Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674439

RESUMO

Cocaine- and amphetamine-regulated transcript (CART) peptides are involved in several physiological and pathological processes, but their mechanism of action is unrevealed due to the lack of identified receptor(s). We provided evidence for the antihyperalgesic effect of CART(55-102) by inhibiting dipeptidyl-peptidase 4 (DPP4) in astrocytes and consequently reducing neuroinflammation in the rat spinal dorsal horn in a carrageenan-evoked inflammation model. Both naturally occurring CART(55-102) and CART(62-102) peptides are present in the spinal cord. CART(55-102) is not involved in acute nociception but regulates spinal pain transmission during peripheral inflammation. While the full-length peptide with a globular motif contributes to hyperalgesia, its N-terminal inhibits this process. Although the anti-hyperalgesic effects of CART(55-102), CART(55-76), and CART(62-76) are blocked by opioid receptor antagonists in our inflammatory models, but not in neuropathic Seltzer model, none of them bind to any opioid or G-protein coupled receptors. DPP4 interacts with Toll-like receptor 4 (TLR4) signalling in spinal astrocytes and enhances the TLR4-induced expression of interleukin-6 and tumour necrosis factor alpha contributing to inflammatory pain. Depending on the state of inflammation, CART(55-102) is processed in the spinal cord, resulting in the generation of biologically active isoleucine-proline-isoleucine (IPI) tripeptide, which inhibits DPP4, leading to significantly decreased glia-derived cytokine production and hyperalgesia.


Assuntos
Hiperalgesia , Receptor 4 Toll-Like , Ratos , Animais , Hiperalgesia/metabolismo , Dipeptidil Peptidase 4 , Isoleucina , Nociceptividade , Dor/metabolismo , Fragmentos de Peptídeos/farmacologia , Medula Espinal/metabolismo , Inflamação/metabolismo
2.
Pharmacol Res ; 182: 106347, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35820612

RESUMO

Complex Regional Pain Syndrome (CRPS) represents severe chronic pain, hypersensitivity, and inflammation induced by sensory-immune-vascular interactions after a small injury. Since the therapy is unsatisfactory, there is a great need to identify novel drug targets. Unbiased transcriptomic analysis of the dorsal root ganglia (DRG) was performed in a passive transfer-trauma mouse model, and the predicted pathways were confirmed by pharmacological interventions. In the unilateral L3-5 DRGs 125 genes were differentially expressed in response to plantar incision and injecting IgG of CRPS patients. These are related to inflammatory and immune responses, cytokines, chemokines and neuropeptides. Pathway analysis revealed the involvement of Tumor Necrosis Factor (TNF) and Janus kinase (JAK-STAT) signaling. The relevance of these pathways was proven by abolished CRPS IgG-induced hyperalgesia and reduced microglia and astrocyte markers in pain-associated central nervous system regions after treatment with the soluble TNF alpha receptor etanercept or JAK inhibitor tofacitinib. These results provide the first evidence for CRPS-related neuroinflammation and abnormal cytokine signaling at the level of the primary sensory neurons in a translational mouse model and suggest that etanercept and tofacitinib might have drug repositioning potentials for CRPS-related pain.


Assuntos
Dor Crônica , Síndromes da Dor Regional Complexa , Animais , Síndromes da Dor Regional Complexa/tratamento farmacológico , Síndromes da Dor Regional Complexa/patologia , Modelos Animais de Doenças , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Gânglios Espinais/patologia , Imunoglobulina G , Janus Quinases , Camundongos , Fatores de Transcrição STAT , Transdução de Sinais , Transcriptoma , Fator de Necrose Tumoral alfa
3.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216232

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a broadly expressed neuropeptide which has diverse effects in both the peripheral and central nervous systems. While its neuroprotective effects have been shown in a variety of disease models, both animal and human data support the role of PACAP in migraine generation. Both PACAP and its truncated derivative PACAP(6-38) increased calcium influx in rat trigeminal ganglia (TG) primary sensory neurons in most experimental settings. PACAP(6-38), however, has been described as an antagonist for PACAP type I (known as PAC1), and Vasoactive Intestinal Polypeptide Receptor 2 (also known as VPAC2) receptors. Here, we aimed to compare the signaling pathways induced by the two peptides using transcriptomic analysis. Rat trigeminal ganglion cell cultures were incubated with 1 µM PACAP-38 or PACAP(6-38). Six hours later RNA was isolated, next-generation RNA sequencing was performed and transcriptomic changes were analyzed to identify differentially expressed genes. Functional analysis was performed for gene annotation using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome databases. We found 200 common differentially expressed (DE) genes for these two neuropeptides. Both PACAP-38 and PACAP(6-38) treatments caused significant downregulation of NADH: ubiquinone oxidoreductase subunit B6 and upregulation of transient receptor potential cation channel, subfamily M, member 8. The common signaling pathways induced by both peptides indicate that they act on the same target, suggesting that PACAP activates trigeminal primary sensory neurons via a mechanism independent of the identified and cloned PAC1/VPAC2 receptor, either via another target structure or a different splice variant of PAC1/VPAC2 receptors. Identification of the target could help to understand key mechanisms of migraine.


Assuntos
Mitocôndrias/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Transcriptoma/efeitos dos fármacos , Gânglio Trigeminal/efeitos dos fármacos , Animais , Células Cultivadas , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Mitocôndrias/genética , Doenças Neuroinflamatórias/genética , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma/genética
4.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163382

RESUMO

Transient receptor potential melastatin-4 (TRPM4) is activated by an increase in intracellular Ca2+ concentration and is expressed on smooth muscle cells (SMCs). It is implicated in the myogenic constriction of cerebral arteries. We hypothesized that TRPM4 has a general role in intracellular Ca2+ signal amplification in a wide range of blood vessels. TRPM4 function was tested with the TRPM4 antagonist 9-phenanthrol and the TRPM4 activator A23187 on the cardiovascular responses of the rat, in vivo and in isolated basilar, mesenteric, and skeletal muscle arteries. TRPM4 inhibition by 9-phenanthrol resulted in hypotension and a decreased heart rate in the rat. TRPM4 inhibition completely antagonized myogenic tone development and norepinephrine-evoked vasoconstriction, and depolarization (high extracellular KCl concentration) evoked vasoconstriction in a wide range of peripheral arteries. Vasorelaxation caused by TRPM4 inhibition was accompanied by a significant decrease in intracellular Ca2+ concentration, suggesting an inhibition of Ca2+ signal amplification. Immunohistochemistry confirmed TRPM4 expression in the smooth muscle cells of the peripheral arteries. Finally, TRPM4 activation by the Ca2+ ionophore A23187 was competitively inhibited by 9-phenanthrol. In summary, TRPM4 was identified as an essential Ca2+-amplifying channel in peripheral arteries, contributing to both myogenic tone and agonist responses. These results suggest an important role for TRPM4 in the circulation. The modulation of TRPM4 activity may be a therapeutic target for hypertension. Furthermore, the Ca2+ ionophore A23187 was identified as the first high-affinity (nanomolar) direct activator of TRPM4, acting on the 9-phenanthrol binding site.


Assuntos
Sinalização do Cálcio , Canais de Cátion TRPM/metabolismo , Vasoconstrição , Administração Intravenosa , Animais , Artérias/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Calcimicina/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Ionóforos/farmacologia , Masculino , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Norepinefrina/farmacologia , Fenantrenos/administração & dosagem , Fenantrenos/farmacologia , Cloreto de Potássio/farmacologia , Ratos Wistar , Canais de Cátion TRPM/agonistas , Vasoconstrição/efeitos dos fármacos
5.
J Headache Pain ; 23(1): 113, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36050647

RESUMO

BACKGROUND: Migraine is a primary headache with genetic susceptibility, but the pathophysiological mechanisms are poorly understood, and it remains an unmet medical need. Earlier we demonstrated significant differences in the transcriptome of migraineurs' PBMCs (peripheral blood mononuclear cells), suggesting the role of neuroinflammation and mitochondrial dysfunctions. Post-transcriptional gene expression is regulated by miRNA (microRNA), a group of short non-coding RNAs that are emerging biomarkers, drug targets, or drugs. MiRNAs are emerging biomarkers and therapeutics; however, little is known about the miRNA transcriptome in migraine, and a systematic comparative analysis has not been performed so far in migraine patients. METHODS: We determined miRNA expression of migraineurs' PBMC during (ictal) and between (interictal) headaches compared to age- and sex-matched healthy volunteers. Small RNA sequencing was performed from the PBMC, and mRNA targets of miRNAs were predicted using a network theoretical approach by miRNAtarget.com™. Predicted miRNA targets were investigated by Gene Ontology enrichment analysis and validated by comparing network metrics to differentially expressed mRNA data. RESULTS: In the interictal PBMC samples 31 miRNAs were differentially expressed (DE) in comparison to healthy controls, including hsa-miR-5189-3p, hsa-miR-96-5p, hsa-miR-3613-5p, hsa-miR-99a-3p, hsa-miR-542-3p. During headache attacks, the top DE miRNAs as compared to the self-control samples in the interictal phase were hsa-miR-3202, hsa-miR-7855-5p, hsa-miR-6770-3p, hsa-miR-1538, and hsa-miR-409-5p. MiRNA-mRNA target prediction and pathway analysis indicated several mRNAs related to immune and inflammatory responses (toll-like receptor and cytokine receptor signalling), neuroinflammation and oxidative stress, also confirmed by mRNA transcriptomics. CONCLUSIONS: We provide here the first evidence for disease- and headache-specific miRNA signatures in the PBMC of migraineurs, which might help to identify novel targets for both prophylaxis and attack therapy.


Assuntos
MicroRNAs , Transtornos de Enxaqueca , Cefaleia , Humanos , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transtornos de Enxaqueca/genética , Estresse Oxidativo/genética , RNA Mensageiro/metabolismo
6.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567493

RESUMO

Capsaicin-sensitive peptidergic sensory nerves play complex, mainly protective regulatory roles in the inflammatory cascade of the joints via neuropeptide mediators, but the mechanisms of the hyperacute arthritis phase has not been investigated. Therefore, we studied the involvement of these afferents in the early, "black box" period of a rheumatoid arthritis (RA) mouse model. Capsaicin-sensitive fibres were defunctionalized by pretreatment with the ultrapotent capsaicin analog resiniferatoxin and arthritis was induced by K/BxN arthritogenic serum. Disease severity was assessed by clinical scoring, reactive oxygen species (ROS) burst by chemiluminescent, vascular permeability by fluorescent in vivo imaging. Contrast-enhanced magnetic resonance imaging was used to correlate the functional and morphological changes. After sensory desensitization, both early phase ROS-burst and vascular leakage were significantly enhanced, which was later followed by the increased clinical severity scores. Furthermore, the early vascular leakage and ROS-burst were found to be good predictors of later arthritis severity. We conclude that the anti-inflammatory role of peptidergic afferents depends on their activity in the hyperacute phase, characterized by decreased cellular and vascular inflammatory components presumably via anti-inflammatory neuropeptide release. Therefore, these fibres might serve as important gatekeepers in RA.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Capsaicina/farmacologia , Inflamação Neurogênica/prevenção & controle , Neuropeptídeos/farmacologia , Fármacos do Sistema Sensorial/farmacologia , Animais , Artrite Experimental/etiologia , Artrite Experimental/patologia , Artrite Reumatoide/etiologia , Artrite Reumatoide/patologia , Diterpenos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo
7.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806000

RESUMO

Pharmacotherapy of neuropathic pain is still challenging. Our earlier work indicated an analgesic effect of dimethyl trisulfide (DMTS), which was mediated by somatostatin released from nociceptor nerve endings acting on SST4 receptors. Somatostatin release occurred due to TRPA1 ion channel activation. In the present study, we investigated the effect of DMTS in neuropathic pain evoked by partial ligation of the sciatic nerve in mice. Expression of the mRNA of Trpa1 in murine dorsal-root-ganglion neurons was detected by RNAscope. Involvement of TRPA1 ion channels and SST4 receptors was tested with gene-deleted animals. Macrophage activity at the site of the nerve lesion was determined by lucigenin bioluminescence. Density and activation of microglia in the spinal cord dorsal horn was verified by immunohistochemistry and image analysis. Trpa1 mRNA is expressed in peptidergic and non-peptidergic neurons in the dorsal root ganglion. DMTS ameliorated neuropathic pain in Trpa1 and Sstr4 WT mice, but not in KO ones. DMTS had no effect on macrophage activity around the damaged nerve. Microglial density in the dorsal horn was reduced by DMTS independently from TRPA1. No effect on microglial activation was detected. DMTS might offer a novel therapeutic opportunity in the complementary treatment of neuropathic pain.


Assuntos
Neuralgia/tratamento farmacológico , Sulfetos/farmacologia , Canal de Cátion TRPA1/metabolismo , Animais , Gânglios Espinais/metabolismo , Hiperalgesia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microscopia Confocal , RNA Mensageiro/metabolismo , Nervo Isquiático/patologia , Somatostatina/metabolismo
8.
Int J Mol Sci ; 22(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916620

RESUMO

Somatostatin receptor subtype 4 (SST4) has been shown to mediate analgesic, antidepressant and anti-inflammatory functions without endocrine actions; therefore, it is proposed to be a novel target for drug development. To overcome the species differences of SST4 receptor expression and function between humans and mice, we generated an SST4 humanized mouse line to serve as a translational animal model for preclinical research. A transposon vector containing the hSSTR4 and reporter gene construct driven by the hSSTR4 regulatory elements were created. The vector was randomly inserted in Sstr4-deficient mice. hSSTR4 expression was detected by bioluminescent in vivo imaging of the luciferase reporter predominantly in the brain. RT-qPCR confirmed the expression of the human gene in the brain and various peripheral tissues consistent with the in vivo imaging. RNAscope in situ hybridization revealed the presence of hSSTR4 transcripts in glutamatergic excitatory neurons in the CA1 and CA2 regions of the hippocampus; in the GABAergic interneurons in the granular layer of the olfactory bulb and in both types of neurons in the primary somatosensory cortex, piriform cortex, prelimbic cortex and amygdala. This novel SST4 humanized mouse line might enable us to investigate the differences of human and mouse SST4 receptor expression and function and assess the effects of SST4 receptor agonist drug candidates.


Assuntos
Região CA1 Hipocampal/metabolismo , Região CA2 Hipocampal/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Receptores de Somatostatina/biossíntese , Animais , Região CA1 Hipocampal/citologia , Região CA2 Hipocampal/citologia , Humanos , Camundongos , Camundongos Transgênicos , Receptores de Somatostatina/genética
9.
J Headache Pain ; 22(1): 117, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615455

RESUMO

BACKGROUND: Recent data suggest that gene expression profiles of peripheral white blood cells can reflect changes in the brain. We aimed to analyze the transcriptome of peripheral blood mononuclear cells (PBMC) and changes of plasma metabolite levels of migraineurs in a self-controlled manner during and between attacks. METHODS: Twenty-four patients with migraine were recruited and blood samples were collected in a headache-free (interictal) period and during headache (ictal) to investigate disease- and headache-specific alterations. Control samples were collected from 13 age- and sex-matched healthy volunteers. RNA was isolated from PBMCs and single-end 75 bp RNA sequencing was performed using Illumina NextSeq 550 instrument followed by gene-level differential expression analysis. Functional analysis was carried out on information related to the role of genes, such as signaling pathways and biological processes. Plasma metabolomic measurement was performed with the Biocrates MxP Quant 500 Kit. RESULTS: We identified 144 differentially-expressed genes in PBMCs between headache and headache-free samples and 163 between symptom-free patients and controls. Network analysis revealed that enriched pathways included inflammation, cytokine activity and mitochondrial dysfunction in both headache and headache-free samples compared to controls. Plasma lactate, succinate and methionine sulfoxide levels were higher in migraineurs while spermine, spermidine and aconitate were decreased during attacks. CONCLUSIONS: It is concluded that enhanced inflammatory and immune cell activity, and oxidative stress can play a role in migraine susceptibility and headache generation.


Assuntos
Transtornos de Enxaqueca , Transcriptoma , Cefaleia , Humanos , Leucócitos Mononucleares , Transtornos de Enxaqueca/genética
10.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331300

RESUMO

A large percentage of primary sensory neurons in the trigeminal ganglia (TG) contain neuropeptides such as tachykinins or calcitonin gene-related peptide. Neuropeptides released from the central terminals of primary afferents sensitize the secondary nociceptive neurons in the trigeminal nucleus caudalis (TNC), but also activate glial cells contributing to neuroinflammation and consequent sensitization in chronic orofacial pain and migraine. In the present study, we investigated the newest member of the tachykinin family, hemokinin-1 (HK-1) encoded by the Tac4 gene in the trigeminal system. HK-1 had been shown to participate in inflammation and hyperalgesia in various models, but its role has not been investigated in orofacial pain or headache. In the complete Freund's adjuvant (CFA)-induced inflammatory orofacial pain model, we showed that Tac4 expression increased in the TG in response to inflammation. Duration-dependent Tac4 upregulation was associated with the extent of the facial allodynia. Tac4 was detected in both TG neurons and satellite glial cells (SGC) by the ultrasensitive RNAscope in situ hybridization. We also compared gene expression changes of selected neuronal and glial sensitization and neuroinflammation markers between wild-type and Tac4-deficient (Tac4-/-) mice. Expression of the SGC/astrocyte marker in the TG and TNC was significantly lower in intact and saline/CFA-treated Tac4-/- mice. The procedural stress-related increase of the SGC/astrocyte marker was also strongly attenuated in Tac4-/- mice. Analysis of TG samples with a mouse neuroinflammation panel of 770 genes revealed that regulation of microglia and cytotoxic cell-related genes were significantly different in saline-treated Tac4-/- mice compared to their wild-types. It is concluded that HK-1 may participate in neuron-glia interactions both under physiological and inflammatory conditions and mediate pain in the trigeminal system.


Assuntos
Dor Facial/etiologia , Regulação da Expressão Gênica , Taquicininas/genética , Gânglio Trigeminal/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Dor Facial/metabolismo , Dor Facial/fisiopatologia , Imunofluorescência , Perfilação da Expressão Gênica , Hiperalgesia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Células Receptoras Sensoriais/metabolismo , Taquicininas/metabolismo , Neuralgia do Trigêmeo/etiologia , Neuralgia do Trigêmeo/metabolismo
11.
Int J Mol Sci ; 20(7)2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974795

RESUMO

Transient receptor potential (TRP) channels have emerged as potential sensors and transducers of inflammatory pain. The aims of this study were to investigate (1) the expression of TRP channels in intervertebral disc (IVD) cells in normal and inflammatory conditions and (2) the function of Transient receptor potential ankyrin 1 (TRPA1) and Transient receptor potential vanilloid 1 (TRPV1) in IVD inflammation and matrix homeostasis. RT-qPCR was used to analyze human fetal, healthy, and degenerated IVD tissues for the gene expression of TRPA1 and TRPV1. The primary IVD cell cultures were stimulated with either interleukin-1 beta (IL-1ß) or tumor necrosis factor alpha (TNF-α) alone or in combination with TRPA1/V1 agonist allyl isothiocyanate (AITC, 3 and 10 µM), followed by analysis of calcium flux and the expression of inflammation mediators (RT-qPCR/ELISA) and matrix constituents (RT-qPCR). The matrix structure and composition in caudal motion segments from TRPA1 and TRPV1 wild-type (WT) and knock-out (KO) mice was visualized by FAST staining. Gene expression of other TRP channels (A1, C1, C3, C6, V1, V2, V4, V6, M2, M7, M8) was also tested in cytokine-treated cells. TRPA1 was expressed in fetal IVD cells, 20% of degenerated IVDs, but not in healthy mature IVDs. TRPA1 expression was not detectable in untreated cells and it increased upon cytokine treatment, while TRPV1 was expressed and concomitantly reduced. In inflamed IVD cells, 10 µM AITC activated calcium flux, induced gene expression of IL-8, and reduced disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and collagen 1A1, possibly via upregulated TRPA1. TRPA1 KO in mice was associated with signs of degeneration in the nucleus pulposus and the vertebral growth plate, whereas TRPV1 KO did not show profound changes. Cytokine treatment also affected the gene expression of TRPV2 (increase), TRPV4 (increase), and TRPC6 (decrease). TRPA1 might be expressed in developing IVD, downregulated during its maturation, and upregulated again in degenerative disc disease, participating in matrix homeostasis. However, follow-up studies with larger sample sizes are needed to fully elucidate the role of TRPA1 and other TRP channels in degenerative disc disease.


Assuntos
Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Degeneração do Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Canal de Cátion TRPA1/biossíntese , Canais de Cátion TRPV/biossíntese , Animais , Sinalização do Cálcio , Matriz Extracelular/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Camundongos , Camundongos Knockout , Núcleo Pulposo/patologia
12.
J Neuroinflammation ; 15(1): 335, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30509328

RESUMO

OBJECTIVE: The regulatory role of capsaicin-sensitive peptidergic sensory nerves has been shown in acute inflammation, but little is known about their involvement in T/B-cell driven autoimmune arthritis. This study integratively characterized the function of these nerve endings in the proteoglycan-induced chronic arthritis (PGIA), a translational model of rheumatoid arthritis. METHODS: Peptidergic afferents were defunctionalized by resiniferatoxin (RTX) pretreatment in BALB/c mice, PGIA was induced by repeated antigen challenges. Hind paw volume, arthritis severity, grasping ability and the mechanonociceptive threshold were monitored during the 17-week experiment. Myeloperoxidase activity, vascular leakage and bone turnover were evaluated by in vivo optical imaging. Bone morphology was assessed using micro-CT, the intertarsal small joints were processed for histopathological analysis. RESULTS: Following desensitization of the capsaicin-sensitive afferents, ankle edema, arthritis severity and mechanical hyperalgesia were markedly diminished. Myeloperoxidase activity was lower in the early, but increased in the late phase, whilst plasma leakage and bone turnover were not altered. Desensitized mice displayed similar bone spurs and erosions, but increased trabecular thickness of the tibia and bony ankylosis of the spine. Intertarsal cartilage thickness was not altered in the model, but desensitization increased this parameter in both the non-arthritic and arthritic groups. CONCLUSION: This is the first integrative in vivo functional and morphological characterization of the PGIA mouse model, wherein peptidergic afferents have an important regulatory function. Their overall effect is proinflammatory by increasing acute inflammation, immune cell activity and pain. Meanwhile, their activation decreases spinal ankylosis, arthritis-induced altered trabecularity, and cartilage thickness in small joints.


Assuntos
Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/patologia , Capsaicina/farmacologia , Proteoglicanas/toxicidade , Fármacos do Sistema Sensorial/farmacologia , Limiar Sensorial/efeitos dos fármacos , Animais , Tornozelo/diagnóstico por imagem , Cartilagem/patologia , Modelos Animais de Doenças , Diterpenos/farmacologia , Feminino , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Neurotoxinas/farmacologia , Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Índice de Gravidade de Doença , Coluna Vertebral/diagnóstico por imagem
13.
Pharmacol Res ; 131: 231-243, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29438782

RESUMO

Semicarbazide-sensitive amine oxidase (SSAO) produces tissue irritants by deamination of primary amines, which activate transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors expressed predominantly on nociceptors. Since there are no data about its functions in pain, we studied the effects and mechanisms of action of our novel SSAO inhibitor and dual TRPA1/TRPV1 antagonist multi-target drug SZV 1287 in different pain models. Acute chemonociception was induced by TRPV1 and TRPA1 activation (resiniferatoxin and formalin, respectively), chronic arthritis by K/BxN serum transfer, traumatic mononeuropathy by sciatic nerve ligation. SZV 1287 (20 mg/kg i.p.) was investigated in C57BL/6J wildtype (WT), TRPA1- (TRPA1-/-) and TRPV1-deficient (TRPV1-/-) mice. Paw mechanonociception was measured by aesthesiometry, thermonociception by hot plate, nocifensive behavior by licking duration, volume by plethysmometry, myeloperoxidase activity by luminescence and plasma extravasation by fluorescence imaging, glia activation in pain-related brain regions by immunohistochemistry. SZV 1287 significantly inhibited both TRPA1 and TRPV1 activation-induced acute chemonociception and hyperalgesia. In K/BxN arthritis, daily SZV 1287 injections significantly decreased hyperalgesia, L4-L6 spinal dorsal horn microgliosis, edema and myeloperoxidase activity. SZV 1287-evoked antihyperalgesic and anti-edema effects were absent in TRPV1-/-, and remarkably reduced in TRPA1-/- mice. In contrast, myeloperoxidase-inhibitory effect was absent in TRPA1-/-, but not in TRPV1-/- animals. Acute SZV 1287 administration resulted in approximately 50% significant reduction of neuropathic hyperalgesia 7 days after nerve ligation, which was not observed in either TRPA1-/- or TRPV1-/- mice. SZV 1287 inhibits chronic inflammatory and neuropathic pain via TRPV1 and TRPA1/TRPV1 activation, respectively, highlighting its drug developmental potential.


Assuntos
Amina Oxidase (contendo Cobre)/antagonistas & inibidores , Analgésicos/uso terapêutico , Dor Crônica/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Oxazóis/uso terapêutico , Oximas/uso terapêutico , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Analgésicos/farmacologia , Animais , Dor Crônica/genética , Dor Crônica/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Deleção de Genes , Masculino , Camundongos Endogâmicos C57BL , Neuralgia/tratamento farmacológico , Neuralgia/genética , Neuralgia/metabolismo , Oxazóis/farmacologia , Oximas/farmacologia , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/genética
14.
Croat Med J ; 58(6): 424-430, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-29308834

RESUMO

This is the first report describing a severe form of cold agglutinin-induced acrocyanosis with cutaneous necrosis after Mycoplasma infection in a 9-year-old patient without any other severe symptoms and laboratory alterations. We also present the results of two non-invasive methods used to determine the viability of tissues, degree of tissue perfusion impairment, and the responsiveness of the microvasculature. Laser Doppler flowmetry and laser speckle contrast imaging, both suitable to measure tissue blood perfusion non-invasively, have been used in the diagnosis and follow-up of various peripheral vascular diseases. In our patient, we demonstrated remarkably reduced microcirculation before the treatment and a significant perfusion increase in the acral regions after pentoxifylline therapy. The investigational techniques were useful tools to assess and quantify the severity of peripheral perfusion disturbances and to monitor the efficacy of the treatment in our patient.


Assuntos
Cianose/etiologia , Hemaglutininas/efeitos adversos , Mycoplasma pneumoniae/isolamento & purificação , Pneumonia por Mycoplasma/complicações , Administração Oral , Antibacterianos/uso terapêutico , Anticorpos Antibacterianos/sangue , Criança , Claritromicina/uso terapêutico , Crioglobulinas/efeitos adversos , Cianose/tratamento farmacológico , Quimioterapia Combinada , Ecocardiografia , Feminino , Humanos , Infusões Intravenosas , Fluxometria por Laser-Doppler , Pentoxifilina/uso terapêutico , Pneumonia por Mycoplasma/tratamento farmacológico , Pneumonia por Mycoplasma/imunologia , Vasodilatadores/uso terapêutico
15.
Glia ; 64(12): 2166-2180, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27568827

RESUMO

Multiple sclerosis is a chronic inflammatory, demyelinating degenerative disease of the central nervous system. Current treatments target pathological immune responses to counteract the inflammatory processes. However, these drugs do not restrain the long-term progression of clinical disability. For this reason, new therapeutic approaches and identification of novel target molecules are needed to prevent demyelination or promote repair mechanisms. Transient Receptor Potential Ankyrin 1 (TRPA1) is a nonselective cation channel with relatively high Ca2+ permeability. Its pathophysiological role in central nervous system disorders has not been elucidated yet. In the present study, we aimed to assess the distribution of TRPA1 in the mouse brain and reveal its regulatory role in the cuprizone-induced demyelination. This toxin-induced model, characterized by oligodendrocyte apoptosis and subsequent primary demyelination, allows us to investigate the nonimmune aspects of multiple sclerosis. We found that TRPA1 is expressed on astrocytes in the mouse central nervous system. Interestingly, TRPA1 deficiency significantly attenuated cuprizone-induced demyelination by reducing the apoptosis of mature oligodendrocytes. Our data suggest that TRPA1 regulates mitogen-activated protein kinase pathways, as well as transcription factor c-Jun and a proapoptotic Bcl-2 family member (Bak) expression resulting in enhanced oligodendrocyte apoptosis. In conclusion, we propose that TRPA1 receptors enhancing the intracellular Ca2+ concentration modulate astrocyte functions, and influence the pro or anti-apoptotic pathways in oligodendrocytes. Inhibition of TRPA1 receptors might successfully diminish the degenerative pathology in multiple sclerosis and could be a promising therapeutic target to limit central nervous system damage in demyelinating diseases. GLIA 2016;64:2166-2180.


Assuntos
Apoptose/efeitos dos fármacos , Encéfalo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Inibidores da Monoaminoxidase/toxicidade , Oligodendroglia/efeitos dos fármacos , Canal de Cátion TRPA1/deficiência , Polipose Adenomatosa do Colo/metabolismo , Animais , Apoptose/genética , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Desmielinizantes/genética , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Gliose/induzido quimicamente , Gliose/genética , Camundongos , Camundongos Knockout , Proteína Básica da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
16.
Acta Neuropathol ; 129(4): 541-63, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25676386

RESUMO

Alzheimer's disease and other age-related neurodegenerative disorders are associated with deterioration of the noradrenergic locus coeruleus (LC), a probable trigger for mood and memory dysfunction. LC noradrenergic neurons exhibit particularly high levels of somatostatin binding sites. This is noteworthy since cortical and hypothalamic somatostatin content is reduced in neurodegenerative pathologies. Yet a possible role of a somatostatin signal deficit in the maintenance of noradrenergic projections remains unknown. Here, we deployed tissue microarrays, immunohistochemistry, quantitative morphometry and mRNA profiling in a cohort of Alzheimer's and age-matched control brains in combination with genetic models of somatostatin receptor deficiency to establish causality between defunct somatostatin signalling and noradrenergic neurodegeneration. In Alzheimer's disease, we found significantly reduced somatostatin protein expression in the temporal cortex, with aberrant clustering and bulging of tyrosine hydroxylase-immunoreactive afferents. As such, somatostatin receptor 2 (SSTR2) mRNA was highly expressed in the human LC, with its levels significantly decreasing from Braak stages III/IV and onwards, i.e., a process preceding advanced Alzheimer's pathology. The loss of SSTR2 transcripts in the LC neurons appeared selective, since tyrosine hydroxylase, dopamine ß-hydroxylase, galanin or galanin receptor 3 mRNAs remained unchanged. We modeled these pathogenic changes in Sstr2(-/-) mice and, unlike in Sstr1(-/-) or Sstr4(-/-) genotypes, they showed selective, global and progressive degeneration of their central noradrenergic projections. However, neuronal perikarya in the LC were found intact until late adulthood (<8 months) in Sstr2(-/-) mice. In contrast, the noradrenergic neurons in the superior cervical ganglion lacked SSTR2 and, as expected, the sympathetic innervation of the head region did not show any signs of degeneration. Our results indicate that SSTR2-mediated signaling is integral to the maintenance of central noradrenergic projections at the system level, and that early loss of somatostatin receptor 2 function may be associated with the selective vulnerability of the noradrenergic system in Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Locus Cerúleo/metabolismo , Norepinefrina/metabolismo , Receptores de Somatostatina/metabolismo , Fatores Etários , Idoso , Peptídeos beta-Amiloides/metabolismo , Animais , Monoaminas Biogênicas/metabolismo , Carbocianinas/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Regulação da Expressão Gênica/genética , Humanos , Locus Cerúleo/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , Receptores de Somatostatina/genética , Transdução de Sinais/fisiologia , Somatostatina/metabolismo , Lobo Temporal/metabolismo , Lobo Temporal/patologia , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas tau/metabolismo
17.
Brain Behav Immun ; 45: 50-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25524130

RESUMO

OBJECTIVE: The K/BxN serum-transfer arthritis is a widely-used translational mouse model of rheumatoid arthritis, in which the immunological components have thoroughly been investigated. In contrast, little is known about the role of sensory neural factors and the complexity of neuro-immune interactions. Therefore, we analyzed the involvement of capsaicin-sensitive peptidergic sensory nerves in autoantibody-induced arthritis with integrative methodology. METHODS: Arthritogenic K/BxN or control serum was injected to non-pretreated mice or resiniferatoxin (RTX)-pretreated animals where capsaicin-sensitive nerves were inactivated. Edema, touch sensitivity, noxious heat threshold, joint function, body weight and clinical arthritis severity scores were determined repeatedly throughout two weeks. Micro-CT and in vivo optical imaging to determine matrix-metalloproteinase (MMP) and neutrophil-derived myeloperoxidase (MPO) activities, semiquantitative histopathological scoring and radioimmunoassay to measure somatostatin in the joint homogenates were also performed. RESULTS: In RTX-pretreated mice, the autoantibody-induced joint swelling, arthritis severity score, MMP and MPO activities, as well as histopathological alterations were significantly greater compared to non-pretreated animals. Self-control quantification of the bone mass revealed decreased values in intact female mice, but significantly greater arthritis-induced pathological bone formation after RTX-pretreatment. In contrast, mechanical hyperalgesia from day 10 was smaller after inactivating capsaicin-sensitive afferents. Although thermal hyperalgesia did not develop, noxious heat threshold was significantly higher following RTX pretreatment. Somatostatin-like immunoreactivity elevated in the tibiotarsal joints in non-pretreated, which was significantly less in RTX-pretreated mice. CONCLUSIONS: Although capsaicin-sensitive sensory nerves mediate mechanical hyperalgesia in the later phase of autoantibody-induced chronic arthritis, they play important anti-inflammatory roles at least partially through somatostatin release.


Assuntos
Artrite Experimental , Artrite Reumatoide , Diterpenos/farmacologia , Hiperalgesia , Nociceptores/efeitos dos fármacos , Animais , Capsaicina/farmacologia , Modelos Animais de Doenças , Edema , Membro Posterior , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/fisiologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Peroxidase/metabolismo , Espécies Reativas de Oxigênio , Fármacos do Sistema Sensorial/farmacologia , Somatostatina/metabolismo , Canais de Cátion TRPV/agonistas , Tarso Animal/diagnóstico por imagem , Tarso Animal/metabolismo , Tarso Animal/patologia , Microtomografia por Raio-X
18.
Temperature (Austin) ; 10(1): 13-34, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38059854

RESUMO

This paper is dedicated to the memory of János Szolcsányi (1938-2018), an outstanding Hungarian scientist. Among analgesics that act on pain receptors, he identified capsaicin as a selective lead molecule. He studied the application of capsaicin and revealed several physiological (pain, thermoregulation) and pathophysiological (inflammation, gastric ulcer) mechanisms. He discovered a new neuroregulatory system without sensory efferent reflex and investigated its pharmacology. The authors of this review are his former Ph.D. students who carried out their doctoral work in Szolcsányi's laboratory between 1985 and 2010 and report on the scientific results obtained under his guidance. His research group provided evidence for the triple function of the peptidergic capsaicin-sensitive sensory neurons including classical afferent function, local efferent responses, and remote, hormone-like anti-inflammatory, and antinociceptive actions. They also proposed somatostatin receptor type 4 as a promising drug target for the treatment of pain and inflammation. They revealed that neonatal capsaicin treatment caused no acute neuronal death but instead long-lasting selective ultrastructural and functional changes in B-type sensory neurons, similar to adult treatment. They described that lipid raft disruption diminished the agonist-induced channel opening of the TRPV1, TRPA1, and TRPM8 receptors in native sensory neurons. Szolcsányi's group has developed new devices for noxious heat threshold measurement: an increasing temperature hot plate and water bath. This novel approach proved suitable for assessing the thermal antinociceptive effects of analgesics as well as for analyzing peripheral mechanisms of thermonociception.

19.
Front Mol Neurosci ; 16: 1186279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965042

RESUMO

The tachykinin hemokinin-1 (HK-1) is involved in immunological processes, inflammation, and pain. Although the neurokinin 1 receptor (NK1R) is described as its main target, several effects are mediated by currently unidentified receptor(s). The role of HK-1 in pain is controversial, depending on the involvement of peripheral and central sensitization mechanisms in different models. We earlier showed the ability of HK-1 to activate the trigeminovascular system, but the mechanisms need to be clarified. Therefore, in this study, we investigated HK-1-induced transcriptomic alterations in cultured rat trigeminal ganglion (TRG) primary sensory neurons. HK-1 was applied for 6 or 24 h in 1 µM causing calcium-influx in these neurons, 500 nM not inducing calcium-entry was used for comparison. Next-generation sequencing was performed on the isolated RNA, and transcriptomic changes were analyzed to identify differentially expressed (DE) genes. Functional analysis was performed for gene annotation using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome databases. NK1R and Neurokinin receptor 2 (NK2R) were not detected. Neurokinin receptor 3 (NK3R) was around the detection limit, which suggests the involvement of other NKR isoforms or other receptors in HK-1-induced sensory neuronal activation. We found protease-activated receptor 1 (PAR1) and epidermal growth factor receptor (EGFR) as DE genes in calcium signaling. The transmembrane protein anthrax toxin receptor 2 (ANTXR2), a potential novel pain-related target, was upregulated. Acid-sensing ion channel 1; 3 (Asic1,3), N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors decreased, myelin production and maintenance related genes (Mbp, Pmp2, Myef2, Mpz) and GNDF changed by HK-1 treatment. Our data showed time and dose-dependent effects of HK-1 in TRG cell culture. Result showed calcium signaling as altered event, however, we did not detect any of NK receptors. Presumably, the activation of TRG neurons is independent of NK receptors. ANTXR2 is a potential new target, PAR-1 has also important role in pain, however their connection to HK-1 is unknown. These findings might highlight new targets or key mediators to solve how HK-1 acts on TRG.

20.
Redox Biol ; 62: 102670, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36958249

RESUMO

Keratinocytes of the mammalian skin provide not only mechanical protection for the tissues, but also transmit mechanical, chemical, and thermal stimuli from the external environment to the sensory nerve terminals. Sensory nerve fibers penetrate the epidermal basement membrane and function in the tight intercellular space among keratinocytes. Here we show that epidermal keratinocytes produce hydrogen peroxide upon the activation of the NADPH oxidase dual oxidase 1 (DUOX1). This enzyme can be activated by increasing cytosolic calcium levels. Using DUOX1 knockout animals as a model system we found an increased sensitivity towards certain noxious stimuli in DUOX1-deficient animals, which is not due to structural changes in the skin as evidenced by detailed immunohistochemical and electron-microscopic analysis of epidermal tissue. We show that DUOX1 is expressed in keratinocytes but not in the neural sensory pathway. The release of hydrogen peroxide by activated DUOX1 alters both the activity of neuronal TRPA1 and redox-sensitive potassium channels expressed in dorsal root ganglia primary sensory neurons. We describe hydrogen peroxide, produced by DUOX1 as a paracrine mediator of nociceptive signal transmission. Our results indicate that a novel, hitherto unknown redox mechanism modulates noxious sensory signals.


Assuntos
Peróxido de Hidrogênio , NADPH Oxidases , Animais , Oxidases Duais/genética , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/metabolismo , Peróxidos , Nociceptividade , NADPH Oxidase 1 , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa