Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(6): 2857-2878, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35802476

RESUMO

Synaptic transmission constitutes the primary mode of communication between neurons. It is extensively studied in rodent but not human neocortex. We characterized synaptic transmission between pyramidal neurons in layers 2 and 3 using neurosurgically resected human middle temporal gyrus (MTG, Brodmann area 21), which is part of the distributed language circuitry. We find that local connectivity is comparable with mouse layer 2/3 connections in the anatomical homologue (temporal association area), but synaptic connections in human are 3-fold stronger and more reliable (0% vs 25% failure rates, respectively). We developed a theoretical approach to quantify properties of spinous synapses showing that synaptic conductance and voltage change in human dendritic spines are 3-4-folds larger compared with mouse, leading to significant NMDA receptor activation in human unitary connections. This model prediction was validated experimentally by showing that NMDA receptor activation increases the amplitude and prolongs decay of unitary excitatory postsynaptic potentials in human but not in mouse connections. Since NMDA-dependent recurrent excitation facilitates persistent activity (supporting working memory), our data uncovers cortical microcircuit properties in human that may contribute to language processing in MTG.


Assuntos
Neocórtex , Receptores de N-Metil-D-Aspartato , Ratos , Adulto , Animais , Humanos , Camundongos , Receptores de N-Metil-D-Aspartato/fisiologia , Ratos Wistar , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Sinapses/fisiologia
2.
Cereb Cortex ; 32(11): 2424-2436, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34564728

RESUMO

Temporal lobe epilepsy (TLE) patients are at risk of memory deficits, which have been linked to functional network disturbances, particularly of integration of the default mode network (DMN). However, the cellular substrates of functional network integration are unknown. We leverage a unique cross-scale dataset of drug-resistant TLE patients (n = 31), who underwent pseudo resting-state functional magnetic resonance imaging (fMRI), resting-state magnetoencephalography (MEG) and/or neuropsychological testing before neurosurgery. fMRI and MEG underwent atlas-based connectivity analyses. Functional network centrality of the lateral middle temporal gyrus, part of the DMN, was used as a measure of local network integration. Subsequently, non-pathological cortical tissue from this region was used for single cell morphological and electrophysiological patch-clamp analysis, assessing integration in terms of total dendritic length and action potential rise speed. As could be hypothesized, greater network centrality related to better memory performance. Moreover, greater network centrality correlated with more integrative properties at the cellular level across patients. We conclude that individual differences in cognitively relevant functional network integration of a DMN region are mirrored by differences in cellular integrative properties of this region in TLE patients. These findings connect previously separate scales of investigation, increasing translational insight into focal pathology and large-scale network disturbances in TLE.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia do Lobo Temporal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia , Lobo Temporal
3.
J Neurosci ; 41(31): 6714-6725, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34183446

RESUMO

An indispensable feature of episodic memory is our ability to temporally piece together different elements of an experience into a coherent memory. Hippocampal time cells-neurons that represent temporal information-may play a critical role in this process. Although these cells have been repeatedly found in rodents, it is still unclear to what extent similar temporal selectivity exists in the human hippocampus. Here, we show that temporal context modulates the firing activity of human hippocampal neurons during structured temporal experiences. We recorded neuronal activity in the human brain while patients of either sex learned predictable sequences of pictures. We report that human time cells fire at successive moments in this task. Furthermore, time cells also signaled inherently changing temporal contexts during empty 10 s gap periods between trials while participants waited for the task to resume. Finally, population activity allowed for decoding temporal epoch identity, both during sequence learning and during the gap periods. These findings suggest that human hippocampal neurons could play an essential role in temporally organizing distinct moments of an experience in episodic memory.SIGNIFICANCE STATEMENT Episodic memory refers to our ability to remember the what, where, and when of a past experience. Representing time is an important component of this form of memory. Here, we show that neurons in the human hippocampus represent temporal information. This temporal signature was observed both when participants were actively engaged in a memory task, as well as during 10-s-long gaps when they were asked to wait before performing the task. Furthermore, the activity of the population of hippocampal cells allowed for decoding one temporal epoch from another. These results suggest a robust representation of time in the human hippocampus.


Assuntos
Hipocampo/fisiologia , Memória Episódica , Neurônios/fisiologia , Percepção do Tempo/fisiologia , Adulto , Eletrocorticografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Epilepsia ; 63(11): 2925-2936, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36053862

RESUMO

OBJECTIVE: Prolonged postictal generalized electroencephalographic suppression (PGES) is a potential biomarker for sudden unexpected death in epilepsy (SUDEP), which may be associated with dysfunctional autonomic responses and serotonin signaling. To better understand molecular mechanisms, PGES duration was correlated to 5HT1A and 5HT2A receptor protein expression and RNAseq from resected hippocampus and temporal cortex of temporal lobe epilepsy patients with seizures recorded in preoperative evaluation. METHODS: Analyses included 36 cases (age = 14-64 years, age at epilepsy onset = 0-51 years, epilepsy duration = 2-53 years, PGES duration = 0-93 s), with 13 cases in all hippocampal analyses. 5HT1A and 5HT2A protein was evaluated by Western blot and histologically in hippocampus (n = 16) and temporal cortex (n = 9). We correlated PGES duration to our previous RNAseq dataset for serotonin receptor expression and signaling pathways, as well as weighted gene correlation network analysis (WGCNA) to identify correlated gene clusters. RESULTS: In hippocampus, 5HT2A protein by Western blot positively correlated with PGES duration (p = .0024, R2  = .52), but 5HT1A did not (p = .87, R2  = .0020). In temporal cortex, 5HT1A and 5HT2A had lower expression and did not correlate with PGES duration. Histologically, PGES duration did not correlate with 5HT1A or 5HT2A expression in hippocampal CA4, dentate gyrus, or temporal cortex. RNAseq identified two serotonin receptors with expression that correlated with PGES duration in an exploratory analysis: HTR3B negatively correlated (p = .043, R2  = .26) and HTR4 positively correlated (p = .049, R2  = .25). WGCNA identified four modules correlated with PGES duration, including positive correlation with synaptic transcripts (p = .040, Pearson correlation r = .52), particularly potassium channels (KCNA4, KCNC4, KCNH1, KCNIP4, KCNJ3, KCNJ6, KCNK1). No modules were associated with serotonin receptor signaling. SIGNIFICANCE: Higher hippocampal 5HT2A receptor protein and potassium channel transcripts may reflect underlying mechanisms contributing to or resulting from prolonged PGES. Future studies with larger cohorts should assess functional analyses and additional brain regions to elucidate mechanisms underlying PGES and SUDEP risk.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Morte Súbita Inesperada na Epilepsia , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Recém-Nascido , Lactente , Pré-Escolar , Criança , Serotonina , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/cirurgia , Eletroencefalografia/métodos , Epilepsia/patologia , Lobo Temporal/patologia , Hipocampo/patologia , Receptores de Serotonina/genética
5.
Acta Neuropathol ; 142(4): 729-759, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34292399

RESUMO

Neuronal dysfunction due to iron accumulation in conjunction with reactive oxygen species (ROS) could represent an important, yet underappreciated, component of the epileptogenic process. However, to date, alterations in iron metabolism in the epileptogenic brain have not been addressed in detail. Iron-related neuropathology and antioxidant metabolic processes were investigated in resected brain tissue from patients with temporal lobe epilepsy and hippocampal sclerosis (TLE-HS), post-mortem brain tissue from patients who died after status epilepticus (SE) as well as brain tissue from the electrically induced SE rat model of TLE. Magnetic susceptibility of the presumed seizure-onset zone from three patients with focal epilepsy was compared during and after seizure activity. Finally, the cellular effects of iron overload were studied in vitro using an acute mouse hippocampal slice preparation and cultured human fetal astrocytes. While iron-accumulating neurons had a pyknotic morphology, astrocytes appeared to acquire iron-sequestrating capacity as indicated by prominent ferritin expression and iron retention in the hippocampus of patients with SE or TLE. Interictal to postictal comparison revealed increased magnetic susceptibility in the seizure-onset zone of epilepsy patients. Post-SE rats had consistently higher hippocampal iron levels during the acute and chronic phase (when spontaneous recurrent seizures are evident). In vitro, in acute slices that were exposed to iron, neurons readily took up iron, which was exacerbated by induced epileptiform activity. Human astrocyte cultures challenged with iron and ROS increased their antioxidant and iron-binding capacity, but simultaneously developed a pro-inflammatory phenotype upon chronic exposure. These data suggest that seizure-mediated, chronic neuronal iron uptake might play a role in neuronal dysfunction/loss in TLE-HS. On the other hand, astrocytes sequester iron, specifically in chronic epilepsy. This function might transform astrocytes into a highly resistant, pro-inflammatory phenotype potentially contributing to pro-epileptogenic inflammatory processes.


Assuntos
Epilepsia do Lobo Temporal/complicações , Hipocampo/metabolismo , Distúrbios do Metabolismo do Ferro/etiologia , Ferro/metabolismo , Estado Epiléptico/complicações , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Estudos de Casos e Controles , Técnicas de Cultura de Células , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Feminino , Humanos , Distúrbios do Metabolismo do Ferro/patologia , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Ratos , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia
6.
Glia ; 68(1): 60-75, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31408236

RESUMO

Temporal lobe epilepsy (TLE) is a chronic neurological disease in humans, which is refractory to pharmacological treatment in about 30% of the patients. Reactive glial cells are thought to play a major role during the development of epilepsy (epileptogenesis) via regulation of brain inflammation and remodeling of the extracellular matrix (ECM). These processes can be regulated by microRNAs (miRs), a class of small non-coding RNAs, which can control entire gene networks at a post-transcriptional level. The expression of miRs is known to change dynamically during epileptogenesis. miR-132 is one of the most commonly upregulated miRs in animal TLE models with important roles shown in neurons. However, the possible role of miR-132 in glia remains largely unknown. The aim of this study was to characterize the cell-type specific expression of miR-132 in the hippocampus of patients with TLE and during epileptogenesis in a rat TLE model. Furthermore, the potential role of miR-132 was investigated by transfection of human primary cultured astrocytes that were stimulated with the cytokines IL-1ß or TGF-ß1. We showed an increased expression of miR-132 in the human and rat epileptogenic hippocampus, particularly in glial cells. Transfection of miR-132 in human primary astrocytes reduced the expression of pro-epileptogenic COX-2, IL-1ß, TGF-ß2, CCL2, and MMP3. This suggests that miR-132, particularly in astrocytes, represents a potential therapeutic target that warrants further in vivo investigation.


Assuntos
Astrócitos/metabolismo , Epilepsia do Lobo Temporal/metabolismo , MicroRNAs/biossíntese , Neuroglia/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Astrócitos/patologia , Células Cultivadas , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/patologia , Feminino , Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Neuroglia/patologia , Ratos , Ratos Sprague-Dawley , Adulto Jovem
7.
Neurobiol Dis ; 134: 104612, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31533065

RESUMO

Our understanding of mesial temporal lobe epilepsy (MTLE), one of the most common form of drug-resistant epilepsy in humans, is derived mainly from clinical, imaging, and physiological data from humans and animal models. High-throughput gene expression studies of human MTLE have the potential to uncover molecular changes underlying disease pathogenesis along with novel therapeutic targets. Using RNA- and small RNA-sequencing in parrallel, we explored differentially expressed genes in the hippocampus and cortex of MTLE patients who had undergone surgical resection and non-epileptic controls. We identified differentially expressed genes in the hippocampus of MTLE patients and differentially expressed small RNAs across both the cortex and hippocampus. We found significant enrichment for astrocytic and microglial genes among up-regulated genes, and down regulation of neuron specific genes in the hippocampus of MTLE patients. The transcriptome profile of the small RNAs reflected disease state more robustly than mRNAs, even across brain regions which show very little pathology. While mRNAs segregated predominately by brain region for MTLE and controls, small RNAs segregated by disease state. In particular, our data suggest that specific miRNAs (e.g., let-7b-3p and let-7c-3p) may be key regulators of multiple pathways related to MTLE pathology. Further, we report a strong association of other small RNA species with MTLE pathology. As such we have uncovered novel elements that may contribute to the establishment and progression of MTLE pathogenesis and that could be leveraged as therapeutic targets.


Assuntos
Epilepsia do Lobo Temporal/genética , Pequeno RNA não Traduzido/genética , Adulto , Idoso , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Transcriptoma , Adulto Jovem
8.
N Engl J Med ; 377(17): 1648-1656, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29069555

RESUMO

BACKGROUND: Detailed neuropathological information on the structural brain lesions underlying seizures is valuable for understanding drug-resistant focal epilepsy. METHODS: We report the diagnoses made on the basis of resected brain specimens from 9523 patients who underwent epilepsy surgery for drug-resistant seizures in 36 centers from 12 European countries over 25 years. Histopathological diagnoses were determined through examination of the specimens in local hospitals (41%) or at the German Neuropathology Reference Center for Epilepsy Surgery (59%). RESULTS: The onset of seizures occurred before 18 years of age in 75.9% of patients overall, and 72.5% of the patients underwent surgery as adults. The mean duration of epilepsy before surgical resection was 20.1 years among adults and 5.3 years among children. The temporal lobe was involved in 71.9% of operations. There were 36 histopathological diagnoses in seven major disease categories. The most common categories were hippocampal sclerosis, found in 36.4% of the patients (88.7% of cases were in adults), tumors (mainly ganglioglioma) in 23.6%, and malformations of cortical development in 19.8% (focal cortical dysplasia was the most common type, 52.7% of cases of which were in children). No histopathological diagnosis could be established for 7.7% of the patients. CONCLUSIONS: In patients with drug-resistant focal epilepsy requiring surgery, hippocampal sclerosis was the most common histopathological diagnosis among adults, and focal cortical dysplasia was the most common diagnosis among children. Tumors were the second most common lesion in both groups. (Funded by the European Union and others.).


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Epilepsia/patologia , Hipocampo/patologia , Malformações do Desenvolvimento Cortical/patologia , Adulto , Fatores Etários , Idade de Início , Neoplasias Encefálicas/complicações , Criança , Bases de Dados como Assunto , Epilepsia/etiologia , Epilepsia/cirurgia , Europa (Continente) , Feminino , Humanos , Masculino , Malformações do Desenvolvimento Cortical/complicações , Lobo Temporal/patologia
9.
PLoS Biol ; 14(3): e1002420, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27015604

RESUMO

Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.


Assuntos
Córtex Visual/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação , Adulto , Animais , Atenção/fisiologia , Feminino , Humanos , Macaca , Imageamento por Ressonância Magnética
10.
Mol Cell Neurosci ; 89: 49-59, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29625180

RESUMO

An imbalance between production and clearance of soluble amyloid-ß (Aß) initiates the pathological process in sporadic Alzheimer's disease (AD). Aß-specific antibodies seemed promising as therapeutic option in AD mouse models. In patients, however, vascular side-effects and Aß-antibody complex-induced microglial and/or perivascular macrophage inflammatory responses were encountered. To prevent inflammatory reactions, we designed a single chain variable fragment (scFv-h3D6), based on monoclonal antibody bapineuzumab (mAb-h3D6), but lacking the Fc region. ScFv-h3D6 reduced Aß-oligomer burden and prevented AD-associated behavioral and cellular changes in 3xTg-AD mice. As scFv-h3D6 lacks the Fc-tail, it cannot enhance Fc-receptor mediated Aß clearance by microglia and probably exerts its beneficial effects in 3xTg-AD mice through other mechanisms. ScFv-h3D6 restored the increased apoE and apoJ levels in 3xTg-AD brains back to normal. ApoE and apoJ influence cholesterol transport, Aß aggregation and clearance, and their genetic variants are risk factors for sporadic AD. Astrocytes are constitutive scavengers of soluble Aß from the CNS. We previously found apoE and apoJ to inhibit Aß uptake by adult human astrocytes, in vitro, and thus to potentially protect astrocytes from Aß cytotoxicity. In the present study, scFv-h3D6 and mAb-h3D6 inhibited Aß-oligomer uptake by adult human astrocytes. ApoE- and apoJ- mimetic peptides (MP) affected Aß uptake as well as Aß-induced cytokine release similar to intact apoE and apoJ, without interfering with the strong inhibitory effects of scFv-h3D6 on Aß-oligomer uptake. These results suggest that combining Aß-specific scFv and apoE-MP, that inhibits Aß oligomer-induced cytokine release by astrocytes, could offer advantages over currently used therapeutics.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/química , Astrócitos/metabolismo , Fragmentos de Peptídeos/farmacologia , Anticorpos de Cadeia Única/farmacologia , Adolescente , Adulto , Peptídeos beta-Amiloides/imunologia , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Astrócitos/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Anticorpos de Cadeia Única/imunologia
11.
Glia ; 66(5): 1082-1097, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29384235

RESUMO

Astrocytes are important mediators of inflammatory processes in the brain and seem to play an important role in several neurological disorders, including epilepsy. Recent studies show that astrocytes produce several microRNAs, which may function as crucial regulators of inflammatory pathways and could be used as therapeutic target. We aim to study which miRNAs are produced by astrocytes during IL-1ß mediated inflammatory conditions in vitro, as well as their functional role and to validate these findings in human epileptogenic brain tissue. Sequencing was used to assess miRNA and mRNA expression in IL-1ß-stimulated human fetal astrocyte cultures. miRNAs were overexpressed in cell cultures using miRNA mimics. Expression of miRNAs in resected brain tissue from patients with tuberous sclerosis complex or temporal lobe epilepsy with hippocampal sclerosis was examined using in situ hybridization. Two differentially expressed miRNAs were found: miR146a and miR147b, which were associated with increased expression of genes related to the immune/inflammatory response. As previously reported for miR146a, overexpression of miR147b reduced the expression of the pro-inflammatory mediators IL-6 and COX-2 after IL-1ß stimulation in both astrocyte and tuberous sclerosis complex cell cultures. miR146a and miR147b overexpression decreased proliferation of astrocytes and promoted neuronal differentiation of human neural stem cells. Similarly to previous evidence for miR146a, miR147b was increased expressed in astrocytes in epileptogenic brain. Due to their anti-inflammatory effects, ability to restore aberrant astrocytic proliferation and promote neuronal differentiation, miR146a and miR147b deserve further investigation as potential therapeutic targets in neurological disorders associated with inflammation, such as epilepsy.


Assuntos
Astrócitos/imunologia , Inflamação/metabolismo , MicroRNAs/metabolismo , Astrócitos/patologia , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/cirurgia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Humanos , Inflamação/patologia , Interleucina-1beta , Interleucina-6/metabolismo , Células-Tronco Neurais/metabolismo , RNA Mensageiro/metabolismo , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Esclerose Tuberosa/cirurgia
12.
J Neuroinflammation ; 15(1): 211, 2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30031401

RESUMO

BACKGROUND: Temporal lobe epilepsy (TLE) is a chronic neurological disease, in which about 30% of patients cannot be treated adequately with anti-epileptic drugs. Brain inflammation and remodeling of the extracellular matrix (ECM) seem to play a major role in TLE. Matrix metalloproteinases (MMPs) are proteolytic enzymes largely responsible for the remodeling of the ECM. The inhibition of MMPs has been suggested as a novel therapy for epilepsy; however, available MMP inhibitors lack specificity and cause serious side effects. We studied whether MMPs could be modulated via microRNAs (miRNAs). Several miRNAs mediate inflammatory responses in the brain, which are known to control MMP expression. The aim of this study was to investigate whether an increased expression of MMPs after interleukin-1ß (IL-1ß) stimulation can be attenuated by inhibition of the inflammation-associated miR-155. METHODS: We investigated the expression of MMP2, MMP3, MMP9, and MMP14 in cultured human fetal astrocytes after stimulation with the pro-inflammatory cytokine IL-1ß. The cells were transfected with miR-155 antagomiR, and the effect on MMP3 expression was investigated using real-time quantitative PCR and Western blotting. Furthermore, we characterized MMP3 and miR-155 expression in brain tissue of TLE patients with hippocampal sclerosis (TLE-HS) and during epileptogenesis in a rat TLE model. RESULTS: Inhibition of miR-155 by the antagomiR attenuated MMP3 overexpression after IL-1ß stimulation in astrocytes. Increased expression of MMP3 and miR-155 was also evident in the hippocampus of TLE-HS patients and throughout epileptogenesis in the rat TLE model. CONCLUSIONS: Our experiments showed that MMP3 is dynamically regulated by seizures as shown by increased expression in TLE tissue and during different phases of epileptogenesis in the rat TLE model. MMP3 can be induced by the pro-inflammatory cytokine IL-1ß and is regulated by miR-155, suggesting a possible strategy to prevent epilepsy via reduction of inflammation.


Assuntos
Astrócitos/metabolismo , Regulação da Expressão Gênica/fisiologia , Metaloproteinase 3 da Matriz/metabolismo , MicroRNAs/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio , Citocinas/genética , Citocinas/metabolismo , Citocinas/farmacologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Estimulação Elétrica , Feminino , Feto , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Metaloproteinase 3 da Matriz/genética , MicroRNAs/genética , Proteínas dos Microfilamentos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Ratos , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia
13.
Epilepsia ; 59(10): 1931-1944, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30194729

RESUMO

OBJECTIVE: Because brain inflammation may contribute to the pathophysiology of temporal lobe epilepsy (TLE), we investigated the expression of various inflammatory markers of the innate and adaptive immune system in the epileptogenic human and rat hippocampus in relation to seizure activity and blood-brain barrier (BBB) dysfunction. METHODS: Immunohistochemistry was performed using various immune cell markers (for microglia, monocytes, macrophages, T lymphocytes, and dendritic cells) on hippocampal sections of drug-resistant TLE patients and patients who died after status epilepticus. The expression of these markers was also studied in the electrical post-status epilepticus rat model for TLE, during the acute, latent, and chronic epileptic phase. BBB dysfunction was assessed using albumin immunohistochemistry and the BBB tracer fluorescein. RESULTS: Monocyte infiltration, microglia, and perivascular macrophage activation were persistently increased in both epileptogenic human and rat hippocampus, whereas T lymphocytes and dendritic cells were not or were scarcely detected. In addition to this, increased expression of C-C motif ligand 2 (CCL2) and osteopontin was observed. In humans, the expression of CD68 and CCL2 was related to the duration of epilepsy and type of pathology. In rats, the expression of CD68, CCL2, and the perivascular macrophage marker CD163 was related to the duration of the initial insult and to the number of spontaneous seizures. Interestingly, the number of CD163-positive perivascular macrophages was also positively correlated to BBB dysfunction in chronic epileptic rats. SIGNIFICANCE: These data suggest a proepileptogenic role for monocytes/macrophages and other cells of the innate immune response, possibly via increased BBB leakage, and indicate that T cells and dendritic cells, which are closely associated with the adaptive immune response, are only sparsely infiltrated during epileptogenesis in the electrical post-status epilepticus rat model. Future studies should reveal the relative importance of these immune cells and whether specific manipulation can modify or prevent epileptogenesis.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Epilepsia do Lobo Temporal , Sistema Imunitário/fisiopatologia , Estado Epiléptico , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Citocinas/metabolismo , Progressão da Doença , Eletroencefalografia , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/imunologia , Epilepsia do Lobo Temporal/patologia , Feminino , Fluoresceína/metabolismo , Regulação da Expressão Gênica/imunologia , Humanos , Masculino , Osteopontina/metabolismo , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/complicações , Estado Epiléptico/imunologia , Estado Epiléptico/patologia
14.
Epilepsia ; 58(8): 1462-1472, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28643873

RESUMO

OBJECTIVE: Inhibition of the mammalian target of rapamycin (mTOR) pathway reduces epileptogenesis in various epilepsy models, possibly by inhibition of inflammatory processes, which may include the proteasome system. To study the role of mTOR inhibition in the regulation of the proteasome system, we investigated (immuno)proteasome expression during epileptogenesis, as well as the effects of the mTOR inhibitor rapamycin. METHODS: The expression of constitutive (ß1, ß5) and immunoproteasome (ß1i, ß5i) subunits was investigated during epileptogenesis using immunohistochemistry in the electrical post-status epilepticus (SE) rat model for temporal lobe epilepsy (TLE). The effect of rapamycin was studied on (immuno)proteasome subunit expression in post-SE rats that were treated for 6 weeks. (Immuno)proteasome expression was validated in the brain tissue of patients who had SE or drug-resistant TLE and the effect of rapamycin was studied in primary human astrocyte cultures. RESULTS: In post-SE rats, increased (immuno)proteasome expression was detected throughout epileptogenesis in neurons and astrocytes within the hippocampus and piriform cortex and was most evident in rats that developed a progressive form of epilepsy. Rapamycin-treated post-SE rats had reduced (immuno)proteasome protein expression and a lower number of spontaneous seizures compared to vehicle-treated rats. (Immuno)proteasome expression was also increased in neurons and astrocytes within the human hippocampus after SE and in patients with drug-resistant TLE. In vitro studies using cultured human astrocytes showed that interleukin (IL)-1ß-induced (immuno)proteasome gene expression could be attenuated by rapamycin. SIGNIFICANCE: Because dysregulation of the (immuno)proteasome system is observed before the occurrence of spontaneous seizures in rats, is associated with progression of epilepsy, and can be modulated via the mTOR pathway, it may represent an interesting novel target for drug treatment in epilepsy.


Assuntos
Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Regulação da Expressão Gênica/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/patologia , Feto , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Humanos , Interleucina-1beta/farmacologia , Masculino , Fosfopiruvato Hidratase/metabolismo , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
15.
Epilepsia ; 58(1): 137-148, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27888520

RESUMO

OBJECTIVE: In one third of patients, seizures remain after epilepsy surgery, meaning that improved preoperative evaluation methods are needed to identify the epileptogenic zone. A potential framework for such a method is network theory, as it can be applied to noninvasive recordings, even in the absence of epileptiform activity. Our aim was to identify the epileptogenic zone on the basis of hub status of local brain areas in interictal magnetoencephalography (MEG) networks. METHODS: Preoperative eyes-closed resting-state MEG recordings were retrospectively analyzed in 22 patients with refractory epilepsy, of whom 14 were seizure-free 1 year after surgery. Beamformer-based time series were reconstructed for 90 cortical and subcortical automated anatomic labeling (AAL) regions of interest (ROIs). Broadband functional connectivity was estimated using the phase lag index in artifact-free epochs without interictal epileptiform abnormalities. A minimum spanning tree was generated to represent the network, and the hub status of each ROI was calculated using betweenness centrality, which indicates the centrality of a node in a network. The correspondence of resection cavity to hub values was evaluated on four levels: resection cavity, lobar, hemisphere, and temporal versus extratemporal areas. RESULTS: Hubs were localized within the resection cavity in 8 of 14 seizure-free patients and in zero of 8 patients who were not seizure-free (57% sensitivity, 100% specificity, 73% accuracy). Hubs were localized in the lobe of resection in 9 of 14 seizure-free patients and in zero of 8 patients who were not seizure-free (64% sensitivity, 100% specificity, 77% accuracy). For the other two levels, the true negatives are unknown; hence, only sensitivity could be determined: hubs coincided with both the resection hemisphere and the resection location (temporal versus extratemporal) in 11 of 14 seizure-free patients (79% sensitivity). SIGNIFICANCE: Identifying hubs noninvasively before surgery is a valuable approach with the potential of indicating the epileptogenic zone in patients without interictal abnormalities.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiopatologia , Epilepsia Resistente a Medicamentos/patologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Potencial Evocado Motor/fisiologia , Magnetoencefalografia , Adulto , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Países Baixos , Curva ROC , Adulto Jovem
16.
PLoS Biol ; 12(11): e1002007, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25422947

RESUMO

Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from connected pairs of pyramidal neurons in acute brain slices of adult human and mouse temporal cortex and probed the dynamical properties of use-dependent plasticity. We found that human synaptic connections were purely depressing and that they recovered three to four times more swiftly from depression than synapses in rodent neocortex. Thereby, during realistic spike trains, the temporal resolution of synaptic information exchange in human synapses substantially surpasses that in mice. Using information theory, we calculate that information transfer between human pyramidal neurons exceeds that of mouse pyramidal neurons by four to nine times, well into the beta and gamma frequency range. In addition, we found that human principal cells tracked fine temporal features, conveyed in received synaptic inputs, at a wider bandwidth than for rodents. Action potential firing probability was reliably phase-locked to input transients up to 1,000 cycles/s because of a steep onset of action potentials in human pyramidal neurons during spike trains, unlike in rodent neurons. Our data show that, in contrast to the widely held views of limited information transfer in rodent depressing synapses, fast recovering synapses of human neurons can actually transfer substantial amounts of information during spike trains. In addition, human pyramidal neurons are equipped to encode high synaptic information content. Thus, adult human cortical microcircuits relay information at a wider bandwidth than rodent microcircuits.


Assuntos
Neocórtex/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Adolescente , Adulto , Animais , Humanos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto Jovem
17.
Ann Neurol ; 77(1): 114-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25382142

RESUMO

OBJECTIVE: Megalencephalic leukoencephalopathy with cysts (MLC) is a genetic disease characterized by infantile onset white matter edema and delayed onset neurological deterioration. Loss of MLC1 function causes MLC. MLC1 is involved in ion-water homeostasis, but its exact role is unknown. We generated Mlc1-null mice for further studies. METHODS: We investigated which brain cell types express MLC1, compared developmental expression in mice and men, and studied the consequences of loss of MLC1 in Mlc1-null mice. RESULTS: Like humans, mice expressed MLC1 only in astrocytes, especially those facing fluid-brain barriers. In mice, MLC1 expression increased until 3 weeks and then stabilized. In humans, MLC1 expression was highest in the first year, decreased, and stabilized from approximately 5 years. Mlc1-null mice had early onset megalencephaly and increased brain water content. From 3 weeks, abnormal astrocytes were present with swollen processes abutting fluid-brain barriers. From 3 months, widespread white matter vacuolization with intramyelinic edema developed. Mlc1-null astrocytes showed slowed regulatory volume decrease and reduced volume-regulated anion currents, which increased upon MLC1 re-expression. Mlc1-null astrocytes showed reduced expression of adhesion molecule GlialCAM and chloride channel ClC-2, but no substantial changes in other known MLC1-interacting proteins. INTERPRETATION: Mlc1-null mice replicate early stages of the human disease with early onset intramyelinic edema. The cellular functional defects, described for human MLC, were confirmed. The earliest change was astrocytic swelling, substantiating that in MLC the primary defect is in volume regulation by astrocytes. MLC1 expression affects expression of GlialCAM and ClC-2. Abnormal interplay between these proteins is part of the pathomechanisms of MLC.


Assuntos
Cistos/genética , Cistos/patologia , Cistos/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/fisiopatologia , Adolescente , Adulto , Fatores Etários , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/patologia , Edema Encefálico/etiologia , Cerebelo/patologia , Córtex Cerebral/citologia , Córtex Cerebral/patologia , Criança , Pré-Escolar , Cistos/metabolismo , Modelos Animais de Doenças , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Humanos , Lactente , Recém-Nascido , Potenciais da Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Equilíbrio Postural/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Transtornos de Sensação/genética , Substância Branca/metabolismo , Substância Branca/patologia , Substância Branca/ultraestrutura , Adulto Jovem
18.
Cereb Cortex ; 25(12): 4839-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318661

RESUMO

The size and shape of dendrites and axons are strong determinants of neuronal information processing. Our knowledge on neuronal structure and function is primarily based on brains of laboratory animals. Whether it translates to human is not known since quantitative data on "full" human neuronal morphologies are lacking. Here, we obtained human brain tissue during resection surgery and reconstructed basal and apical dendrites and axons of individual neurons across all cortical layers in temporal cortex (Brodmann area 21). Importantly, morphologies did not correlate to etiology, disease severity, or disease duration. Next, we show that human L(ayer) 2 and L3 pyramidal neurons have 3-fold larger dendritic length and increased branch complexity with longer segments compared with temporal cortex neurons from macaque and mouse. Unsupervised cluster analysis classified 88% of human L2 and L3 neurons into human-specific clusters distinct from mouse and macaque neurons. Computational modeling of passive electrical properties to assess the functional impact of large dendrites indicates stronger signal attenuation of electrical inputs compared with mouse. We thus provide a quantitative analysis of "full" human neuron morphologies and present direct evidence that human neurons are not "scaled-up" versions of rodent or macaque neurons, but have unique structural and functional properties.


Assuntos
Axônios , Dendritos , Neocórtex/citologia , Células Piramidais/citologia , Lobo Temporal/citologia , Adulto , Idoso , Animais , Análise por Conglomerados , Epilepsia/patologia , Feminino , Humanos , Macaca fascicularis/anatomia & histologia , Macaca mulatta/anatomia & histologia , Masculino , Camundongos/anatomia & histologia , Camundongos Endogâmicos C57BL/anatomia & histologia , Pessoa de Meia-Idade , Especificidade da Espécie , Adulto Jovem
19.
Neurobiol Dis ; 82: 311-320, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26168875

RESUMO

Temporal lobe epilepsy (TLE) is the most prevalent form of adult focal onset epilepsy often associated with drug-resistant seizures. Numerous studies suggest that neuroinflammatory processes are pathologic hallmarks of both experimental and human epilepsy. In particular, the interleukin (IL)-1ß/IL-1 receptor type 1 (R1) axis is activated in epileptogenic tissue, where it contributes significantly to the generation and recurrence of seizures in animal models. In this study, we investigated whether IL-1ß affects the GABA-evoked currents (I(GABA)) in TLE tissue from humans. Given the limited availability of fresh human brain specimens, we used the "microtransplantation" method of injecting Xenopus oocytes with membranes from surgically resected hippocampal and cortical tissue from 21 patients with TLE and hippocampal sclerosis (HS), hippocampal tissue from five patients with TLE without HS, and autoptic and surgical brain specimens from 15 controls without epilepsy. We report the novel finding that pathophysiological concentrations of IL-1ß decreased the I(GABA) amplitude by up to 30% in specimens from patients with TLE with or without HS, but not in control tissues. This effect was reproduced by patch-clamp recordings on neurons in entorhinal cortex slices from rats with chronic epilepsy, and was not observed in control slices. In TLE specimens from humans, the IL-1ß effect was mediated by IL-1R1 and PKC. We also showed that IL-1R1 and IRAK1, the proximal kinase mediating the IL-1R1 signaling, are both up-regulated in the TLE compared with control specimens, thus supporting the idea that the IL-1ß/IL-R1 axis is activated in human epilepsy. Our findings suggest a novel mechanism possibly underlying the ictogenic action of IL-1ß, thus suggesting that this cytokine contributes to seizure generation in human TLE by reducing GABA-mediated neurotransmission.


Assuntos
Córtex Cerebral/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiopatologia , Interleucina-1beta/metabolismo , Receptores de GABA-A/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Córtex Cerebral/patologia , Córtex Cerebral/cirurgia , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Feminino , GABAérgicos/administração & dosagem , Hipocampo/patologia , Hipocampo/cirurgia , Humanos , Interleucina-1beta/administração & dosagem , Ácido Caínico , Masculino , Pessoa de Meia-Idade , Oócitos , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos , Transplante Heterólogo/métodos , Xenopus , Adulto Jovem
20.
J Neurosci ; 33(43): 17197-208, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24155324

RESUMO

The neocortex in our brain stores long-term memories by changing the strength of connections between neurons. To date, the rules and mechanisms that govern activity-induced synaptic changes at human cortical synapses are poorly understood and have not been studied directly at a cellular level. Here, we made whole-cell recordings of human pyramidal neurons in slices of brain tissue resected during neurosurgery to investigate spike timing-dependent synaptic plasticity in the adult human neocortex. We find that human cortical synapses can undergo bidirectional modifications in strength throughout adulthood. Both long-term potentiation and long-term depression of synapses was dependent on postsynaptic NMDA receptors. Interestingly, we find that human cortical synapses can associate presynaptic and postsynaptic events in a wide temporal window, and that rules for synaptic plasticity in human neocortex are reversed compared with what is generally found in the rodent brain. We show this is caused by dendritic L-type voltage-gated Ca2+ channels that are prominently activated during action potential firing. Activation of these channels determines whether human synapses strengthen or weaken. These findings provide a synaptic basis for the timing rules observed in human sensory and motor plasticity in vivo, and offer insights into the physiological role of L-type voltage-gated Ca2+ channels in the human brain.


Assuntos
Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Neocórtex/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Potenciais de Ação , Adolescente , Adulto , Canais de Cálcio Tipo L/metabolismo , Dendritos/metabolismo , Dendritos/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neocórtex/citologia , Neocórtex/metabolismo , Células Piramidais/metabolismo , Células Piramidais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa