Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 117: 32-41, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23339800

RESUMO

Simazine is a soil-active herbicide that has been applied worldwide in agricultural soils, being the second most commonly detected herbicide in groundwater and surface waters. Although its use has been restricted in many countries of Europe, it is still applied in many locations around the world in orchards, vineyards and forestry. Therefore, it is important to study its fate and transport in the environment. This paper investigates simazine transport in undisturbed bare soils from a vineyard at the Casablanca valley, Chile. In the study site, shallow groundwater tables (<1.0 m depth) and high simazine levels (>15 µg L(-1)) in the groundwater were observed and thus, there is potential for simazine to be transported further away through the saturated zone. The soils from the study site were characterized and the hydrodynamic transport parameters were determined. Column leaching experiments showed that the two-site chemical non-equilibrium model correctly represented simazine transport. It was found that 36.3% of the adsorption sites achieve instantaneous equilibrium and that the first-order kinetic rate of the non-equilibrium sites was 6.2 × 10(-3) h(-1). Hydrus 2D was used to predict the transport of simazine in the study site under natural field conditions. Simulation results showed that simazine concentrations at depths shallower than 2.1 m are above the maximum contaminant level of 4 µg L(-1) (defined by the U.S. Environmental Protection Agency). The timing of herbicide application was found to be important on simazine leaching and the main processes involved in simazine transport were degradation and adsorption, which accounted for 95.78 and 4.19% of the simulated mass of pesticide, respectively. A qualitative agreement in the timing and magnitude of simazine concentration was obtained between the simulations and the field data. Therefore, the model utilized in this investigation can be used to predict simazine transport and is a valuable tool to assess agricultural practices to minimize environmental impacts of simazine.


Assuntos
Poluentes Ambientais/análise , Água Subterrânea/química , Herbicidas/análise , Simazina/análise , Agricultura , Chile , Monitoramento Ambiental , Poluentes Ambientais/química , Herbicidas/química , Hidrodinâmica , Simazina/química , Vitis , Movimentos da Água
2.
J Contam Hydrol ; 94(3-4): 166-77, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17604874

RESUMO

The potential contamination of groundwater by herbicides is often controlled by processes in the vadose zone, through which herbicides travel before entering groundwater. In the vadose zone, both physical and chemical processes affect the fate and transport of herbicides, therefore it is important to represent these processes by mathematical models to predict contaminant movement. To simulate the movement of simazine, a herbicide commonly used in Chilean vineyards, batch and miscible displacement column experiments were performed on a disturbed sandy soil to quantify the primary parameters and processes of simazine transport. Chloride (Cl(-)) was used as a non-reactive tracer, and simazine as the reactive tracer. The Hydrus-1D model was used to estimate the parameters by inversion from the breakthrough curves of the columns and to evaluate the potential groundwater contamination in a sandy soil from the Casablanca Valley, Chile. The two-site, chemical non-equilibrium model was observed to best represent the experimental results of the miscible displacement experiments in laboratory soil columns. Predictions of transport under hypothetical field conditions using the same soil from the column experiments were made for 40 years by applying herbicide during the first 20 years, and then halting the application and considering different rates of groundwater recharge. For recharge rates smaller than 84 mm year(-1), the predicted concentration of simazine at a depth of 1 m is below the U.S. EPA's maximum contaminant levels (4 microg L(-1)). After eight years of application at a groundwater recharge rate of 180 mm year(-1) (approximately 50% of the annual rainfall), simazine was found to reach the groundwater (located at 1 m depth) at a higher concentration (more than 40 microg L(-1)) than the existing guidelines in the USA and Europe.


Assuntos
Herbicidas/análise , Modelos Teóricos , Simazina/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Adsorção , Previsões , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa