citrus species. The two primary biases associated with the SNP mining in Clementine were an overestimation of the C. reticulata diversity and an underestimation of the interspecific differentiation. However, the genetic stratification of the gene pool was high, with very frequent significant linkage disequilibrium. Furthermore, the shared intraspecific polymorphism and accession heterozygosity were generally enough to perform interspecific comparative genetic mapping. CONCLUSIONS: A set of 622 SNP markers providing consistent results was selected. Of the markers mined from Clementine, 80.5% were successfully transferred to the whole Citrus gene pool. Despite the ascertainment biases in relation to the Clementine origin, the SNP data confirm the important stratification of the gene pools around C. maxima, C. medica and C. reticulata as well as previous hypothesis on the origin of secondary species. The implemented SNP marker set will be very useful for comparative genetic mapping in Citrus and genetic association in C. reticulata.


Assuntos
Mapeamento Cromossômico , Citrus/genética , Etiquetas de Sequências Expressas , Filogenia , Polimorfismo de Nucleotídeo Único , Alelos , Sequência de Bases , Cromossomos Artificiais Bacterianos , Citrus/classificação , Análise por Conglomerados , Loci Gênicos , Genoma de Planta , Genótipo , Dados de Sequência Molecular , Reprodutibilidade dos Testes
12.
BMC Genomics ; 13: 593, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23126659

RESUMO

BACKGROUND: Most modern citrus cultivars have an interspecific origin. As a foundational step towards deciphering the interspecific genome structures, a reference whole genome sequence was produced by the International Citrus Genome Consortium from a haploid derived from Clementine mandarin. The availability of a saturated genetic map of Clementine was identified as an essential prerequisite to assist the whole genome sequence assembly. Clementine is believed to be a 'Mediterranean' mandarin × sweet orange hybrid, and sweet orange likely arose from interspecific hybridizations between mandarin and pummelo gene pools. The primary goals of the present study were to establish a Clementine reference map using codominant markers, and to perform comparative mapping of pummelo, sweet orange, and Clementine. RESULTS: Five parental genetic maps were established from three segregating populations, which were genotyped with Single Nucleotide Polymorphism (SNP), Simple Sequence Repeats (SSR) and Insertion-Deletion (Indel) markers. An initial medium density reference map (961 markers for 1084.1 cM) of the Clementine was established by combining male and female Clementine segregation data. This Clementine map was compared with two pummelo maps and a sweet orange map. The linear order of markers was highly conserved in the different species. However, significant differences in map size were observed, which suggests a variation in the recombination rates. Skewed segregations were much higher in the male than female Clementine mapping data. The mapping data confirmed that Clementine arose from hybridization between 'Mediterranean' mandarin and sweet orange. The results identified nine recombination break points for the sweet orange gamete that contributed to the Clementine genome. CONCLUSIONS: A reference genetic map of citrus, used to facilitate the chromosome assembly of the first citrus reference genome sequence, was established. The high conservation of marker order observed at the interspecific level should allow reasonable inferences of most citrus genome sequences by mapping next-generation sequencing (NGS) data in the reference genome sequence. The genome of the haploid Clementine used to establish the citrus reference genome sequence appears to have been inherited primarily from the 'Mediterranean' mandarin. The high frequency of skewed allelic segregations in the male Clementine data underline the probable extent of deviation from Mendelian segregation for characters controlled by heterozygous loci in male parents.


Assuntos
Mapeamento Cromossômico , Citrus/genética , Evolução Molecular , Hibridização Genética , Cruzamento/métodos , Marcadores Genéticos , Genótipo , Haplótipos/genética , Escore Lod , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Especificidade da Espécie , Sintenia/genética
13.
Plant Physiol ; 156(4): 2244-54, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21673133

RESUMO

In tomato (Solanum lycopersicum) fruit, the number of locules (cavities containing seeds that are derived from carpels) varies from two to up to 10 or more. Locule number affects fruit shape and size and is controlled by several quantitative trait loci (QTLs). The large majority of the phenotypic variation is explained by two of these QTLs, fasciated (fas) and locule number (lc), that interact epistatically with one another. FAS has been cloned, and mutations in the gene are described as key factors leading to the increase in fruit size in modern varieties. Here, we report the map-based cloning of lc. The lc QTL includes a 1,600-bp region that is located 1,080 bp from the 3' end of WUSCHEL, which encodes a homeodomain protein that regulates stem cell fate in plants. The molecular evolution of lc showed a reduction of diversity in cultivated accessions with the exception of two single-nucleotide polymorphisms. These two single-nucleotide polymorphisms were shown to be responsible for the increase in locule number. An evolutionary model of locule number is proposed herein, suggesting that the fas mutation appeared after the mutation in the lc locus to confer the extreme high-locule-number phenotype.


Assuntos
Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Sementes/genética , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/genética , Agricultura , Sequência de Bases , Evolução Molecular , Flores/anatomia & histologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Estudos de Associação Genética , Modelos Genéticos , Dados de Sequência Molecular , Tamanho do Órgão , Fenótipo , Mapeamento Físico do Cromossomo , Reprodutibilidade dos Testes
14.
New Phytol ; 186(4): 1005-1017, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20345631

RESUMO

*The geographical structure of resistance to herbicides inhibiting acetyl-coenzyme A carboxylase (ACCase) was investigated in the weed Alopecurus myosuroides (black-grass) across its geographical range to gain insight into the process of plant adaptation in response to anthropogenic selective pressures occurring in agricultural ecosystems. *We analysed 297 populations distributed across six countries in A. myosuroides' main area of occupancy. The frequencies of plants resistant to two broadly used ACCase inhibitors and of seven mutant, resistant ACCase alleles were assessed using bioassays and genotyping, respectively. *Most of the resistance was not endowed by mutant ACCase alleles. Resistance and ACCase allele distribution patterns were characterized by mosaicism. The prevalence of resistance and of ACCase alleles differed among countries. *Resistance clearly evolved by redundant evolution of a set of resistance alleles or genes, most of which remain unidentified. Resistance in A. myosuroides was shaped by variation in the herbicide selective pressure at both the individual field level and the national level.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Agricultura , Geografia , Resistência a Herbicidas , Herbicidas/farmacologia , Poaceae/efeitos dos fármacos , Poaceae/enzimologia , Acetil-CoA Carboxilase/genética , Alelos , Ásia Ocidental , Europa (Continente) , Dinâmica Populacional
15.
PLoS Genet ; 3(6): e106, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17604455

RESUMO

In many species, sex-related differences in crossover (CO) rates have been described at chromosomal and regional levels. In this study, we determined the CO distribution along the entire Arabidopsis thaliana Chromosome 4 (18 Mb) in male and female meiosis, using high density genetic maps built on large backcross populations (44 markers, >1,300 plants). We observed dramatic differences between male and female map lengths that were calculated as 88 cM and 52 cM, respectively. This difference is remarkably parallel to that between the total synaptonemal complex lengths measured in male and female meiocytes by immunolabeling of ZYP1 (a component of the synaptonemal complex). Moreover, CO landscapes were clearly different: in particular, at both ends of the map, male CO rates were higher (up to 4-fold the mean value), whereas female CO rates were equal or even below the chromosomal average. This unique material gave us the opportunity to perform a detailed analysis of CO interference on Chromosome 4 in male and female meiosis. The number of COs per chromosome and the distances between them clearly departs from randomness. Strikingly, the interference level (measured by coincidence) varied significantly along the chromosome in male meiosis and was correlated to the physical distance between COs. The significance of this finding on the relevance of current CO interference models is discussed.


Assuntos
Arabidopsis/genética , Cromossomos de Plantas/genética , Troca Genética , Variação Genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Reprodução/genética , Complexo Sinaptonêmico/genética
16.
PLoS One ; 15(12): e0243853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33306734

RESUMO

Next-Generation Sequencing (NGS) technologies, by reducing the cost and increasing the throughput of sequencing, have opened doors to generate genomic data in a range of previously poorly studied species. In this study, we propose a method for the rapid development of a large-scale molecular resources for orphan species. We studied as an example the true lavender (Lavandula angustifolia Mill.), a perennial sub-shrub plant native from the Mediterranean region and whose essential oil have numerous applications in cosmetics, pharmaceuticals, and alternative medicines. The heterozygous clone "Maillette" was used as a reference for DNA and RNA sequencing. We first built a reference Unigene, compound of coding sequences, thanks to de novo RNA-seq assembly. Then, we reconstructed the complete genes sequences (with introns and exons) using an Unigene-guided DNA-seq assembly approach. This aimed to maximize the possibilities of finding polymorphism between genetically close individuals despite the lack of a reference genome. Finally, we used these resources for SNP mining within a collection of 16 commercial lavender clones and tested the SNP within the scope of a genetic distance analysis. We obtained a cleaned reference of 8, 030 functionally in silico annotated genes. We found 359K polymorphic sites and observed a high SNP frequency (mean of 1 SNP per 90 bp) and a high level of heterozygosity (more than 60% of heterozygous SNP per genotype). On overall, we found similar genetic distances between pairs of clones, which is probably related to the out-crossing nature of the species and the restricted area of cultivation. The proposed method is transferable to other orphan species, requires little bioinformatics resources and can be realized within a year. This is also the first reported large-scale SNP development on Lavandula angustifolia. All the genomics resources developed herein are publicly available and provide a rich pool of molecular resources to explore and exploit lavender genetic diversity in breeding programs.


Assuntos
Genoma de Planta , Genômica/métodos , Lavandula/genética , Sequência de Bases , Simulação por Computador , DNA de Plantas/genética , Éxons/genética , Íntrons/genética , Anotação de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , RNA-Seq , Transcriptoma/genética
17.
Front Plant Sci ; 11: 568699, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488638

RESUMO

Genebanks harbor original landraces carrying many original favorable alleles for mitigating biotic and abiotic stresses. Their genetic diversity remains, however, poorly characterized due to their large within genetic diversity. We developed a high-throughput, cheap and labor saving DNA bulk approach based on single-nucleotide polymorphism (SNP) Illumina Infinium HD array to genotype landraces. Samples were gathered for each landrace by mixing equal weights from young leaves, from which DNA was extracted. We then estimated allelic frequencies in each DNA bulk based on fluorescent intensity ratio (FIR) between two alleles at each SNP using a two step-approach. We first tested either whether the DNA bulk was monomorphic or polymorphic according to the two FIR distributions of individuals homozygous for allele A or B, respectively. If the DNA bulk was polymorphic, we estimated its allelic frequency by using a predictive equation calibrated on FIR from DNA bulks with known allelic frequencies. Our approach: (i) gives accurate allelic frequency estimations that are highly reproducible across laboratories, (ii) protects against false detection of allele fixation within landraces. We estimated allelic frequencies of 23,412 SNPs in 156 landraces representing American and European maize diversity. Modified Roger's genetic Distance between 156 landraces estimated from 23,412 SNPs and 17 simple sequence repeats using the same DNA bulks were highly correlated, suggesting that the ascertainment bias is low. Our approach is affordable, easy to implement and does not require specific bioinformatics support and laboratory equipment, and therefore should be highly relevant for large-scale characterization of genebanks for a wide range of species.

18.
Methods Mol Biol ; 2061: 303-318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31583668

RESUMO

This chapter provides a detailed description of TILLING and CRISPR-Cas9 approaches for the purpose of studying genes/factors involved in meiotic recombination in the polyploid species B. napus. The TILLING approach involves the screening and identification of EMS-mutagenized M2 B. napus plants. The strategy for high-throughput plant pooling, the set up for microfluidic PCR and sequencing is provided and the parameters for the analysis of sequence results and the detection of mutants are explained. The CRISPR-Cas system relies on the optimal design of guide RNAs and their efficient expression. The procedure for the generation and detection of knockout mutants is described with the aims to simultaneously target homologous genes.


Assuntos
Brassica/genética , Miose , Mutação , Poliploidia , Sistemas CRISPR-Cas , Edição de Genes , Genoma de Planta , Genótipo , Recombinação Genética , Análise de Sequência de DNA , Transformação Genética
20.
Plant Biotechnol J ; 7(4): 364-74, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19379285

RESUMO

Over the past few years, considerable progress has been made in high-throughput single nucleotide polymorphism (SNP) genotyping technologies, largely through the investment of the human genetics community. These technologies are well adapted to diploid species. For plant breeding purposes, it is important to determine whether these genotyping methods are adapted to polyploidy, as most major crops are former or recent polyploids. To address this problem, we tested the capacity of the multiplex technology SNPlex with a set of 47 wheat SNPs to genotype DNAs of 1314 lines that were organized in four 384-well plates. These lines represented different taxa of tetra- and hexaploid Triticum species and their wild diploid relatives. We observed 40 markers which gave less than 20% missing data. Different methods, based on either Sanger sequencing or the MassARRAY genotyping technology, were then used to validate the genotypes obtained by SNPlex for 11 markers. The concordance of the genotypes obtained by SNPlex with the results obtained by the different validation methods was 96%, except for one discarded marker. Furthermore, a mapping study on six markers showed the expected genetic positions previously described. To conclude, this study showed that high-throughput genotyping technologies developed for diploid species can be used successfully in polyploids, although there is a need for manual reading. For the first time in wheat species, a core of 39 SNPs is available that can serve as the basis for the development of a complete SNPlex set of 48 markers.


Assuntos
Genótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Triticum/genética , DNA de Plantas/genética , Marcadores Genéticos , Genoma de Planta , Poliploidia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa