Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 157(3): 651-63, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766810

RESUMO

Neurodegenerative diseases can occur so early as to affect neurodevelopment. From a cohort of more than 2,000 consanguineous families with childhood neurological disease, we identified a founder mutation in four independent pedigrees in cleavage and polyadenylation factor I subunit 1 (CLP1). CLP1 is a multifunctional kinase implicated in tRNA, mRNA, and siRNA maturation. Kinase activity of the CLP1 mutant protein was defective, and the tRNA endonuclease complex (TSEN) was destabilized, resulting in impaired pre-tRNA cleavage. Germline clp1 null zebrafish showed cerebellar neurodegeneration that was rescued by wild-type, but not mutant, human CLP1 expression. Patient-derived induced neurons displayed both depletion of mature tRNAs and accumulation of unspliced pre-tRNAs. Transfection of partially processed tRNA fragments into patient cells exacerbated an oxidative stress-induced reduction in cell survival. Our data link tRNA maturation to neuronal development and neurodegeneration through defective CLP1 function in humans.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Proteínas Nucleares/genética , Fosfotransferases/genética , Splicing de RNA , RNA de Transferência/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Fator de Especificidade de Clivagem e Poliadenilação/genética , Feminino , Humanos , Masculino , Camundongos , Modelos Moleculares , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas Nucleares/metabolismo , Linhagem , Fosfotransferases/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
2.
Brain ; 147(9): 3113-3130, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38743588

RESUMO

Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited peripheral neuropathy caused by a 1.5 Mb tandem duplication of chromosome 17 harbouring the PMP22 gene. This dose-dependent overexpression of PMP22 results in disrupted Schwann cell myelination of peripheral nerves. To obtain better insights into the underlying pathogenic mechanisms in CMT1A, we investigated the role of PMP22 duplication in cellular homeostasis in CMT1A mouse models and in patient-derived induced pluripotent stem cells differentiated into Schwann cell precursors (iPSC-SCPs). We performed lipidomic profiling and bulk RNA sequencing (RNA-seq) on sciatic nerves of two developing CMT1A mouse models and on CMT1A patient-derived iPSC-SCPs. For the sciatic nerves of the CMT1A mice, cholesterol and lipid metabolism was downregulated in a dose-dependent manner throughout development. For the CMT1A iPSC-SCPs, transcriptional analysis unveiled a strong suppression of genes related to autophagy and lipid metabolism. Gene ontology enrichment analysis identified disturbances in pathways related to plasma membrane components and cell receptor signalling. Lipidomic analysis confirmed the severe dysregulation in plasma membrane lipids, particularly sphingolipids, in CMT1A iPSC-SCPs. Furthermore, we identified reduced lipid raft dynamics, disturbed plasma membrane fluidity and impaired cholesterol incorporation and storage, all of which could result from altered lipid storage homeostasis in the patient-derived CMT1A iPSC-SCPs. Importantly, this phenotype could be rescued by stimulating autophagy and lipolysis. We conclude that PMP22 duplication disturbs intracellular lipid storage and leads to a more disordered plasma membrane owing to an alteration in the lipid composition, which might ultimately lead to impaired axo-glial interactions. Moreover, targeting lipid handling and metabolism could hold promise for the treatment of patients with CMT1A.


Assuntos
Membrana Celular , Doença de Charcot-Marie-Tooth , Homeostase , Células-Tronco Pluripotentes Induzidas , Metabolismo dos Lipídeos , Proteínas da Mielina , Células de Schwann , Animais , Humanos , Camundongos , Membrana Celular/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Duplicação Gênica , Homeostase/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas da Mielina/metabolismo , Proteínas da Mielina/genética , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo
3.
Genet Med ; 26(6): 101105, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38430071

RESUMO

PURPOSE: To describe a recessively inherited cerebral small vessel disease, caused by loss-of-function variants in Nitrilase1 (NIT1). METHODS: We performed exome sequencing, brain magnetic resonance imaging, neuropathology, electron microscopy, western blotting, and transcriptomic and metabolic analyses in 7 NIT1-small vessel disease patients from 5 unrelated pedigrees. RESULTS: The first identified patients were 3 siblings, compound heterozygous for the NIT1 c.727C>T; (p.Arg243Trp) variant and the NIT1 c.198_199del; p.(Ala68∗) variant. The 4 additional patients were single cases from 4 unrelated pedigrees and were all homozygous for the NIT1 c.727C>T; p.(Arg243Trp) variant. Patients presented in mid-adulthood with movement disorders. All patients had striking abnormalities on brain magnetic resonance imaging, with numerous and massively dilated basal ganglia perivascular spaces. Three patients had non-lobar intracerebral hemorrhage between age 45 and 60, which was fatal in 2 cases. Western blotting on patient fibroblasts showed absence of NIT1 protein, and metabolic analysis in urine confirmed loss of NIT1 enzymatic function. Brain autopsy revealed large electron-dense deposits in the vessel walls of small and medium sized cerebral arteries. CONCLUSION: NIT1-small vessel disease is a novel, autosomal recessively inherited cerebral small vessel disease characterized by a triad of movement disorders, massively dilated basal ganglia perivascular spaces, and intracerebral hemorrhage.


Assuntos
Hemorragia Cerebral , Doenças de Pequenos Vasos Cerebrais , Transtornos dos Movimentos , Linhagem , Humanos , Feminino , Masculino , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/patologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Pessoa de Meia-Idade , Hemorragia Cerebral/genética , Hemorragia Cerebral/patologia , Hemorragia Cerebral/diagnóstico por imagem , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Transtornos dos Movimentos/diagnóstico por imagem , Imageamento por Ressonância Magnética , Alelos , Adulto , Idoso , Sistema Glinfático/patologia , Sistema Glinfático/diagnóstico por imagem , Sequenciamento do Exoma , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Aminoidrolases/genética
4.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39201615

RESUMO

It is well known that modifiers play a role in ameliorating or exacerbating disease phenotypes in patients and carriers of recessively inherited disorders such as sickle cell disease and thalassemia. Here, we give an overview of the literature concerning a recently described association in carriers of SUPT5H Loss-of-Function variants with a beta-thalassemia-like phenotype including the characteristic elevated levels of HbA2. That SUPT5H acts as modifier in beta-thalassemia carriers became evident from three reported cases in whom combined heterozygosity of SUPT5H and HBB gene variants was observed to resemble a mild beta-thalassemia intermedia phenotype. The different SUPT5H variants and hematologic parameters reported are collected and reviewed to provide insight into the possible effects on hematologic expression, as well as potential disease mechanisms in carriers and patients.


Assuntos
Proteínas Nucleares , Fatores de Elongação da Transcrição , Talassemia beta , Humanos , Talassemia beta/genética , Heterozigoto , Mutação com Perda de Função , Fenótipo , Proteínas Nucleares/genética , Fatores de Elongação da Transcrição/genética
5.
Blood ; 137(4): 493-499, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32905580

RESUMO

Agammaglobulinemia is the most profound primary antibody deficiency that can occur due to an early termination of B-cell development. We here investigated 3 novel patients, including the first known adult, from unrelated families with agammaglobulinemia, recurrent infections, and hypertrophic cardiomyopathy (HCM). Two of them also presented with intermittent or severe chronic neutropenia. We identified homozygous or compound-heterozygous variants in the gene for folliculin interacting protein 1 (FNIP1), leading to loss of the FNIP1 protein. B-cell metabolism, including mitochondrial numbers and activity and phosphatidylinositol 3-kinase/AKT pathway, was impaired. These defects recapitulated the Fnip1-/- animal model. Moreover, we identified either uniparental disomy or copy-number variants (CNVs) in 2 patients, expanding the variant spectrum of this novel inborn error of immunity. The results indicate that FNIP1 deficiency can be caused by complex genetic mechanisms and support the clinical utility of exome sequencing and CNV analysis in patients with broad phenotypes, including agammaglobulinemia and HCM. FNIP1 deficiency is a novel inborn error of immunity characterized by early and severe B-cell development defect, agammaglobulinemia, variable neutropenia, and HCM. Our findings elucidate a functional and relevant role of FNIP1 in B-cell development and metabolism and potentially neutrophil activity.


Assuntos
Agamaglobulinemia/genética , Linfócitos B/patologia , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Síndromes de Imunodeficiência/genética , Linfopenia/genética , Adulto , Animais , Linfócitos B/metabolismo , Criança , Pré-Escolar , Cromossomos Humanos Par 5/genética , Códon sem Sentido , Consanguinidade , Doença de Crohn/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Cardiopatias Congênitas/genética , Humanos , Infecções/etiologia , Mutação com Perda de Função , Masculino , Camundongos , Neutropenia/genética , Linhagem , Dissomia Uniparental , Sequenciamento do Exoma
6.
Stroke ; 53(10): 3133-3144, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35862191

RESUMO

BACKGROUND: A retrospective study has shown that EGFr (epidermal growth factor-like repeat) group in the NOTCH3 gene is an important cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) disease modifier of age at first stroke and white matter hyperintensity (WMH) volume. No study has yet assessed the effect of other known CADASIL modifiers, that is, cardiovascular risk factors and sex, in the context of NOTCH3 EGFr group. In this study, we determined the relative disease-modifying effects of NOTCH3 EGFr group, sex and cardiovascular risk factor on disease severity in the first genotype-driven, large prospective CADASIL cohort study, using a comprehensive battery of CADASIL clinical outcomes and neuroimaging markers. METHODS: Patients with CADASIL participated in a single-center, prospective cohort study (DiViNAS [Disease Variability in NOTCH3 Associated Small Vessel Disease]) between 2017 and 2020. The study protocol included a clinical assessment, neuropsychological test battery and brain magnetic resonance imaging on a single research day. Multivariable linear, logistic and Cox regression models were used to cross-sectionally assess the effect of CADASIL modifiers on clinical severity (stroke, disability, processing speed) and neuroimaging markers (WMH volume, peak width of skeletonized mean diffusivity, lacune volume, brain volume, cerebral microbleed count). RESULTS: Two hundred patients with CADASIL participated, of which 103 harbored a NOTCH3 EGFr 1-6 variant and 97 an EGFr 7-34 variant. NOTCH3 EGFr 1-6 group was the most important modifier of age at first stroke (hazard ratio, 2.45 [95% CI, 1.39-4.31]; P=0.002), lacune volume (odds ratio, 4.31 [95% CI, 2.31-8.04]; P=4.0×10-6), WMH volume (B=0.81 [95% CI, 0.60-1.02]; P=1.1×10-12), and peak width of skeletonized mean diffusivity (B=0.65 [95% CI, 0.44-0.87]; P=1.6×10-8). EGFr 1-6 patients had a significantly higher WMH volume in the anterior temporal lobes and superior frontal gyri and a higher burden of enlarged perivascular spaces. After NOTCH3 EGFr group, male sex and hypertension were the next most important modifiers of clinical outcomes and neuroimaging markers. CONCLUSIONS: NOTCH3 EGFr group is the most important CADASIL disease modifier not only for age at first stroke and WMH volume but also strikingly so for a whole battery of clinically relevant disease measures such as lacune volume and peak width of skeletonized mean diffusivity. NOTCH3 EGFr group is followed in importance by sex, hypertension, diabetes, and smoking.


Assuntos
CADASIL , Doenças Cardiovasculares , Hipertensão , Acidente Vascular Cerebral , Encéfalo/patologia , CADASIL/complicações , CADASIL/diagnóstico por imagem , CADASIL/genética , Doenças Cardiovasculares/complicações , Estudos de Coortes , Família de Proteínas EGF/genética , Fatores de Risco de Doenças Cardíacas , Humanos , Hipertensão/complicações , Imageamento por Ressonância Magnética/efeitos adversos , Masculino , Mutação , Neuroimagem , Estudos Prospectivos , Receptor Notch3/genética , Receptores Notch/genética , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/etiologia
7.
Hum Mol Genet ; 29(11): 1853-1863, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-31960911

RESUMO

CADASIL is a vascular protein aggregation disorder caused by cysteine-altering NOTCH3 variants, leading to mid-adult-onset stroke and dementia. Here, we report individuals with a cysteine-altering NOTCH3 variant that induces exon 9 skipping, mimicking therapeutic NOTCH3 cysteine correction. The index came to our attention after a coincidental finding on a commercial screening MRI, revealing white matter hyperintensities. A heterozygous NOTCH3 c.1492G>T, p.Gly498Cys variant, was identified using a gene panel, which was also present in four first- and second-degree relatives. Although some degree of white matter hyperintensities was present on MRI in all family members with the NOTCH3 variant, the CADASIL phenotype was mild, as none had lacunes on MRI and there was no disability or cognitive impairment above the age of 60 years. RT-PCR and Sanger sequencing analysis on patient fibroblast RNA revealed that exon 9 was absent from the majority of NOTCH3 transcripts of the mutant allele, effectively excluding the mutation. NOTCH3 aggregation was assessed in skin biopsies using electron microscopy and immunohistochemistry and did not show granular osmiophilic material and only very mild NOTCH3 staining. For purposes of therapeutic translatability, we show that, in cell models, exon 9 exclusion can be obtained using antisense-mediated exon skipping and CRISPR/Cas9-mediated genome editing. In conclusion, this study provides the first in-human evidence that cysteine corrective NOTCH3 exon skipping is associated with less NOTCH3 aggregation and an attenuated phenotype, justifying further therapeutic development of NOTCH3 cysteine correction for CADASIL.


Assuntos
CADASIL/genética , Cisteína/genética , Agregação Patológica de Proteínas/genética , Receptor Notch3/genética , Substância Branca/metabolismo , Adulto , Idoso , Biópsia , CADASIL/diagnóstico por imagem , CADASIL/metabolismo , CADASIL/fisiopatologia , Sistemas CRISPR-Cas/genética , Éxons/genética , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Agregação Patológica de Proteínas/diagnóstico por imagem , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Índice de Gravidade de Doença , Pele/química , Pele/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
8.
Ann Surg ; 275(6): e781-e788, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427755

RESUMO

OBJECTIVE: The aim of this study was to identify genetic variants associated with early multiple organ failure (MOF) in acute pancreatitis. SUMMARY BACKGROUND DATA: MOF is a life-threatening complication of acute pancreatitis, and risk factors are largely unknown, especially in early persistent MOF. Genetic risk factors are thought to enhance severity in complex diseases such as acute pancreatitis. METHODS: A 2-phase study design was conducted. First, we exome sequenced 9 acute pancreatitis patients with early persistent MOF and 9 case-matched patients with mild edematous pancreatitis (phenotypic extremes) from our initial Dutch cohort of 387 patients. Secondly, 48 candidate variants that were overrepresented in MOF patients and 10 additional variants known from literature were genotyped in a replication cohort of 286 Dutch and German patients. RESULTS: Exome sequencing resulted in 161,696 genetic variants, of which the 38,333 non-synonymous variants were selected for downstream analyses. Of these, 153 variants were overrepresented in patients with multiple-organ failure, as compared with patients with mild acute pancreatitis. In total, 58 candidate variants were genotyped in the joined Dutch and German replication cohort. We found the rs12440118 variant of ZNF106 to be overrepresented in patients with MOF (minor allele frequency 20.4% vs 11.6%, Padj=0.026). Additionally, SLC52A1 rs346821 was found to be overrepresented (minor allele frequency 48.0% vs 42.4%, Padj= 0.003) in early MOF. None of the variants known from literature were associated.Conclusions: This study indicates that SLC52A1, a riboflavin plasma membrane transporter, and ZNF106, a zinc finger protein, may be involved in disease progression toward (early) MOF in acute pancreatitis.


Assuntos
Proteínas de Ligação a DNA , Pancreatite , Receptores Acoplados a Proteínas G , Humanos , Doença Aguda , Proteínas de Ligação a DNA/genética , Sequenciamento do Exoma , Insuficiência de Múltiplos Órgãos/genética , Pancreatite/complicações , Pancreatite/genética , Receptores Acoplados a Proteínas G/genética , Fatores de Risco , Dedos de Zinco
9.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142647

RESUMO

BACKGROUND: Chronic inflammation is an important driver in the progression of non-alcoholic steatohepatitis (NASH) and atherosclerosis. The complement system, one of the first lines of defense in innate immunity, has been implicated in both diseases. However, the potential therapeutic value of complement inhibition in the ongoing disease remains unclear. METHODS: After 20 weeks of high-fat diet (HFD) feeding, obese Ldlr-/-.Leiden mice were treated twice a week with an established anti-C5 antibody (BB5.1) or vehicle control. A separate group of mice was kept on a chow diet as a healthy reference. After 12 weeks of treatment, NASH was analyzed histopathologically, and genome-wide hepatic gene expression was analyzed by next-generation sequencing and pathway analysis. Atherosclerotic lesion area and severity were quantified histopathologically in the aortic roots. RESULTS: Anti-C5 treatment considerably reduced complement system activity in plasma and MAC deposition in the liver but did not affect NASH. Anti-C5 did, however, reduce the development of atherosclerosis, limiting the total lesion size and severity independently of an effect on plasma cholesterol but with reductions in oxidized LDL (oxLDL) and macrophage migration inhibitory factor (MIF). CONCLUSION: We show, for the first time, that treatment with an anti-C5 antibody in advanced stages of NASH is not sufficient to reduce the disease, while therapeutic intervention against established atherosclerosis is beneficial to limit further progression.


Assuntos
Aterosclerose , Fatores Inibidores da Migração de Macrófagos , Hepatopatia Gordurosa não Alcoólica , Animais , Aterosclerose/metabolismo , Colesterol/metabolismo , Complemento C5/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
10.
Eur J Neurol ; 28(5): 1677-1683, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33460483

RESUMO

BACKGROUND AND PURPOSE: Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a clinical and electrophysiological heterogeneous immune-mediated polyneuropathy. Intravenous immunoglobulin (IVIg), corticosteroids, and plasma exchange are proven effective treatments for CIDP. The clinical response to IVIg is variable between patients and currently unexplained. Finding biomarkers related to treatment response can help to understand the diversity of CIDP and personalise treatment choice. METHODS: We investigated whether genetic variation between patients may explain some of these differences in treatment response. Based on previous publications, we selected six candidate genes that might affect immune and axonal functions, IVIg metabolism, and treatment response in CIDP. Genetic variants were assessed in 172 CIDP patients treated with at least one course of IVIg (2 g/kg). A response to IVIg was defined by ≥1 grade improvement on the modified Rankin Scale. Blood samples were tested for variations in CNTN2, PRF1, FCGRT, FCGR2B, GJB1, and SH2D2A genes. RESULTS: In univariate analysis, patients with the FCGR2B promoter variant 2B.4/2B.1 responded more often to IVIg than patients with the 2B.1/2B.1 variant (odds ratio [OR] = 6.9, 95% confidence interval [CI] = 1.6-30; p = 0.003). Patients with the p.(Ala91Val) variant of PRF1 were less often IVIg responsive (OR = 0.34, 95% CI = 0.13-0.91; p = 0.038). In multivariate analysis, both PRF1 and FCGR2B showed discriminative ability to predict the chance of IVIg response (area under the curve = 0.67). CONCLUSIONS: Variations in PRF1 and the promoter region of FCGR2B are associated with the response to IVIg in CIDP. These findings, which require validation, are a first step towards the understanding of the heterogeneity in the treatment response in CIDP.


Assuntos
Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Corticosteroides , Marcadores Genéticos , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Troca Plasmática , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/tratamento farmacológico , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/genética
11.
Neuropediatrics ; 52(3): 163-169, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33111306

RESUMO

BACKGROUND: Pontocerebellar hypoplasia (PCH) is a rare group of disorders mainly affecting the cerebellum and pons. Supratentorial structures are variably involved. We assessed brain growth patterns in patients with the most frequent forms of PCH, namely PCH1B (OMIM#614678) and PCH2A (OMIM#277470), since in these types of PCH, pre- and postnatal neurodegeneration is established by neuropathological profiling. To assess the influence of the different pathomechanisms on postnatal growth patterns, we included CASK-associated microcephaly and PCH (MICPCH, OMIM#300749) patients in our analyses, as MICPH mimics PCH on magnetic resonance imaging (MRI) but represents a developmental disorder including abnormal neuronal migration. METHODS: A total of 66 patients were included: 9 patients with PCH1B, 18 patients with PCH2A, 6 patients with MICPCH, and 33 age- and gender-matched hospital-based controls. Segmentation of the vermis and cerebellum was performed manually, as were measurements of the thickness of the head of the caudate nucleus, the width of the anterior horn, and lateral ventricle size. RESULTS: The cerebellum was severely hypoplastic at birth in all patients, and postnatal growth was nearly absent. In patients with PCH1B/2A, we found relative sparing of the vermis compared with the cerebellar hemispheres. In addition, PCH1B and PCH2A cases demonstrated thinning of the head of the caudate nucleus, an associated increase in anterior horn width, and an increase in lateral ventricle size. None of these features were seen in the MICPCH group. CONCLUSIONS: Our findings confirm the progressive nature including caudate nucleus atrophy in PCH1B and PCH2A. In MICPCH, the relative sparing of supratentorial structures confirms its different pathomechanism.


Assuntos
Doenças Cerebelares , Atrofias Olivopontocerebelares , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Doenças Cerebelares/diagnóstico por imagem , Doenças Cerebelares/patologia , Cerebelo/patologia , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Atrofias Olivopontocerebelares/diagnóstico por imagem , Atrofias Olivopontocerebelares/patologia
12.
Hum Mol Genet ; 27(23): 4036-4050, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30124830

RESUMO

Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes implicated in several dominant and recessive disease phenotypes. The canonical function of ARSs is to couple an amino acid to a cognate transfer RNA (tRNA). We identified three novel disease-associated missense mutations in the alanyl-tRNA synthetase (AARS) gene in three families with dominant axonal Charcot-Marie-Tooth (CMT) disease. Two mutations (p.Arg326Trp and p.Glu337Lys) are located near a recurrent pathologic change in AARS, p.Arg329His. The third (p.Ser627Leu) is in the editing domain of the protein in which hitherto only mutations associated with recessive encephalopathies have been described. Yeast complementation assays demonstrated that two mutations (p.Ser627Leu and p.Arg326Trp) represent loss-of-function alleles, while the third (p.Glu337Lys) represents a hypermorphic allele. Further, aminoacylation assays confirmed that the third mutation (p.Glu337Lys) increases tRNA charging velocity. To test the effect of each mutation in the context of a vertebrate nervous system, we developed a zebrafish assay. Remarkably, all three mutations caused a pathological phenotype of neural abnormalities when expressed in zebrafish, while expression of the human wild-type messenger RNA (mRNA) did not. Our data indicate that not only functional null or hypomorphic alleles, but also hypermorphic AARS alleles can cause dominantly inherited axonal CMT disease.


Assuntos
Alanina-tRNA Ligase/genética , Aminoacil-tRNA Sintetases/genética , Doença de Charcot-Marie-Tooth/genética , RNA de Transferência/genética , Adulto , Alelos , Aminoácidos/genética , Animais , Doença de Charcot-Marie-Tooth/patologia , Feminino , Regulação Enzimológica da Expressão Gênica/genética , Heterogeneidade Genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Leveduras/genética , Peixe-Zebra/genética
13.
Hum Mol Genet ; 27(20): 3488-3497, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30281091

RESUMO

Facioscapulohumeral muscular dystrophy, known in genetic forms FSHD1 and FSHD2, is associated with D4Z4 repeat array chromatin relaxation and somatic derepression of DUX4 located in D4Z4. A complete copy of DUX4 is present on 4qA chromosomes, but not on the D4Z4-like repeats of chromosomes 4qB or 10. Normally, the D4Z4 repeat varies between 8 and 100 units, while in FSHD1 it is only 1-10 units. In the rare genetic form FSHD2, a combination of a 4qA allele with a D4Z4 repeat size of 8-20 units and heterozygous pathogenic variants in the chromatin modifier SMCHD1 causes DUX4 derepression and disease. In this study, we identified 11/79 (14%) FSHD2 patients with unusually large 4qA alleles of 21-70 D4Z4 units. By a combination of Southern blotting and molecular combing, we show that 8/11 (73%) of these unusually large 4qA alleles represent duplication alleles in which the long D4Z4 repeat arrays are followed by a small FSHD-sized D4Z4 repeat array duplication. We also show that these duplication alleles are associated with DUX4 expression. This duplication allele frequency is significantly higher than in controls (2.9%), FSHD1 patients (1.4%) and in FSHD2 patients with typical 4qA alleles of 8-20 D4Z4 units (1.5%). Segregation analysis shows that, similar to typical 8-20 units FSHD2 alleles, duplication alleles only cause FSHD in combination with a pathogenic variant in SMCHD1. We conclude that cis duplications of D4Z4 repeats explain DUX4 expression and disease presentation in FSHD2 families with unusual long D4Z4 repeats on 4qA chromosomes.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Homeodomínio/genética , Distrofia Muscular Facioescapuloumeral/genética , Mutação , Sequências Repetitivas de Ácido Nucleico , Linhagem Celular , Cromatina/metabolismo , Análise Mutacional de DNA , Feminino , Regulação da Expressão Gênica , Variação Estrutural do Genoma , Humanos , Masculino , Distrofia Muscular Facioescapuloumeral/metabolismo , Linhagem
14.
Am J Hum Genet ; 101(3): 441-450, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28823706

RESUMO

Pontocerebellar hypoplasia (PCH) represents a group of recessive developmental disorders characterized by impaired growth of the pons and cerebellum, which frequently follows a degenerative course. Currently, there are 10 partially overlapping clinical subtypes and 13 genes known mutated in PCH. Here, we report biallelic TBC1D23 mutations in six individuals from four unrelated families manifesting a non-degenerative form of PCH. In addition to reduced volume of pons and cerebellum, affected individuals had microcephaly, psychomotor delay, and ataxia. In zebrafish, tbc1d23 morphants replicated the human phenotype showing hindbrain volume loss. TBC1D23 localized at the trans-Golgi and was regulated by the small GTPases Arl1 and Arl8, suggesting a role in trans-Golgi membrane trafficking. Altogether, this study provides a causative link between TBC1D23 mutations and PCH and suggests a less severe clinical course than other PCH subtypes.


Assuntos
Doenças Cerebelares/genética , Proteínas Ativadoras de GTPase/genética , Homozigoto , Microcefalia/genética , Mutação , Adolescente , Animais , Doenças Cerebelares/patologia , Criança , Pré-Escolar , Feminino , Células HeLa , Humanos , Masculino , Microcefalia/patologia , Linhagem , Fenótipo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
15.
Ann Neurol ; 85(3): 316-330, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30706531

RESUMO

OBJECTIVE: Genetic modifiers in rare disease have long been suspected to contribute to the considerable variance in disease expression, including Charcot-Marie-Tooth disease type 1A (CMT1A). To address this question, the Inherited Neuropathy Consortium collected a large standardized sample of such rare CMT1A patients over a period of 8 years. CMT1A is caused in most patients by a uniformly sized 1.5 Mb duplication event involving the gene PMP22. METHODS: We genotyped DNA samples from 971 CMT1A patients on Illumina BeadChips. Genome-wide analysis was performed in a subset of 330 of these patients, who expressed the extremes of a hallmark symptom: mild and severe foot dorsiflexion strength impairment. SIPA1L2 (signal-induced proliferation-associated 1 like 2), the top identified candidate modifier gene, was expressed in the peripheral nerve, and our functional studies identified and confirmed interacting proteins using coimmunoprecipitation analysis, mass spectrometry, and immunocytochemistry. Chromatin immunoprecipitation and in vitro siRNA experiments were used to analyze gene regulation. RESULTS: We identified significant association of 4 single nucleotide polymorphisms (rs10910527, rs7536385, rs4649265, rs1547740) in SIPA1L2 with foot dorsiflexion strength (p < 1 × 10-7 ). Coimmunoprecipitation and mass spectroscopy studies identified ß-actin and MYH9 as SIPA1L2 binding partners. Furthermore, we show that SIPA1L2 is part of a myelination-associated coexpressed network regulated by the master transcription factor SOX10. Importantly, in vitro knockdown of SIPA1L2 in Schwannoma cells led to a significant reduction of PMP22 expression, hinting at a potential strategy for drug development. INTERPRETATION: SIPA1L2 is a potential genetic modifier of CMT1A phenotypic expressions and offers a new pathway to therapeutic interventions. ANN NEUROL 2019;85:316-330.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Pé/fisiopatologia , Proteínas Ativadoras de GTPase/genética , Genes Modificadores/genética , Debilidade Muscular/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Doença de Charcot-Marie-Tooth/fisiopatologia , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/fisiopatologia , Proteínas da Mielina/genética , Neurilemoma/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Ratos , Índice de Gravidade de Doença , Adulto Jovem
16.
Mov Disord ; 35(9): 1667-1674, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32618053

RESUMO

BACKGROUND: The most common genetic risk factor for Parkinson's disease known is a damaging variant in the GBA1 gene. The entire GBA1 gene has rarely been studied in a large cohort from a single population. The objective of this study was to assess the entire GBA1 gene in Parkinson's disease from a single large population. METHODS: The GBA1 gene was assessed in 3402 Dutch Parkinson's disease patients using next-generation sequencing. Frequencies were compared with Dutch controls (n = 655). Family history of Parkinson's disease was compared in carriers and noncarriers. RESULTS: Fifteen percent of patients had a GBA1 nonsynonymous variant (including missense, frameshift, and recombinant alleles), compared with 6.4% of controls (OR, 2.6; P < 0.001). Eighteen novel variants were detected. Variants previously associated with Gaucher's disease were identified in 5.0% of patients compared with 1.5% of controls (OR, 3.4; P < 0.001). The rarely reported complex allele p.D140H + p.E326K appears to likely be a Dutch founder variant, found in 2.4% of patients and 0.9% of controls (OR, 2.7; P = 0.012). The number of first-degree relatives (excluding children) with Parkinson's disease was higher in p.D140H + p.E326K carriers (5.6%, 21 of 376) compared with p.E326K carriers (2.9%, 29 of 1014); OR, 2.0; P = 0.022, suggestive of a dose effect for different GBA1 variants. CONCLUSIONS: Dutch Parkinson's disease patients display one of the largest frequencies of GBA1 variants reported so far, consisting in large part of the mild p.E326K variant and the more severe Dutch p.D140H + p.E326K founder allele. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Gaucher , Doença de Parkinson , Criança , Glucosilceramidase/genética , Humanos , Mutação/genética , Países Baixos/epidemiologia , Doença de Parkinson/genética
17.
J Immunol ; 201(2): 417-422, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29891556

RESUMO

Genetic and immunological evidence clearly points to a role for T cells in the pathogenesis of rheumatoid arthritis (RA). Selective targeting of such disease-associated T cell clones might be highly effective while having few side effects. However, such selective targeting may only be feasible if the same T cell clones dominate the immune response at different sites of inflammation. We leveraged high-throughput technology to quantitatively assess whether different T cell clones dominate the inflammatory infiltrate at various sites of inflammation in this prototypic autoimmune disease. In 13 RA patients, we performed quantitative next-generation sequencing-based human TCRß repertoire analysis in simultaneously obtained samples from inflamed synovial tissue (ST) from distinct locations within one joint, from multiple joints, and from synovial fluid (SF) and peripheral blood (PB). Identical TCRß clones dominate inflammatory responses in ST samples taken from different locations within a single joint and when sampled in different joints. Although overall ST-SF overlap was comparable to higher ST-ST values, the overlap in dominant TCRß clones in ST-SF comparisons was much lower than ST-ST and comparable to the low ST-PB overlap. In individual RA patients, a limited number of TCRß clones dominate the immune response in the inflamed ST regardless of the location within a joint and which joint undergoes biopsy; in contrast, there is limited overlap of ST with SF or PB TCR repertoires. This limited breadth of the T cell response in ST of the individual RA patient indicates that development of immunotherapies that selectively modulate dominant T cell responses might be feasible.


Assuntos
Artrite Reumatoide/imunologia , Células Clonais/imunologia , Inflamação/imunologia , Sinovite/imunologia , Linfócitos T/imunologia , Doenças Autoimunes/imunologia , Feminino , Humanos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Líquido Sinovial/imunologia , Membrana Sinovial/imunologia
18.
Diabetologia ; 62(4): 704-716, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30737520

RESUMO

AIMS/HYPOTHESIS: Animal studies have indicated that disturbed diurnal rhythms of clock gene expression in adipose tissue can induce obesity and type 2 diabetes. The importance of the circadian timing system for energy metabolism is well established, but little is known about the diurnal regulation of (clock) gene expression in obese individuals with type 2 diabetes. In this study we aimed to identify key disturbances in the diurnal rhythms of the white adipose tissue transcriptome in obese individuals with type 2 diabetes. METHODS: In a case-control design, we included six obese individuals with type 2 diabetes and six healthy, lean control individuals. All participants were provided with three identical meals per day for 3 days at zeitgeber time (ZT, with ZT 0:00 representing the time of lights on) 0:30, 6:00 and 11:30. Four sequential subcutaneous abdominal adipose tissue samples were obtained, on day 2 at ZT 15:30, and on day 3 at ZT 0:15, ZT 5:45 and ZT 11:15. Gene expression was measured using RNA sequencing. RESULTS: The core clock genes showed reduced amplitude oscillations in the individuals with type 2 diabetes compared with the healthy control individuals. Moreover, in individuals with type 2 diabetes, only 1.8% (303 genes) of 16,818 expressed genes showed significant diurnal rhythmicity, compared with 8.4% (1421 genes) in healthy control individuals. Enrichment analysis revealed a loss of rhythm in individuals with type 2 diabetes of canonical metabolic pathways involved in the regulation of lipolysis. Enrichment analysis of genes with an altered mesor in individuals with type 2 diabetes showed decreased activity of the translation initiating pathway 'EIF2 signaling'. Individuals with type 2 diabetes showed a reduced diurnal rhythm in postprandial glucose concentrations. CONCLUSIONS/INTERPRETATION: Diurnal clock and metabolic gene expression rhythms are decreased in subcutaneous adipose tissue of obese individuals with type 2 diabetes compared with lean control participants. Future investigation is needed to explore potential treatment targets as identified by our study, including clock enhancement and induction of EIF2 signalling. DATA AVAILABILITY: The raw sequencing data and supplementary files for rhythmic expression analysis and Ingenuity Pathway Analysis have been deposited in NCBI Gene Expression Omnibus (GEO series accession number GSE104674).


Assuntos
Tecido Adiposo Branco/metabolismo , Ritmo Circadiano , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Transcriptoma , Fatores de Transcrição ARNTL/genética , Adulto , Idoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estudos de Casos e Controles , Criptocromos/genética , Comportamento Alimentar , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas Circadianas Period/genética , Período Pós-Prandial , Análise de Sequência de RNA
19.
Hum Mol Genet ; 26(11): 2034-2041, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28335037

RESUMO

Charcot-Marie-Tooth (CMT) disease type 2 is a genetically heterogeneous group of inherited neuropathies characterized by motor and sensory deficits as a result of peripheral axonal degeneration. We recently reported a frameshift (FS) mutation in the Really Interesting New Gene finger (RING) domain of LRSAM1 (c.2121_2122dup, p.Leu708Argfs) that encodes an E3 ubiquitin ligase, as the cause of axonal-type CMT (CMT2P). However, the frequency of LRSAM1 mutations in CMT2 and the functional basis for their association with disease remains unknown. In this study, we evaluated LRSAM1 mutations in two large Dutch cohorts. In the first cohort (n = 107), we sequenced the full LRSAM1 coding exons in an unbiased fashion, and, in the second cohort (n = 468), we specifically sequenced the last, RING-encoding exon in individuals where other CMT-associated genes had been ruled out. We identified a novel LRSAM1 missense mutation (c.2120C > T, p.Pro707Leu) mapping to the RING domain. Based on our genetic analysis, the occurrence of pathogenic LRSAM1 mutations is estimated to be rare. Functional characterization of the FS, the identified missense mutation, as well as of another recently reported pathogenic missense mutation (c.2081G > A, p.Cys694Tyr), revealed that in vitro ubiquitylation activity was largely abrogated. We demonstrate that loss of the E2-E3 interaction that is an essential prerequisite for supporting ubiquitylation of target substrates, underlies this reduced ubiquitylation capacity. In contrast, LRSAM1 dimerization and interaction with the bona fide target TSG101 were not disrupted. In conclusion, our study provides further support for the role of LRSAM1 in CMT and identifies LRSAM1-mediated ubiquitylation as a common determinant of disease-associated LRSAM1 mutations.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Ubiquitina-Proteína Ligases/genética , Axônios/metabolismo , Axônios/fisiologia , Sequência de Bases , Doença de Charcot-Marie-Tooth/metabolismo , Éxons , Feminino , Mutação da Fase de Leitura , Testes Genéticos , Humanos , Masculino , Mutação , Mutação de Sentido Incorreto/genética , Países Baixos , Domínios Proteicos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
20.
Hum Mol Genet ; 26(13): 2541-2550, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449065

RESUMO

Perrault syndrome (PS) is a rare recessive disorder characterized by ovarian dysgenesis and sensorineural deafness. It is clinically and genetically heterogeneous, and previously mutations have been described in different genes, mostly related to mitochondrial proteostasis. We diagnosed three unrelated females with PS and set out to identify the underlying genetic cause using exome sequencing. We excluded mutations in the known PS genes, but identified a single homozygous mutation in the ERAL1 gene (c.707A > T; p.Asn236Ile). Since ERAL1 protein binds to the mitochondrial 12S rRNA and is involved in the assembly of the small mitochondrial ribosomal subunit, the identified variant represented a likely candidate. In silico analysis of a 3D model for ERAL1 suggested that the mutated residue hinders protein-substrate interactions, potentially affecting its function. On a molecular basis, PS skin fibroblasts had reduced ERAL1 protein levels. Complexome profiling of the cells showed an overall decrease in the levels of assembled small ribosomal subunit, indicating that the ERAL1 variant affects mitochondrial ribosome assembly. Moreover, levels of the 12S rRNA were reduced in the patients, and were rescued by lentiviral expression of wild type ERAL1. At the physiological level, mitochondrial respiration was markedly decreased in PS fibroblasts, confirming disturbed mitochondrial function. Finally, knockdown of the C. elegans ERAL1 homologue E02H1.2 almost completely blocked egg production in worms, mimicking the compromised fertility in PS-affected women. Our cross-species data in patient cells and worms support the hypothesis that mutations in ERAL1 can cause PS and are associated with changes in mitochondrial metabolism.


Assuntos
Proteínas de Ligação ao GTP/genética , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos/genética , Animais , Caenorhabditis elegans/genética , Exoma , Feminino , Proteínas de Ligação ao GTP/metabolismo , Disgenesia Gonadal 46 XX/metabolismo , Perda Auditiva Neurossensorial/metabolismo , Homozigoto , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Mutação de Sentido Incorreto/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa