Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biochim Biophys Acta ; 1851(9): 1194-201, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25819461

RESUMO

A decrease in skeletal muscle lipolysis and hormone sensitive-lipase (HSL) expression has been linked to insulin resistance in obesity. The purpose of this study was to identify potential intrinsic defects in lipid turnover and lipolysis in myotubes established from obese and type 2 diabetic subjects. Lipid trafficking and lipolysis were measured by pulse-chase assay with radiolabeled substrates in myotubes from non-obese/non-diabetic (lean), obese/non-diabetic (obese) and obese/diabetic (T2D) subjects. Lipolytic protein content and level of Akt phosphorylation were measured by Western blot. HSL was overexpressed by adenovirus-mediated gene delivery. Myotubes established from obese and T2D subjects had lower lipolysis (-30-40%) when compared to lean, using oleic acid as precursor. Similar observations were also seen for labelled glycerol. Incorporation of oleic acid into diacylglycerol (DAG) and free fatty acid (FFA) level was lower in T2D myotubes, and acetate incorporation into FFA and complex lipids was also lower in obese and/or T2D subjects. Both protein expression of HSL (but not ATGL) and changes in DAG during lipolysis were markedly lower in cells from obese and T2D when compared to lean subjects. Insulin-stimulated glycogen synthesis (-60%) and Akt phosphorylation (-90%) were lower in myotubes from T2D, however, overexpression of HSL in T2D myotubes did not rescue the diabetic phenotype. In conclusion, intrinsic defects in lipolysis and HSL expression co-exist with reduced insulin action in myotubes from obese T2D subjects. Despite reductions in intramyocellular lipolysis and HSL expression, overexpression of HSL did not rescue defects in insulin action in skeletal myotubes from obese T2D subjects.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Insulina/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Obesidade/metabolismo , Esterol Esterase/metabolismo , Transporte Biológico , Radioisótopos de Carbono , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Diglicerídeos/metabolismo , Feminino , Regulação da Expressão Gênica , Glicerol/metabolismo , Glicogênio/metabolismo , Humanos , Insulina/metabolismo , Lipólise/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Obesidade/complicações , Obesidade/genética , Obesidade/patologia , Ácido Oleico/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Esterol Esterase/genética
2.
Biochim Biophys Acta ; 1821(10): 1323-33, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22796147

RESUMO

Development of insulin resistance is positively associated with dietary saturated fatty acids and negatively associated with monounsaturated fatty acids. To clarify aspects of this difference we have compared the metabolism of oleic (OA, monounsaturated) and palmitic acids (PA, saturated) in human myotubes. Human myotubes were treated with 100µM OA or PA and the metabolism of [(14)C]-labeled fatty acid was studied. We observed that PA had a lower lipolysis rate than OA, despite a more than two-fold higher protein level of adipose triglyceride lipase after 24h incubation with PA. PA was less incorporated into triacylglycerol and more incorporated into phospholipids after 24h. Supporting this, incubation with compounds modifying lipolysis and reesterification pathways suggested a less influenced PA than OA metabolism. In addition, PA showed a lower accumulation than OA, though PA was oxidized to a relatively higher extent than OA. Gene set enrichment analysis revealed that 24h of PA treatment upregulated lipogenesis and fatty acid ß-oxidation and downregulated oxidative phosphorylation compared to OA. The differences in lipid accumulation and lipolysis between OA and PA were eliminated in combination with eicosapentaenoic acid (polyunsaturated fatty acid). In conclusion, this study reveals that the two most abundant fatty acids in our diet are partitioned toward different metabolic pathways in muscle cells, and this may be relevant to understand the link between dietary fat and skeletal muscle insulin resistance.


Assuntos
Tecido Adiposo/enzimologia , Lipase/análise , Lipólise , Músculo Esquelético/metabolismo , Ácido Oleico/metabolismo , Ácido Palmítico/metabolismo , Adulto , Células Cultivadas , Ácido Eicosapentaenoico/farmacologia , Glicerol/metabolismo , Humanos , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Oxirredução , Fosforilação Oxidativa
3.
J Lipid Res ; 53(5): 839-848, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22383684

RESUMO

We investigated here the specific role of CGI-58 in the regulation of energy metabolism in skeletal muscle. We first examined CGI-58 protein expression in various muscle types in mice, and next modulated CGI-58 expression during overexpression and knockdown studies in human primary myotubes and evaluated the consequences on oxidative metabolism. We observed a preferential expression of CGI-58 in oxidative muscles in mice consistent with triacylglycerol hydrolase activity. We next showed by pulse-chase that CGI-58 overexpression increased by more than 2-fold the rate of triacylglycerol (TAG) hydrolysis, as well as TAG-derived fatty acid (FA) release and oxidation. Oppositely, CGI-58 silencing reduced TAG hydrolysis and TAG-derived FA release and oxidation (-77%, P < 0.001), whereas it increased glucose oxidation and glycogen synthesis. Interestingly, modulations of CGI-58 expression and FA release are reflected by changes in pyruvate dehydrogenase kinase 4 gene expression. This regulation involves the activation of the peroxisome proliferator activating receptor-δ (PPARδ) by lipolysis products. Altogether, these data reveal that CGI-58 plays a limiting role in the control of oxidative metabolism by modulating FA availability and the expression of PPARδ-target genes, and highlight an important metabolic function of CGI-58 in skeletal muscle.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Metabolismo Energético , Lipase/metabolismo , Lipólise , Músculo Esquelético/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/deficiência , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Adolescente , Animais , Células Cultivadas , Ácidos Graxos/metabolismo , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Humanos , Hidrolases/metabolismo , Camundongos , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/enzimologia , Oxirredução , PPAR delta/metabolismo , Triglicerídeos/metabolismo , Adulto Jovem
4.
JCI Insight ; 4(13)2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31292296

RESUMO

Ubiquitin-conjugating enzyme E2O (UBE2O) is expressed preferentially in metabolic tissues, but its role in regulating energy homeostasis has yet to be defined. Here we find that UBE2O is markedly upregulated in obese subjects with type 2 diabetes and show that whole-body disruption of Ube2o in mouse models in vivo results in improved metabolic profiles and resistance to high-fat diet-induced (HFD-induced) obesity and metabolic syndrome. With no difference in nutrient intake, Ube2o-/- mice were leaner and expended more energy than WT mice. In addition, hyperinsulinemic-euglycemic clamp studies revealed that Ube2o-/- mice were profoundly insulin sensitive. Through phenotype analysis of HFD mice with muscle-, fat-, or liver-specific knockout of Ube2o, we further identified UBE2O as an essential regulator of glucose and lipid metabolism programs in skeletal muscle, but not in adipose or liver tissue. Mechanistically, UBE2O acted as a ubiquitin ligase and targeted AMPKα2 for ubiquitin-dependent degradation in skeletal muscle; further, muscle-specific heterozygous knockout of Prkaa2 ablated UBE2O-controlled metabolic processes. These results identify the UBE2O/AMPKα2 axis as both a potent regulator of metabolic homeostasis in skeletal muscle and a therapeutic target in the treatment of diabetes and metabolic disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/complicações , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Humanos , Insulina/metabolismo , Metabolismo dos Lipídeos , Masculino , Síndrome Metabólica/etiologia , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mioblastos Esqueléticos , Obesidade/etiologia , Cultura Primária de Células , Proteólise , Enzimas de Conjugação de Ubiquitina/análise , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação , Regulação para Cima
5.
Sci Rep ; 7(1): 10237, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860475

RESUMO

Skeletal muscle wasting is prevalent in many chronic diseases, necessitating inquiries into molecular regulation of muscle mass. Nuclear receptor co-activator peroxisome proliferator-activated receptor co-activator 1 alpha (PGC1α) and its splice variant PGC1α4 increase skeletal muscle mass. However, the effect of the other PGC1 sub-type, PGC1ß, on muscle size is unclear. In transgenic mice selectively over-expressing PGC1ß in the skeletal muscle, we have found that PGC1ß progressively decreases skeletal muscle mass predominantly associated with loss of type 2b fast-twitch myofibers. Paradoxically, PGC1ß represses the ubiquitin-proteolysis degradation pathway genes resulting in ubiquitinated protein accumulation in muscle. However, PGC1ß overexpression triggers up-regulation of apoptosis and autophagy genes, resulting in robust activation of these cell degenerative processes, and a concomitant increase in muscle protein oxidation. Concurrently, PGC1ß up-regulates apoptosis and/or autophagy transcriptional factors such as E2f1, Atf3, Stat1, and Stat3, which may be facilitating myopathy. Therefore, PGC1ß activation negatively affects muscle mass over time, particularly fast-twitch muscles, which should be taken into consideration along with its known aerobic effects in the skeletal muscle.


Assuntos
Músculo Esquelético/patologia , Atrofia Muscular/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose , Autofagia , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Tamanho do Órgão , Estresse Oxidativo , Proteólise , Ubiquitinação
6.
PLoS One ; 11(12): e0168457, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28005939

RESUMO

Aryl Hydrocarbon Receptor Nuclear Translocator/ hypoxia-inducible factor 1 beta (ARNT/ HIF1ß), a member of bHLH-PAS family of transcriptional factors, plays a critical role in metabolic homeostasis, insulin resistance and glucose intolerance. The contributions of ARNT in pancreas, liver and adipose tissue to energy balance through gene regulation have been described. Surprisingly, the impact of ARNT signaling in the skeletal muscles, one of the major organs involved in glucose disposal, has not been investigated, especially in type II diabetes. Here we report that ARNT is expressed in the skeletal muscles, particularly in the energy-efficient oxidative slow-twitch myofibers, which are characterized by increased oxidative capacity, mitochondrial content, vascular supply and insulin sensitivity. However, muscle-specific deletion of ARNT did not change myofiber type distribution, oxidative capacity, mitochondrial content, capillarity, or the expression of genes associated with these features. Consequently, the lack of ARNT in the skeletal muscle did not affect weight gain, lean/fat mass, insulin sensitivity and glucose tolerance in lean mice, nor did it impact insulin resistance and glucose intolerance in high fat diet-induced obesity. Therefore, skeletal muscle ARNT is dispensable for controlling muscle fiber type and metabolic regulation, as well as diet-induced weight control, insulin sensitivity and glucose tolerance.


Assuntos
Tecido Adiposo/fisiologia , Translocador Nuclear Receptor Aril Hidrocarboneto/fisiologia , Resistência à Insulina , Músculo Esquelético/fisiologia , Neovascularização Fisiológica , Tecido Adiposo/citologia , Animais , Feminino , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/citologia , Aumento de Peso
7.
Mol Metab ; 5(7): 527-537, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27408777

RESUMO

OBJECTIVE: Recent data suggest that adipose triglyceride lipase (ATGL) plays a key role in providing energy substrate from triglyceride pools and that alterations of its expression/activity relate to metabolic disturbances in skeletal muscle. Yet little is known about its regulation. We here investigated the role of the protein G0/G1 Switch Gene 2 (G0S2), recently described as an inhibitor of ATGL in white adipose tissue, in the regulation of lipolysis and oxidative metabolism in skeletal muscle. METHODS: We first examined G0S2 protein expression in relation to metabolic status and muscle characteristics in humans. We next overexpressed and knocked down G0S2 in human primary myotubes to assess its impact on ATGL activity, lipid turnover and oxidative metabolism, and further knocked down G0S2 in vivo in mouse skeletal muscle. RESULTS: G0S2 protein is increased in skeletal muscle of endurance-trained individuals and correlates with markers of oxidative capacity and lipid content. Recombinant G0S2 protein inhibits ATGL activity by about 40% in lysates of mouse and human skeletal muscle. G0S2 overexpression augments (+49%, p < 0.05) while G0S2 knockdown strongly reduces (-68%, p < 0.001) triglyceride content in human primary myotubes and mouse skeletal muscle. We further show that G0S2 controls lipolysis and fatty acid oxidation in a strictly ATGL-dependent manner. These metabolic adaptations mediated by G0S2 are paralleled by concomitant changes in glucose metabolism through the modulation of Pyruvate Dehydrogenase Kinase 4 (PDK4) expression (5.4 fold, p < 0.001). Importantly, downregulation of G0S2 in vivo in mouse skeletal muscle recapitulates changes in lipid metabolism observed in vitro. CONCLUSION: Collectively, these data indicate that G0S2 plays a key role in the regulation of skeletal muscle ATGL activity, lipid content and oxidative metabolism.

8.
Sci Rep ; 6: 26442, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27220353

RESUMO

Dissecting exercise-mimicking pathways that can replicate the benefits of exercise in obesity and diabetes may lead to promising treatments for metabolic disorders. Muscle estrogen-related receptor gamma (ERRγ) is induced by exercise, and when over-expressed in the skeletal muscle mimics exercise by stimulating glycolytic-to-oxidative myofiber switch, mitochondrial biogenesis and angiogenesis in lean mice. The objective of this study was to test whether muscle ERRγ in obese mice mitigates weight gain and insulin resistance. To do so, ERRγ was selectively over-expressed in the skeletal muscle of obese and diabetic db/db mice. Muscle ERRγ over-expression successfully triggered glycolytic-to-oxidative myofiber switch, increased functional mitochondrial content and boosted vascular supply in the db/db mice. Despite aerobic remodeling, ERRγ surprisingly failed to improve whole-body energy expenditure, block muscle accumulation of triglycerides, toxic diacylglycerols (DAG) and ceramides or suppress muscle PKCε sarcolemmal translocation in db/db mice. Consequently, muscle ERRγ did not mitigate impaired muscle insulin signaling or insulin resistance in these mice. In conclusion, obesity and diabetes in db/db mice are not amenable to selective ERRγ-directed programming of classic exercise-like effects in the skeletal muscle. Other biochemical pathways or integrated whole-body effects of exercise may be critical for resisting diabetes and obesity.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Músculo Esquelético/metabolismo , Receptores de Estrogênio/fisiologia , Animais , Diabetes Mellitus Tipo 2/patologia , Glicólise , Metabolismo dos Lipídeos , Camundongos Obesos , Camundongos Transgênicos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/patologia , Oxirredução , Condicionamento Físico Animal
9.
Sci Rep ; 6: 38310, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922115

RESUMO

Lipid droplets (LD) play a central role in lipid homeostasis by controlling transient fatty acid (FA) storage and release from triacylglycerols stores, while preventing high levels of cellular toxic lipids. This crucial function in oxidative tissues is altered in obesity and type 2 diabetes. Perilipin 5 (PLIN5) is a LD protein whose mechanistic and causal link with lipotoxicity and insulin resistance has raised controversies. We investigated here the physiological role of PLIN5 in skeletal muscle upon various metabolic challenges. We show that PLIN5 protein is elevated in endurance-trained (ET) subjects and correlates with muscle oxidative capacity and whole-body insulin sensitivity. When overexpressed in human skeletal muscle cells to recapitulate the ET phenotype, PLIN5 diminishes lipolysis and FA oxidation under basal condition, but paradoxically enhances FA oxidation during forskolin- and contraction- mediated lipolysis. Moreover, PLIN5 partly protects muscle cells against lipid-induced lipotoxicity. In addition, we demonstrate that down-regulation of PLIN5 in skeletal muscle inhibits insulin-mediated glucose uptake under normal chow feeding condition, while paradoxically improving insulin sensitivity upon high-fat feeding. These data highlight a key role of PLIN5 in LD function, first by finely adjusting LD FA supply to mitochondrial oxidation, and second acting as a protective factor against lipotoxicity in skeletal muscle.


Assuntos
Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Perilipina-5/genética , Células Satélites de Músculo Esquelético/metabolismo , Animais , Peso Corporal , Diglicerídeos/metabolismo , Expressão Gênica , Humanos , Resistência à Insulina , Gotículas Lipídicas/química , Gotículas Lipídicas/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Oxirredução , Perilipina-5/metabolismo , Resistência Física/fisiologia , Cultura Primária de Células , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Comportamento Sedentário , Triglicerídeos/metabolismo
10.
Diabetes ; 64(12): 4033-45, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26253614

RESUMO

Circulating natriuretic peptide (NP) levels are reduced in obesity and predict the risk of type 2 diabetes (T2D). Since skeletal muscle was recently shown as a key target tissue of NP, we aimed to investigate muscle NP receptor (NPR) expression in the context of obesity and T2D. Muscle NPRA correlated positively with whole-body insulin sensitivity in humans and was strikingly downregulated in obese subjects and recovered in response to diet-induced weight loss. In addition, muscle NP clearance receptor (NPRC) increased in individuals with impaired glucose tolerance and T2D. Similar results were found in obese diabetic mice. Although no acute effect of brain NP (BNP) on insulin sensitivity was observed in lean mice, chronic BNP infusion improved blood glucose control and insulin sensitivity in skeletal muscle of obese and diabetic mice. This occurred in parallel with a reduced lipotoxic pressure in skeletal muscle due to an upregulation of lipid oxidative capacity. In addition, chronic NP treatment in human primary myotubes increased lipid oxidation in a PGC1α-dependent manner and reduced palmitate-induced lipotoxicity. Collectively, our data show that activation of NPRA signaling in skeletal muscle is important for the maintenance of long-term insulin sensitivity and has the potential to treat obesity-related metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Intolerância à Glucose/etiologia , Resistência à Insulina , Músculo Esquelético/metabolismo , Obesidade/fisiopatologia , Receptores do Fator Natriurético Atrial/metabolismo , Transdução de Sinais , Adulto , Animais , Índice de Massa Corporal , Células Cultivadas , Diabetes Mellitus Tipo 2/prevenção & controle , Dieta Redutora , Progressão da Doença , Intolerância à Glucose/prevenção & controle , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Pessoa de Meia-Idade , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Obesidade/dietoterapia , Obesidade/metabolismo , Obesidade/patologia , Distribuição Aleatória , Receptores do Fator Natriurético Atrial/agonistas , Receptores do Fator Natriurético Atrial/genética , Organismos Livres de Patógenos Específicos , Redução de Peso
11.
J Physiol Biochem ; 70(2): 583-91, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24338384

RESUMO

The aim of the present study was to investigate the influence of substrate availability on fuel selection during exercise. Eight endurance-trained male cyclists performed 90-min exercise at 70% of their maximal oxygen uptake in a cross-over design, either in rested condition (CON) or the day after 2-h exercise practised at 70% of maximal oxygen uptake (EX). Subjects were given a sucrose load (0.75 g kg(-1) body weight) 45 min after the beginning of the 90-min exercise test. Lipolysis was measured in subcutaneous abdominal adipose tissue (SCAT) by microdialysis and substrate oxidation by indirect calorimetry. Lipid oxidation increased during exercise and tended to decrease during sucrose ingestion in both conditions. Lipid oxidation was higher during the whole experimental period in the EX group (p = 0.004). Interestingly, fuel selection, assessed by the change in respiratory exchange ratio (RER), was increased in the EX session (p = 0.002). This was paralleled by a higher rate of SCAT lipolysis reflected by dialysate glycerol, plasma glycerol, and fatty acids (FA) levels (p < 0.001). Of note, we observed a significant relationship between whole-body fat oxidation and dialysate glycerol in both sessions (r (2) = 0.33, p = 0.02). In conclusion, this study highlights the limiting role of lipolysis and plasma FA availability to whole-body fat oxidation during exercise in endurance-trained subjects. This study shows that adipose tissue lipolysis is a determinant of fuel selection during exercise in healthy subjects.


Assuntos
Ciclismo , Ácidos Graxos/metabolismo , Lipólise , Adulto , Estudos Cross-Over , Humanos , Masculino , Microdiálise , Consumo de Oxigênio , Adulto Jovem
12.
Cell Rep ; 7(4): 1116-29, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24794440

RESUMO

Adipose tissue fibrosis development blocks adipocyte hypertrophy and favors ectopic lipid accumulation. Here, we show that adipose tissue fibrosis is associated with obesity and insulin resistance in humans and mice. Kinetic studies in C3H mice fed a high-fat diet show activation of macrophages and progression of fibrosis along with adipocyte metabolic dysfunction and death. Adipose tissue fibrosis is attenuated by macrophage depletion. Impairment of Toll-like receptor 4 signaling protects mice from obesity-induced fibrosis. The presence of a functional Toll-like receptor 4 on adipose tissue hematopoietic cells is necessary for the initiation of adipose tissue fibrosis. Continuous low-dose infusion of the Toll-like receptor 4 ligand, lipopolysaccharide, promotes adipose tissue fibrosis. Ex vivo, lipopolysaccharide-mediated induction of fibrosis is prevented by antibodies against the profibrotic factor TGFß1. Together, these results indicate that obesity and endotoxemia favor the development of adipose tissue fibrosis, a condition associated with insulin resistance, through immune cell Toll-like receptor 4.


Assuntos
Tecido Adiposo/patologia , Endotoxemia/metabolismo , Obesidade/metabolismo , Receptor 4 Toll-Like/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Endotoxemia/patologia , Fibrose , Humanos , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina/fisiologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C3H , Obesidade/patologia , Transdução de Sinais , Receptor 4 Toll-Like/genética
13.
Trends Endocrinol Metab ; 24(12): 607-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23988586

RESUMO

Intramyocellular triacylglycerol (IMTG) is emerging as an important energy fuel source during muscle contraction and are adaptively increased in response to exercise, without adverse physiological effects. Paradoxically, elevated IMTG content in obese and type 2 diabetics has been linked to insulin resistance, highlighting the importance of IMTG pools in physiology and pathology. Two separate views suggest that IMTG dynamics are determinant for skeletal muscle fat oxidation, and that disruption of IMTG dynamics facilitates the accumulation of lipotoxic intermediates such as diacylglycerols and ceramides that interfere with insulin signaling. Thus, understanding the factors that control IMTG dynamics is crucial. Here we discuss recent literature describing the regulation of IMTG pools with a particular emphasis on lipases and lipid droplet (LD)-associated proteins.


Assuntos
Músculo Esquelético/metabolismo , Animais , Humanos , Resistência à Insulina/fisiologia , Lipase/metabolismo , Lipólise/fisiologia , Triglicerídeos/metabolismo
14.
Endocrinology ; 154(4): 1444-53, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23471217

RESUMO

Elevated expression/activity of adipose triglyceride lipase (ATGL) and/or reduced activity of hormone-sensitive lipase (HSL) in skeletal muscle are causally linked to insulin resistance in vitro. We investigated here the effect of high-fat feeding on skeletal muscle lipolytic proteins, lipotoxicity, and insulin signaling in vivo. Five-week-old C3H mice were fed normal chow diet (NCD) or 45% kcal high-fat diet (HFD) for 4 weeks. Wild-type and HSL knockout mice fed NCD were also studied. Whole-body and muscle insulin sensitivity, as well as lipolytic protein expression, lipid levels, and insulin signaling in skeletal muscle, were measured. HFD induced whole-body insulin resistance and glucose intolerance and reduced skeletal muscle glucose uptake compared with NCD. HFD increased skeletal muscle total diacylglycerol (DAG) content, protein kinase Cθ and protein kinase Cε membrane translocation, and impaired insulin signaling as reflected by a robust increase of basal Ser1101 insulin receptor substrate 1 phosphorylation (2.8-fold, P < .05) and a decrease of insulin-stimulated v-Akt murine thymoma viral oncogene homolog Ser473 (-37%, P < .05) and AS160 Thr642 (-47%, P <.01) phosphorylation. We next showed that HFD strongly reduced HSL phosphorylation at Ser660. HFD significantly up-regulated the muscle protein content of the ATGL coactivator comparative gene identification 58 and triacylglycerol hydrolase activity, despite a lower ATGL protein content. We further show a defective skeletal muscle insulin signaling and DAG accumulation in HSL knockout compared with wild-type mice. Together, these data suggest a pathophysiological link between altered skeletal muscle lipase expression and DAG-mediated insulin resistance in mice.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Lipase/metabolismo , Músculo Esquelético/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Animais , Proteínas de Transporte/metabolismo , Diglicerídeos/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Proteínas Musculares/metabolismo , Perilipina-2 , Perilipina-3 , Fosforilação , Aumento de Peso
15.
J Clin Endocrinol Metab ; 98(9): 3739-47, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23884778

RESUMO

CONTEXT: It was suggested that human cultured primary myotubes retain the metabolic characteristics of their donor in vitro. OBJECTIVES: The aim of the present study was to investigate whether the metabolic responses to endurance training are also conserved in culture. DESIGN AND VOLUNTEERS: Middle-aged obese subjects completed an 8-week supervised aerobic exercise training program in which vastus lateralis muscle biopsies were collected before and after training. MAIN OUTCOME MEASURES: Anthropometric and blood parameters, as well as aerobic capacity, were assessed before and after training. Muscle biopsies were either used for Western blot analysis or digested to harvest myogenic progenitors that were differentiated into myotubes. Glucose oxidation, palmitate oxidation, and glycogen synthesis assays were performed on myotubes before and after training. Gene expression was assessed by real-time quantitative PCR. RESULTS: Our data indicate that in parallel of in vivo improvement of whole-body aerobic capacity and glucose metabolism, biopsy-derived primary myotubes showed similar patterns in vitro. Indeed, glucose oxidation, glycogen synthesis, and inhibition of palmitate oxidation by glucose were enhanced in myotubes after training. This was associated with consistent changes in the expression of metabolism-linked genes such as GLUT1, PDK4, and PDHA1. Interestingly, no difference in myogenic differentiation capacity was observed before and after training. CONCLUSION: Aerobic exercise training is associated with metabolic adaptations in vivo that are preserved in human cultured primary myotubes. It can be hypothesized that skeletal muscle microenvironmental changes induced by endurance training lead to metabolic imprinting on myogenic progenitor cells.


Assuntos
Terapia por Exercício , Exercício Físico , Glucose/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Obesidade/metabolismo , Músculo Quadríceps/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glicogênio/biossíntese , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/patologia , Obesidade/patologia , Obesidade/terapia , Oxirredução , Ácido Palmítico/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Músculo Quadríceps/patologia
16.
J Clin Endocrinol Metab ; 98(12): 4863-71, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24178794

RESUMO

CONTEXT: Skeletal muscle lipase and intramyocellular triglyceride (IMTG) play a role in obesity-related metabolic disorders. OBJECTIVES: The aim of the present study was to investigate the impact of 8 weeks of endurance exercise training on IMTG content and lipolytic proteins in obese male subjects. DESIGN AND VOLUNTEERS: Ten obese subjects completed an 8-week supervised endurance exercise training intervention in which vastus lateralis muscle biopsy samples were collected before and after training. MAIN OUTCOME MEASURES: Clinical characteristics and ex vivo substrate oxidation rates were measured pre- and posttraining. Skeletal muscle lipid content and lipolytic protein expression were also investigated. RESULTS: Our data show that exercise training reduced IMTG content by 42% (P < .01) and increased skeletal muscle oxidative capacity, whereas no change in total diacylglycerol content and glucose oxidation was found. Exercise training up-regulated adipose triglyceride lipase, perilipin (PLIN) 3 protein, and PLIN5 protein contents in skeletal muscle despite no change in mRNA levels. Training also increased hormone sensitive-lipase Ser660 phosphorylation. No significant changes in comparative gene identification 58, G0/G1 switch gene 2, and PLIN2 protein and mRNA levels were observed in response to training. Interestingly, we noted a strong relationship between skeletal muscle comparative gene identification 58 and mitochondrial respiratory chain complex I protein contents at baseline (r = 0.87, P < .0001). CONCLUSIONS: Endurance exercise training coordinately up-regulates fat oxidative capacity and lipolytic protein expression in skeletal muscle of obese subjects. This physiological adaptation probably favors fat oxidation and may alleviate the lipotoxic lipid pressure in skeletal muscle. Enhancement of IMTG turnover may be required for the beneficial metabolic effects of exercise in obesity.


Assuntos
Exercício Físico , Lipólise , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Resistência Física , Triglicerídeos/metabolismo , Adulto , Índice de Massa Corporal , Estudos de Coortes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipase/biossíntese , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Obesidade/patologia , Obesidade/terapia , Fosforilação Oxidativa , Perilipina-3 , Perilipina-5 , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas/genética , Proteínas/metabolismo , Músculo Quadríceps/enzimologia , Músculo Quadríceps/metabolismo , Músculo Quadríceps/patologia , Esterol Esterase/metabolismo , Regulação para Cima , Proteínas de Transporte Vesicular/biossíntese
17.
J Clin Invest ; 122(12): 4675-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23114600

RESUMO

Cardiac natriuretic peptides (NP) are major activators of human fat cell lipolysis and have recently been shown to control brown fat thermogenesis. Here, we investigated the physiological role of NP on the oxidative metabolism of human skeletal muscle. NP receptor type A (NPRA) gene expression was positively correlated to mRNA levels of PPARγ coactivator-1α (PGC1A) and several oxidative phosphorylation (OXPHOS) genes in human skeletal muscle. Further, the expression of NPRA, PGC1A, and OXPHOS genes was coordinately upregulated in response to aerobic exercise training in human skeletal muscle. In human myotubes, NP induced PGC-1α and mitochondrial OXPHOS gene expression in a cyclic GMP-dependent manner. NP treatment increased OXPHOS protein expression, fat oxidation, and maximal respiration independent of substantial changes in mitochondrial proliferation and mass. Treatment of myotubes with NP recapitulated the effect of exercise training on muscle fat oxidative capacity in vivo. Collectively, these data show that activation of NP signaling in human skeletal muscle enhances mitochondrial oxidative metabolism and fat oxidation. We propose that NP could contribute to exercise training-induced improvement in skeletal muscle fat oxidative capacity in humans.


Assuntos
Fator Natriurético Atrial/fisiologia , Músculo Esquelético/metabolismo , Peptídeo Natriurético Encefálico/fisiologia , Fosforilação Oxidativa , Receptores do Fator Natriurético Atrial/metabolismo , Adaptação Fisiológica , Adulto , Células Cultivadas , Regulação da Expressão Gênica , Genes Mitocondriais , Proteínas de Choque Térmico/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Obesidade , Oxirredução , Consumo de Oxigênio , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Cultura Primária de Células , Receptores do Fator Natriurético Atrial/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Regulação para Cima
18.
Diabetes ; 60(6): 1734-42, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21498783

RESUMO

OBJECTIVE: Insulin resistance is associated with elevated content of skeletal muscle lipids, including triacylglycerols (TAGs) and diacylglycerols (DAGs). DAGs are by-products of lipolysis consecutive to TAG hydrolysis by adipose triglyceride lipase (ATGL) and are subsequently hydrolyzed by hormone-sensitive lipase (HSL). We hypothesized that an imbalance of ATGL relative to HSL (expression or activity) may contribute to DAG accumulation and insulin resistance. RESEARCH DESIGN AND METHODS: We first measured lipase expression in vastus lateralis biopsies of young lean (n = 9), young obese (n = 9), and obese-matched type 2 diabetic (n = 8) subjects. We next investigated in vitro in human primary myotubes the impact of altered lipase expression/activity on lipid content and insulin signaling. RESULTS: Muscle ATGL protein was negatively associated with whole-body insulin sensitivity in our population (r = -0.55, P = 0.005), whereas muscle HSL protein was reduced in obese subjects. We next showed that adenovirus-mediated ATGL overexpression in human primary myotubes induced DAG and ceramide accumulation. ATGL overexpression reduced insulin-stimulated glycogen synthesis (-30%, P < 0.05) and disrupted insulin signaling at Ser1101 of the insulin receptor substrate-1 and downstream Akt activation at Ser473. These defects were fully rescued by nonselective protein kinase C inhibition or concomitant HSL overexpression to restore a proper lipolytic balance. We show that selective HSL inhibition induces DAG accumulation and insulin resistance. CONCLUSIONS: Altogether, the data indicate that altered ATGL and HSL expression in skeletal muscle could promote DAG accumulation and disrupt insulin signaling and action. Targeting skeletal muscle lipases may constitute an interesting strategy to improve insulin sensitivity in obesity and type 2 diabetes.


Assuntos
Resistência à Insulina/fisiologia , Lipase/metabolismo , Músculo Esquelético/enzimologia , Esterol Esterase/metabolismo , Adulto , Cromatografia Gasosa , Diglicerídeos/metabolismo , Feminino , Técnica Clamp de Glucose , Humanos , Resistência à Insulina/genética , Lipase/genética , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização por Electrospray , Esterol Esterase/genética , Espectrometria de Massas em Tandem , Triglicerídeos/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa