Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 56(4): 1079-1088, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35156741

RESUMO

BACKGROUND: There has been a growing interest in exploring the applications of stretched-exponential (SEM) and intravoxel incoherent motion (IVIM) models of diffusion-weighted imaging (DWI) in breast imaging, with the focus on differentiation of breast lesions. However, the use of SEM and IVIM models to predict early response to neoadjuvant chemotherapy (NACT) has received less attention. PURPOSE: To investigate the value of monoexponential, SEM, and IVIM models to predict early response to NACT in patients with primary breast cancer. STUDY TYPE: Prospective. POPULATION: Thirty-seven patients with primary breast cancer (aged 46 ± 11 years) due to undergo NACT. FIELD STRENGTH/SEQUENCES: A 1.5-T MR scanner, T1 -weighted three-dimensional spoiled gradient-echo, two-dimensional single-shot spin-echo echo-planar imaging sequence (DWI) at six b-values (0-800 s mm-2 ). ASSESSMENT: Tumor volume, apparent diffusion coefficient, tissue diffusion (Dt ), pseudo-diffusion coefficient (Dp ), perfusion fraction (f), distributed diffusion coefficient, and alpha (α) were extracted, following volumetric sampling of the tumors, at three time-points: pretreatment, post one and three cycles of NACT. STATISTICAL TESTS: Mann-Whitney test, receiver operating characteristic (ROC) curve. Statistical significance level was P < 0.05. RESULTS: Following NACT, 17 patients were determined to be pathological responders and 20 nonresponders. Tumor volume was significantly larger in nonresponders at each MRI time-point and demonstrated reasonable performance in predicting response (area under the ROC curve [AUC] = 0.83-0.87). No significant differences between groups were found in the diffusion coefficients at each time-point (P = 0.09-1). The parameters α (SEM), f, and f × Dp (IVIM) were able to differentiate between response groups after one cycle of NACT (AUC = 0.73, 0.72, and 0.74, respectively). CONCLUSION: Diffusion coefficients derived from the monoexponential, SEM, and IVIM models did not predict pathological response. However, the IVIM-derived parameters f and f × Dp and the SEM-derived parameter α were able to predict response to NACT in breast cancer patients following one cycle of NACT. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Movimento (Física) , Estudos Prospectivos
2.
Front Oncol ; 14: 1356173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860001

RESUMO

Purpose: The primary aim of this study was to explore whether intravoxel incoherent motion (IVIM) can offer a contrast-agent-free alternative to dynamic contrast-enhanced (DCE)-MRI for measuring breast tumor perfusion. The secondary aim was to investigate the relationship between tissue diffusion measures from DWI and DCE-MRI measures of the tissue interstitial and extracellular volume fractions. Materials and methods: A total of 108 paired DWI and DCE-MRI scans were acquired at 1.5 T from 40 patients with primary breast cancer (median age: 44.5 years) before and during neoadjuvant chemotherapy (NACT). DWI parameters included apparent diffusion coefficient (ADC), tissue diffusion (Dt), pseudo-diffusion coefficient (Dp), perfused fraction (f), and the product f×Dp (microvascular blood flow). DCE-MRI parameters included blood flow (Fb), blood volume fraction (vb), interstitial volume fraction (ve) and extracellular volume fraction (vd). All were extracted from three tumor regions of interest (whole-tumor, ADC cold-spot, and DCE-MRI hot-spot) at three MRI visits: pre-treatment, after one, and three cycles of NACT. Spearman's rank correlation was used for assessing between-subject correlations (r), while repeated measures correlation was employed to assess within-subject correlations (rrm) across visits between DWI and DCE-MRI parameters in each region. Results: No statistically significant between-subject or within-subject correlation was found between the perfusion parameters estimated by IVIM and DCE-MRI (f versus vb and f×Dp versus Fb; P=0.07-0.81). Significant moderate positive between-subject and within-subject correlations were observed between ADC and ve (r=0.461, rrm=0.597) and between Dt and ve (r=0.405, rrm=0.514) as well as moderate positive within-subject correlations between ADC and vd and between Dt and vd (rrm=0.619 and 0.564, respectively) in the whole-tumor region. Conclusion: No correlations were observed between the perfusion parameters estimated by IVIM and DCE-MRI. This may be attributed to imprecise estimates of fxDp and vb, or an underlying difference in what IVIM and DCE-MRI measure. Care should be taken when interpreting the IVIM parameters (f and f×Dp) as surrogates for those measured using DCE-MRI. However, the moderate positive correlations found between ADC and Dt and the DCE-MRI parameters ve and vd confirms the expectation that as the interstitial and extracellular volume fractions increase, water diffusion increases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa