RESUMO
Chronic local inflammation of adipose tissue is an important feature of obesity. Serglycin is a proteoglycan highly expressed by various immune cell types known to infiltrate adipose tissue under obese conditions. To investigate if serglycin expression has an impact on diet-induced adipose tissue inflammation, we subjected Srgn +/+ and Srgn -/- mice (C57BL/6J genetic background) to an 8-wk high-fat and high-sucrose diet. The total body weight was the same in Srgn +/+ and Srgn -/- mice after diet treatment. Expression of white adipose tissue genes linked to inflammatory pathways were lower in Srgn -/- mice. We also noted reduced total macrophage abundance, a reduced proportion of proinflammatory M1 macrophages, and reduced formation of crown-like structures in adipose tissue of Srgn -/- compared with Srgn +/+ mice. Further, Srgn -/- mice had more medium-sized adipocytes and fewer large adipocytes. Differentiation of preadipocytes into adipocytes (3T3-L1) was accompanied by reduced Srgn mRNA expression. In line with this, analysis of single-cell RNA sequencing data from mouse and human adipose tissue supports that Srgn mRNA is predominantly expressed by various immune cells, with low expression in adipocytes. Srgn mRNA expression was higher in obese compared with lean humans and mice, accompanied by an increased expression of immune cell gene markers. SRGN and inflammatory marker mRNA expression was reduced upon substantial weight loss in patients after bariatric surgery. Taken together, this study introduces a role for serglycin in the regulation of obesity-induced adipose inflammation.
Assuntos
Adipócitos/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Obesidade/metabolismo , Proteoglicanas/metabolismo , RNA Mensageiro/genética , Proteínas de Transporte Vesicular/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/imunologia , Proteoglicanas/genética , Proteínas de Transporte Vesicular/genética , Redução de Peso/imunologiaRESUMO
Proteoglycans are central components of the extracellular matrix (ECM) and binding partners for inflammatory chemokines. Morphological differences in the ECM and increased inflammation are prominent features of the white adipose tissues in patients with obesity. The impact of obesity and weight loss on the expression of specific proteoglycans in adipose tissue is not well known. This study aimed to investigate the relationship between adiposity and proteoglycan expression. We analyzed transcriptomic data from two human bariatric surgery cohorts. In addition, RT-qPCR was performed on adipose tissues from female and male mice fed a high-fat diet. Both visceral and subcutaneous adipose tissue depots were analyzed. Adipose mRNA expression of specific proteoglycans, proteoglycan biosynthetic enzymes, proteoglycan partner molecules, and other ECM-related proteins were altered in both human cohorts. We consistently observed more profound alterations in gene expression of ECM targets in the visceral adipose tissues after surgery (among others VCAN (p = 0.000309), OGN (p = 0.000976), GPC4 (p = 0.00525), COL1A1 (p = 0.00221)). Further, gene analyses in mice revealed sex differences in these two tissue compartments in obese mice. We suggest that adipose tissue repair is still in progress long after surgery, which may reflect challenges in remodeling increased adipose tissues. This study can provide the basis for more mechanistic studies on the role of proteoglycans in adipose tissues in obesity.
Assuntos
Tecido Adiposo , Proteoglicanas , Feminino , Humanos , Masculino , Animais , Camundongos , Proteoglicanas/genética , Proteoglicanas/metabolismo , Tecido Adiposo/metabolismo , Obesidade/genética , Obesidade/metabolismo , Gordura Subcutânea/metabolismo , Adiposidade , Proteínas da Matriz Extracelular/metabolismo , Dieta Hiperlipídica/efeitos adversosRESUMO
The field of epitranscriptomics is rapidly developing. Several modifications (e.g. methylations) have been identified for different RNA types. Current evidence shows that chemical RNA modifications can influence the whole molecule's secondary structure, translatability, functionality, stability, and degradation, and some are dynamically and reversibly modulated. miRNAs, in particular, are not only post-transcriptional modulators of gene expression but are themselves submitted to regulatory mechanisms. Understanding how these modifications are regulated and the resulting pathological consequences when dysregulation occurs is essential for the development of new therapeutic targets. In humans and other mammals, dietary components have been shown to affect miRNA expression and may also induce chemical modifications in miRNAs. The identification of chemical modifications in miRNAs (endogenous and exogenous) that can impact host gene expression opens up an alternative way to select new specific therapeutic targets.Hence, the aim of this review is to briefly address how RNA epitranscriptomic modifications can affect miRNA biogenesis and to summarize the existing evidence showing the connection between the (de)regulation of these processes and disease settings. In addition, we hypothesize on the potential effect certain chemical modifications could have on the potential cross-kingdom journey of dietary plant miRNAs.
Assuntos
Suscetibilidade a Doenças , Epigênese Genética , MicroRNAs/genética , Processamento Pós-Transcricional do RNA , Regiões 3' não Traduzidas , Adenosina/análogos & derivados , Animais , Pareamento de Bases , Sítios de Ligação , Regulação da Expressão Gênica de Plantas , Humanos , Metilação , Interferência de RNA , TranscriptomaRESUMO
DNA methylation is a crucial epigenetic mechanism in obesity and fat distribution. We explored the Sarcospan ( SSPN) gene locus by using genome-wide data sets comprising methylation and expression data, pyrosequencing analysis in the promoter region, and genetic analysis of an SNP variant rs718314, which was previously reported to associate with waist-to-hip ratio. We found that DNA methylation influences several clinical variables related to fat distribution and glucose metabolism, while SSPN mRNA levels showed directionally opposite effects on these traits. Complete DNA methylation of the SSPN promoter construct suppressed the gene expression of firefly luciferase in MCF7 cells. Moreover, rs718314 was associated with waist and with DNA methylation at CpG sites. Our data strongly support the role of the SSPN locus in body fat composition and glucose homeostasis, and suggest that this is most likely the result of changes in DNA methylation of SSPN in adipose tissue.-Keller, M., Klös, M., Rohde, K., Krüger, J., Kurze, T., Dietrich, A., Schön, M. R., Gärtner, D., Lohmann, T., Dreßler, M., Stumvoll, M., Blüher, M., Kovacs, P., Böttcher, Y. DNA methylation of SSPN is linked to adipose tissue distribution and glucose metabolism.
RESUMO
OBJECTIVE: The current study investigates potential pathways from socio-economic status (SES) to BMI in the adult population, considering psychological domains of eating behaviour (restrained eating, uncontrolled eating, emotional eating) as potential mediators stratified for sex. DESIGN: Data were derived from the population-based cross-sectional LIFE-Adult-Study. Parallel-mediation models were conducted to obtain the total, direct and indirect effects of psychological eating behaviour domains on the association between SES and BMI for men and for women. SETTING: Leipzig, Germany. SUBJECTS: We studied 5935 participants aged 18 to 79 years. RESULTS: Uncontrolled eating mediated the association between SES and BMI in men only and restrained eating in both men and women. Emotional eating did not act as mediator in this relationship. The total effect of eating behaviour domains on the association between SES and BMI was estimated as ß=-0·03 (se 0·02; 95 % CI -0·062, -0·003) in men and ß=-0·18 (se 0·02; 95 % CI -0·217, -0·138) in women. CONCLUSIONS: Our findings do not indicate a strong overall mediation effect of the eating behaviour domains restrained eating, uncontrolled eating and emotional eating on the association between SES and BMI. Further research on other pathways of this association is strongly recommended. Importantly, our findings indicate that, independent from one's social position, focusing on psychological aspects in weight reduction might be a promising approach.
Assuntos
Índice de Massa Corporal , Dieta/psicologia , Comportamento Alimentar/psicologia , Comportamentos Relacionados com a Saúde , Fatores Socioeconômicos , Adolescente , Adulto , Idoso , Estudos Transversais , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto JovemRESUMO
BACKGROUND: The human Aldoketoreductase 1B10 gene (AKR1B10) encodes one of the enzymes belonging to the family of aldoketoreductases and may be involved in detoxification of nutrients during digestion. Further, AKR1B10 mRNA (messenger ribonucleic acid) expression was diminished in brain regions potentially involved in the regulation of eating behavior in rats which are more sensitive to cocaine and alcohol. We hypothesized that the human AKR1B10 gene may also play a role in the regulation of human eating behavior. RESULTS: We investigated the effects of 5 genetic variants of AKR1B10 on human eating behavior among 548 subjects from a German self-contained population, the Sorbs, and in 350 subjects from another independent German cohort. Among the Sorbs, we observed nominal associations with disinhibition at the 5' untranslated region (5' UTR) variant rs10232478 and the intragenic variants rs1834150 and rs782881 (all P ≤ 0.05). Further, we detected a relationship of rs1834150 and rs782881 with waist, smoking consumption (rs782881) and coffee consumption (rs1834150) (all P ≤ 0.05). Albeit non-significant, replication analyses revealed similar effect directions for disinhibition at rs1834150 (combined P = 0.0096). Moreover, in the replication cohort we found rs1834150 related to increased restraint scores with a similar direction as in the Sorbs (combined P = 0.0072). CONCLUSION: Our data suggest that genetic variants in the AKR1B10 locus may influence human eating behavior.
Assuntos
Aldeído Redutase/genética , Comportamento Alimentar , Estudos de Associação Genética , Variação Genética , Adulto , Aldo-Ceto Redutases , Alelos , Estudos de Coortes , Genótipo , Alemanha , Humanos , Metanálise como Assunto , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Característica Quantitativa HerdávelRESUMO
Schizophrenia is a complex disorder, caused by both genetic and environmental factors and their interactions. Research on pathogenesis has traditionally focused on neurotransmitter systems in the brain, particularly those involving dopamine. Schizophrenia has been considered a separate disease for over a century, but in the absence of clear biological markers, diagnosis has historically been based on signs and symptoms. A fundamental message emerging from genome-wide association studies of copy number variations (CNVs) associated with the disease is that its genetic basis does not necessarily conform to classical nosological disease boundaries. Certain CNVs confer not only high relative risk of schizophrenia but also of other psychiatric disorders. The structural variations associated with schizophrenia can involve several genes and the phenotypic syndromes, or the 'genomic disorders', have not yet been characterized. Single nucleotide polymorphism (SNP)-based genome-wide association studies with the potential to implicate individual genes in complex diseases may reveal underlying biological pathways. Here we combined SNP data from several large genome-wide scans and followed up the most significant association signals. We found significant association with several markers spanning the major histocompatibility complex (MHC) region on chromosome 6p21.3-22.1, a marker located upstream of the neurogranin gene (NRGN) on 11q24.2 and a marker in intron four of transcription factor 4 (TCF4) on 18q21.2. Our findings implicating the MHC region are consistent with an immune component to schizophrenia risk, whereas the association with NRGN and TCF4 points to perturbation of pathways involved in brain development, memory and cognition.
Assuntos
Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 6/genética , Proteínas de Ligação a DNA/genética , Marcadores Genéticos/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Complexo Principal de Histocompatibilidade/genética , Neurogranina/genética , Esquizofrenia/imunologia , Fator de Transcrição 4 , Fatores de Transcrição/genéticaRESUMO
The 'Fragebogen zum Essverhalten' (FEV) is the German version of the Three-factor-Eating-Questionnaire (TFEQ). This questionnaire covers three domains of eating behaviour ('cognitive restraint', 'disinhibition' and 'hunger') as well as common problems (e.g. craving for sweets). So far, there is a lack of normative data of the FEV especially for the middle-aged and older population. Aim of this study therefore was to provide age- and gender-specific norms of the FEV for the general population aged 40-79 years. We studied 3144 participants of the ongoing large community-based Leipzig Research Center for Civilization Diseases (LIFE) Health Care Study. We provided age- (four age groups: 40-49, 50-59, 60-69, and 70-79 years) and gender-specific percentile ranks and T-scores for the three domains of the FEV as well as age- and gender-specific frequencies of the common problems in eating behaviour. Females scored significantly higher than males in all three domains of the FEV (p < 0.001). Older individuals showed significantly higher mean scores than the younger ones in the domain of cognitive restraint, but lower mean scores in disinhibition and hunger (p < 0.001). 45.1% of the males and 69.9% of the females reported specific problems in eating. The main problem in both genders was craving for sweets (38.6%). Eating in response to stress was mostly reported in younger individuals. The present study offers current normative data for the FEV in the middle-aged and older general population that can be applied in clinical and non-clinical settings. Information on eating behaviour can be helpful in understanding body weight modulation, and thus, may help to improve interventive and preventive programmes for overweight, obesity, and eating disorders.
Assuntos
Fissura , Dieta , Comportamento Alimentar , Fome , Inibição Psicológica , Autocontrole , Adulto , Fatores Etários , Idoso , Sacarose Alimentar , Feminino , Preferências Alimentares , Identidade de Gênero , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/etiologia , Obesidade/prevenção & controle , Fatores Sexuais , Inquéritos e QuestionáriosRESUMO
Fat stored in visceral depots makes obese individuals more prone to complications than subcutaneous fat. There is good evidence that body fat distribution (FD) is controlled by genetic factors. WHR, a surrogate measure of FD, shows significant heritability of up to â¼60%, even after adjusting for BMI. Genetic variants have been linked to various forms of altered FD such as lipodystrophies; however, the polygenic background of visceral obesity has only been sparsely investigated in the past. Recent genome-wide association studies (GWAS) for measures of FD revealed numerous loci harbouring genes potentially regulating FD. In addition, genes with fat depot-specific expression patterns (in particular subcutaneous vs visceral adipose tissue) provide plausible candidate genes involved in the regulation of FD. Many of these genes are differentially expressed in various fat compartments and correlate with obesity-related traits, thus further supporting their role as potential mediators of metabolic alterations associated with a distinct FD. Finally, developmental genes may at a very early stage determine specific FD in later life. Indeed, genes such as TBX15 not only manifest differential expression in various fat depots, but also correlate with obesity and related traits. Moreover, recent GWAS identified several polymorphisms in developmental genes (including TBX15, HOXC13, RSPO3 and CPEB4) strongly associated with FD. More accurate methods, including cardiometabolic imaging, for assessment of FD are needed to promote our understanding in this field, where the main focus is now to unravel the yet unknown biological function of these novel 'fat distribution genes'.
Assuntos
Adiposidade/genética , Distribuição da Gordura Corporal , Obesidade/genética , Tecido Adiposo/metabolismo , Feminino , Humanos , Masculino , Obesidade/metabolismo , Fatores Sexuais , Relação Cintura-QuadrilRESUMO
AIMS/HYPOTHESIS: Epigenetic alterations may influence the metabolic pathways involved in human obesity. We hypothesised that global DNA methylation levels in adipose tissue might be associated with obesity and related phenotypes. METHODS: We measured global DNA methylation levels in paired samples of subcutaneous adipose tissue (SAT) and omental visceral adipose tissue (OVAT) from 51 individuals, and in leucocytes from 559 Sorbs, a population from Germany, using LUminometric Methylation Assay (LUMA). To further investigate the underlying mechanisms of the observed associations, we measured global methylation levels in 3T3-L1 adipocytes exposed to glucose, insulin and lipids. RESULTS: Global methylation levels (±SD) were significantly higher in OVAT (74.27% ± 2.2%) compared with SAT (71.97% ± 2.4%; paired t test, p < 1 × 10(-9)). Furthermore, global methylation levels in SAT were positive correlates of measures of fat distribution (waist measurement, WHR) and glucose homeostasis (HbA1c) (all p < 0.015 after accounting for multiple testing and covariates). Global methylation levels in the German Sorb cohort were associated with glucose homeostasis, but this association did not withstand adjustment for covariates. Exposure of 3T3-L1 adipocytes to insulin, palmitate and glucose decreased global methylation levels 1 h after treatment relative to controls. CONCLUSIONS/INTERPRETATION: Our data suggest that the variability in global methylation in adipose tissue might be related to alterations in glucose metabolism.
Assuntos
Tecido Adiposo/metabolismo , Metilação de DNA/fisiologia , Glucose/metabolismo , Células 3T3-L1 , Adulto , Idoso , Animais , Diferenciação Celular/fisiologia , Feminino , Humanos , Técnicas In Vitro , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Pessoa de Meia-IdadeRESUMO
Chromatin immunoprecipitation (ChIP) combined with sequencing has revolutionized our understanding of gene regulation; however, its application to frozen adipose tissue presents unique challenges due to the high levels of lipid content. Here, we present a protocol for ChIP of histone modifications in human frozen adipose tissue. We describe steps for tissue preparation, chromatin isolation, sonication, pre-clearing of chromatin, and immunoprecipitation. We then detail procedures for elution, crosslink reversal, chromatin purification, quality control, and library synthesis.
Assuntos
Tecido Adiposo , Imunoprecipitação da Cromatina , Histonas , Humanos , Tecido Adiposo/metabolismo , Imunoprecipitação da Cromatina/métodos , Histonas/metabolismo , Cromatina/metabolismo , Cromatina/genética , Código das Histonas , CongelamentoRESUMO
Although numerous genes are known to regulate serum lipid traits, identified variants explain only a small proportion of the expected heritability. We intended to identify further genetic variants associated with lipid phenotypes in a self-contained population of Sorbs in Germany. We performed a genome-wide association study (GWAS) on LDL-cholesterol, HDL-cholesterol (HDL-C), and triglyceride (TG) levels in 839 Sorbs. All single-nucleotide polymorphisms with a P value <0.01 were subjected to a meta-analysis, including an independent Swedish cohort (Diabetes Genetics Initiative; n = â¼3,100). Novel association signals with the strongest effects were subjected to replication studies in an additional German cohort (Berlin, n = 2,031). In the initial GWAS in the Sorbs, we identified 14 loci associated with lipid phenotypes reaching P values <10â»5 and confirmed significant effects for 18 previously reported loci. The combined meta-analysis of the three study cohorts (n(HDL) = 6041; n(LDL) = 5,995; n(TG) = 6,087) revealed a novel association for a variant in THOC5 (rs8135828) with serum HDL-C levels (P = 1.78 × 10â»7; Z-score = -5.221). Consistently, the variant was also associated with circulating APOA1 levels in Sorbs. The small interfering RNA-mediated mRNA silencing of THOC5 in HepG2 cells resulted in lower mRNA levels of APOA1, SCARB1, and ABCG8 (all P < 0.05). We propose THOC5 to be a novel gene involved in the regulation of serum HDL-C levels.
Assuntos
HDL-Colesterol/metabolismo , Proteínas Nucleares/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Alemanha/etnologia , Células Hep G2 , Humanos , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto JovemRESUMO
PURPOSE OF REVIEW: Enormous progress has been made in understanding the genetic architecture of obesity and the correlation of epigenetic marks with obesity and related traits. This review highlights current research and its challenges in genetics and epigenetics of obesity. RECENT FINDINGS: Recent progress in genetics of polygenic traits, particularly represented by genome-wide association studies, led to the discovery of hundreds of genetic variants associated with obesity, which allows constructing polygenic risk scores (PGS). In addition, epigenome-wide association studies helped identifying novel targets and methylation sites being important in the pathophysiology of obesity and which are essential for the generation of methylation risk scores (MRS). Despite their great potential for predicting the individual risk for obesity, the use of PGS and MRS remains challenging. Future research will likely discover more loci being involved in obesity, which will contribute to better understanding of the complex etiology of human obesity. The ultimate goal from a clinical perspective will be generating highly robust and accurate prediction scores allowing clinicians to predict obesity as well as individual responses to body weight loss-specific life-style interventions.
Assuntos
Metilação de DNA , Estudo de Associação Genômica Ampla , Humanos , Metilação de DNA/genética , Epigênese Genética , Obesidade/genética , Fenótipo , Estratificação de Risco GenéticoRESUMO
Mitochondrial epitranscriptomics refers to the modifications occurring in all the different RNA types of mitochondria. Although the number of mitochondrial RNA modifications is less than those in cytoplasm, substantial evidence indicates that they play a critical role in accurate protein synthesis. Recent evidence supported those modifications in mitochondrial RNAs also have crucial implications in mitochondrial-related diseases. In the light of current knowledge about the involvement, the association between mitochondrial RNA modifications and diseases arises from studies focusing on mutations in both mitochondrial and nuclear DNA genes encoding enzymes involved in such modifications. Here, we review the current evidence available for mitochondrial RNA modifications and their role in metabolic disorders, and we also explore the possibility of using them as promising targets for prevention and early detection. Finally, we discuss future directions of mitochondrial epitranscriptomics in these metabolic alterations, and how these RNA modifications may offer a new diagnostic and theragnostic avenue for preventive purposes. This article is categorized under: RNA Processing > RNA Editing and Modification.
Assuntos
Doenças Mitocondriais , RNA , Humanos , RNA Mitocondrial/metabolismo , RNA/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Processamento Pós-Transcricional do RNARESUMO
Fatty liver diseases are a major health threat across the western world, leading to cirrhosis and premature morbidity and mortality. Recently, a correlation between the base excision repair enzyme SMUG1 and metabolic homeostasis was identified. As the molecular mechanisms remain unknown, we exploited a SMUG1-knockout mouse model to gain insights into this association by characterizing the liver phenotype in young vs old SMUG1-null mice. We observed increased weight and fat content in one-year old animals, with altered activity of enzymes important for fatty acids influx and uptake. Consistently, lipidomic profiling showed accumulation of free fatty acids and triglycerides in SMUG1-null livers. Old SMUG1-knockout mice also displayed increased hepatocyte senescence and DNA damage at telomeres. Interestingly, RNA sequencing revealed widespread changes in the expression of lipid metabolic genes already in three months old animals. In summary, SMUG1 modulates fat metabolism favouring net lipogenesis and resulting in development of a fatty liver phenotype.
Assuntos
Fígado Gorduroso , Uracila-DNA Glicosidase , Camundongos , Animais , Uracila-DNA Glicosidase/metabolismo , Fígado Gorduroso/metabolismo , Camundongos Knockout , Fenótipo , Homeostase , Fígado/metabolismoRESUMO
OBJECTIVE: Obesity is driven by modifiable lifestyle factors whose effects may be mediated by epigenetics. Therefore, we investigated lifestyle effects on blood DNA methylation in participants of the LIFE-Adult study, a well-characterised population-based cohort from Germany. RESEARCH DESIGN AND METHODS: Lifestyle scores (LS) based on diet, physical activity, smoking and alcohol intake were calculated in 4107 participants of the LIFE-Adult study. Fifty subjects with an extremely healthy lifestyle and 50 with an extremely unhealthy lifestyle (5th and 95th percentiles LS) were selected for genome-wide DNA methylation analysis in blood samples employing Illumina Infinium® Methylation EPIC BeadChip system technology. RESULTS: Differences in DNA methylation patterns between body mass index groups (<25 vs. >30 kg/m2 ) were rather marginal compared to inter-lifestyle differences (0 vs. 145 differentially methylated positions [DMPs]), which identified 4682 differentially methylated regions (DMRs; false discovery rate [FDR <5%) annotated to 4426 unique genes. A DMR annotated to the glutamine-fructose-6-phosphate transaminase 2 (GFPT2) locus showed the strongest hypomethylation (â¼6.9%), and one annotated to glutamate rich 1 (ERICH1) showed the strongest hypermethylation (â¼5.4%) in healthy compared to unhealthy lifestyle individuals. Intersection analysis showed that diet, physical activity, smoking and alcohol intake equally contributed to the observed differences, which affected, among others, pathways related to glutamatergic synapses (adj. p < .01) and axon guidance (adj. p < .05). We showed that methylation age correlates with chronological age and waist-to-hip ratio with lower DNA methylation age (DNAmAge) acceleration distances in participants with healthy lifestyles. Finally, two identified top DMPs for the alanyl aminopeptidase (ANPEP) locus also showed the strongest expression quantitative trait methylation in blood. CONCLUSIONS: DNA methylation patterns help discriminate individuals with a healthy versus unhealthy lifestyle, which may mask subtle methylation differences derived from obesity.
Assuntos
Metilação de DNA , Epigênese Genética , Adulto , Metilação de DNA/genética , Epigenômica , Estilo de Vida Saudável , Humanos , Obesidade/genéticaRESUMO
Recently, associations of several common genetic variants with height have been reported in different populations. We attempted to identify further variants associated with adult height in a self-contained population (the Sorbs in Eastern Germany) as discovery set. We performed a genome wide association study (GWAS) (approximately 390,000 genetic polymorphisms, Affymetrix gene arrays) on adult height in 929 Sorbian individuals. Subsequently, the best SNPs (P < 0.001) were taken forward to a meta-analysis together with two independent cohorts [Diabetes Genetics Initiative, British 1958 Birth Cohort, (58BC, publicly available)]. Furthermore, we genotyped our best signal for replication in two additional German cohorts (Leipzig, n = 1044 and Berlin, n = 1728). In the primary Sorbian GWAS, we identified 5 loci with a P-value < 10(-5) and 455 SNPs with P-value < 0.001. In the meta-analysis on those 455 SNPs, only two variants in GPR133 (rs1569019 and rs1976930; in LD with each other) retained a P-value at or below 10(-6) and were associated with height in the three cohorts individually. Upon replication, the SNP rs1569019 showed significant effects on height in the Leipzig cohort (P = 0.004, beta = 1.166) and in 577 men of the Berlin cohort (P = 0.049, beta = 1.127) though not in women. The combined analysis of all five cohorts (n = 6,687) resulted in a P-value of 4.7 x 10(-8) (beta = 0.949). In conclusion, our GWAS suggests novel loci influencing height. In view of the robust replication in five different cohorts, we propose GPR133 to be a novel gene associated with adult height.
Assuntos
Estatura , Variação Genética , Estudo de Associação Genômica Ampla , Receptores Acoplados a Proteínas G/genética , População Branca/genética , Adulto , Idoso , Estudos de Coortes , Feminino , Alemanha/etnologia , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , População Branca/etnologiaRESUMO
Maternal body mass index (BMI) and gestational weight gain (GWG) impacts both the mother's and the child's health, and epigenetic modifications have been suggested to mediate some of these effects in offspring. This systematic review aimed to summarize the current literature on associations between maternal BMI and GWG and epigenetic marks. We performed systematic searches in PubMed and EMBASE and manual searches of reference lists. We included 49 studies exploring the association between maternal BMI and/or GWG and DNA methylation or miRNA; 7 performed in maternal tissues, 13 in placental tissue and 38 in different offspring tissues. The most consistent findings were reported for the relationship between maternal BMI, in particular pre-pregnant BMI, and expression of miRNA Let-7d in both maternal blood and placental tissue, methylation of the gene HIF3A in umbilical cord blood and umbilical tissue, and with expression in the miR-210 target gene, BDNF in placental tissue and cord blood. Correspondingly, methylation of BDNF was also found in placental tissue and cord blood. The current evidence suggests that maternal BMI is associated with some epigenetic signatures in the mother, the placenta and her offspring, which could indicate that some of the effects proposed by the Developmental Origins of Health and Disease-hypothesis may be mediated by epigenetic marks. In conclusion, there is a need for large, well-designed studies and meta-analyses that can clarify the relationship between BMI, GWG and epigenetic changes.
Assuntos
Índice de Massa Corporal , Epigênese Genética , Ganho de Peso na Gestação , Recém-Nascido/metabolismo , Placenta/metabolismo , Metilação de DNA , Feminino , Código das Histonas , Humanos , MicroRNAs/metabolismo , GravidezRESUMO
Background: Leptin, mainly secreted by fat cells, plays a core role in the regulation of appetite and body weight, and has been proposed as a mediator of metabolic programming. During pregnancy leptin is also secreted by the placenta, as well as being a key regulatory cytokine for the development, homeostatic regulation and nutrient transport within the placenta. South Asians have a high burden of type 2 diabetes, partly attributed to a "thin-fat-phenotype". Objective: Our aim was to investigate how maternal ethnicity, adiposity and glucose- and lipid/cholesterol levels in pregnancy are related to placental leptin gene (LEP) DNA methylation. Methods: We performed DNA methylation analyses of 13 placental LEP CpG sites in 40 ethnic Europeans and 40 ethnic South Asians participating in the STORK-Groruddalen cohort. Results: South Asian ethnicity and gestational diabetes (GDM) were associated with higher placental LEP methylation. The largest ethnic difference was found for CpG11 [5.8% (95% CI: 2.4, 9.2), p<0.001], and the strongest associations with GDM was seen for CpG5 [5.2% (1.4, 9.0), p=0.008]. Higher maternal LDL-cholesterol was associated with lower placental LEP methylation, in particular for CpG11 [-3.6% (-5.5, -1.4) per one mmol/L increase in LDL, p<0.001]. After adjustments, including for nutritional factors involved in the one-carbon-metabolism cycle (vitamin D, B12 and folate levels), ethnic differences in placental LEP methylation were strongly attenuated, while associations with glucose and LDL-cholesterol persisted. Conclusions: Maternal glucose and lipid metabolism is related to placental LEP methylation, whilst metabolic and nutritional factors largely explain a higher methylation level among ethnic South Asians.
Assuntos
Povo Asiático/etnologia , Glicemia/metabolismo , LDL-Colesterol/sangue , Leptina/metabolismo , Estado Nutricional/etnologia , Placenta/metabolismo , Adiposidade/etnologia , Adiposidade/fisiologia , Adulto , Estudos de Coortes , Metilação de DNA/fisiologia , Diabetes Gestacional/sangue , Diabetes Gestacional/etnologia , Feminino , Seguimentos , Humanos , GravidezRESUMO
Background: N6-methyladenosine (m6A) is one of the most abundant post-transcriptional modifications on mRNA influencing mRNA metabolism. There is emerging evidence for its implication in metabolic disease. No comprehensive analyses on gene expression of m6A regulators in human adipose tissue, especially in paired adipose tissue depots, and its correlation with clinical variables were reported so far. We hypothesized that inter-depot specific gene expression of m6A regulators may differentially correlate with clinical variables related to obesity and fat distribution. Methods: We extracted intra-individually paired gene expression data (omental visceral adipose tissue (OVAT) N=48; subcutaneous adipose tissue (SAT) N=56) of m6A regulators from an existing microarray dataset. We also measured gene expression in another sample set of paired OVAT and SAT (N=46) using RT-qPCR. Finally, we extracted existing gene expression data from peripheral mononuclear blood cells (PBMCs) and single nucleotide polymorphisms (SNPs) in METTL3 and YTHDF3 from genome wide data from the Sorbs population (N=1049). The data were analysed for differential gene expression between OVAT and SAT; and for association with obesity and clinical variables. We further tested for association of SNP markers with gene expression and clinical traits. Results: In adipose tissue we observed that several m6A regulators (WTAP, VIRMA, YTHDC1 and ALKBH5) correlate with obesity and clinical variables. Moreover, we found adipose tissue depot specific gene expression for METTL3, WTAP, VIRMA, FTO and YTHDC1. In PBMCs, we identified ALKBH5 and YTHDF3 correlated with obesity. Genetic markers in METTL3 associate with BMI whilst SNPs in YTHDF3 are associated with its gene expression. Conclusions: Our data show that expression of m6A regulators correlates with obesity, is adipose tissue depot-specific and related to clinical traits. Genetic variation in m6A regulators adds an additional layer of variability to the functional consequences.