Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Genome Res ; 30(2): 164-172, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32033943

RESUMO

Cannabis sativa-derived tetrahydrocannabinol (THC) production is increasing very fast worldwide. C. sativa is a dioecious plant with XY Chromosomes, and only females (XX) are useful for THC production. Identifying the sex chromosome sequence would improve early sexing and better management of this crop; however, the C. sativa genome projects have failed to do so. Moreover, as dioecy in the Cannabaceae family is ancestral, C. sativa sex chromosomes are potentially old and thus very interesting to study, as little is known about old plant sex chromosomes. Here, we RNA-sequenced a C. sativa family (two parents and 10 male and female offspring, 576 million reads) and performed a segregation analysis for all C. sativa genes using the probabilistic method SEX-DETector. We identified >500 sex-linked genes. Mapping of these sex-linked genes to a C. sativa genome assembly identified the largest chromosome pair being the sex chromosomes. We found that the X-specific region (not recombining between X and Y) is large compared to other plant systems. Further analysis of the sex-linked genes revealed that C. sativa has a strongly degenerated Y Chromosome and may represent the oldest plant sex chromosome system documented so far. Our study revealed that old plant sex chromosomes can have large, highly divergent nonrecombining regions, yet still be roughly homomorphic.


Assuntos
Cannabis/genética , Segregação de Cromossomos/genética , Evolução Molecular , Processos de Determinação Sexual/genética , Cannabis/crescimento & desenvolvimento , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA de Plantas/genética , Dronabinol/biossíntese , Genoma de Planta/genética , RNA-Seq , Cromossomos Sexuais/genética
2.
Nature ; 546(7656): 148-152, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538728

RESUMO

The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs.


Assuntos
Evolução Molecular , Flores/genética , Flores/fisiologia , Genoma de Planta/genética , Helianthus/genética , Helianthus/metabolismo , Óleos de Plantas/metabolismo , Aclimatação/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Genômica , Helianthus/classificação , Análise de Sequência de DNA , Estresse Fisiológico/genética , Óleo de Girassol , Transcriptoma/genética
3.
Proc Natl Acad Sci U S A ; 114(27): 7067-7072, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630332

RESUMO

Sex chromosomes can display successive steps of recombination suppression known as "evolutionary strata," which are thought to result from the successive linkage of sexually antagonistic genes to sex-determining genes. However, there is little evidence to support this explanation. Here we investigate whether evolutionary strata can evolve without sexual antagonism using fungi that display suppressed recombination extending beyond loci determining mating compatibility despite lack of male/female roles associated with their mating types. By comparing full-length chromosome assemblies from five anther-smut fungi with or without recombination suppression in their mating-type chromosomes, we inferred the ancestral gene order and derived chromosomal arrangements in this group. This approach shed light on the chromosomal fusion underlying the linkage of mating-type loci in fungi and provided evidence for multiple clearly resolved evolutionary strata over a range of ages (0.9-2.1 million years) in mating-type chromosomes. Several evolutionary strata did not include genes involved in mating-type determination. The existence of strata devoid of mating-type genes, despite the lack of sexual antagonism, calls for a unified theory of sex-related chromosome evolution, incorporating, for example, the influence of partially linked deleterious mutations and the maintenance of neutral rearrangement polymorphism due to balancing selection on sexes and mating types.


Assuntos
Cromossomos Fúngicos , Fungos/genética , Genes Fúngicos Tipo Acasalamento , Ligação Genética , Genoma Fúngico , Recombinação Genética , Evolução Biológica , Evolução Molecular , Rearranjo Gênico , Haploidia , Heterozigoto , Filogenia
4.
Mol Ecol ; 26(7): 2063-2076, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27761941

RESUMO

Recent advancements in sequencing technology allowed researchers to better address the patterns and mechanisms involved in microbial environmental adaptation at large spatial scales. Here we investigated the genomic basis of adaptation to climate at the continental scale in Suillus brevipes, an ectomycorrhizal fungus symbiotically associated with the roots of pine trees. We used genomic data from 55 individuals in seven locations across North America to perform genome scans to detect signatures of positive selection and assess whether temperature and precipitation were associated with genetic differentiation. We found that S. brevipes exhibited overall strong population differentiation, with potential admixture in Canadian populations. This species also displayed genomic signatures of positive selection as well as genomic sites significantly associated with distinct climatic regimes and abiotic environmental parameters. These genomic regions included genes involved in transmembrane transport of substances and helicase activity potentially involved in cold stress response. Our study sheds light on large-scale environmental adaptation in fungi by identifying putative adaptive genes and providing a framework to further investigate the genetic basis of fungal adaptation.


Assuntos
Adaptação Fisiológica/genética , Agaricales/genética , Genética Populacional , Seleção Genética , Basidiomycota/genética , Canadá , Clima , Resposta ao Choque Frio/genética , DNA Fúngico/genética , Genoma Fúngico , Genótipo , Desequilíbrio de Ligação , Micorrizas/genética , América do Norte , Pinus/microbiologia , Chuva , Neve , Temperatura
5.
Mol Biol Evol ; 32(4): 928-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25534033

RESUMO

Dimorphic mating-type chromosomes in fungi are excellent models for understanding the genomic consequences of recombination suppression. Their suppressed recombination and reduced effective population size are expected to limit the efficacy of natural selection, leading to genomic degeneration. Our aim was to identify the sequences of the mating-type chromosomes (a1 and a2) of the anther-smut fungi and to investigate degeneration in their nonrecombining regions. We used the haploid a1 Microbotryum lychnidis-dioicae reference genome sequence. The a1 and a2 mating-type chromosomes were both isolated electrophoretically and sequenced. Integration with restriction-digest optical maps identified regions of recombination and nonrecombination in the mating-type chromosomes. Genome sequence data were also obtained for 12 other Microbotryum species. We found strong evidence of degeneration across the genus in the nonrecombining regions of the mating-type chromosomes, with significantly higher rates of nonsynonymous substitution (dN/dS) than in nonmating-type chromosomes or in recombining regions of the mating-type chromosomes. The nonrecombining regions of the mating-type chromosomes also showed high transposable element content, weak gene expression, and gene losses. The levels of degeneration did not differ between the a1 and a2 mating-type chromosomes, consistent with the lack of homogametic/heterogametic asymmetry between them, and contrasting with X/Y or Z/W sex chromosomes.


Assuntos
Basidiomycota/genética , Genes Fúngicos Tipo Acasalamento , Recombinação Genética , Cromossomos Sexuais , Sequência de Bases , Elementos de DNA Transponíveis , Deleção de Genes , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
6.
Mol Ecol ; 25(14): 3370-83, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27136128

RESUMO

Nuclear disasters at Chernobyl and Fukushima provide examples of effects of acute ionizing radiation on mutations that can affect the fitness and distribution of species. Here, we investigated the prevalence of Microbotryum lychnidis-dioicae, a pollinator-transmitted fungal pathogen of plants causing anther-smut disease in Chernobyl, its viability, fertility and karyotype variation, and the accumulation of nonsynonymous mutations in its genome. We collected diseased flowers of Silene latifolia from locations ranging by more than two orders of magnitude in background radiation, from 0.05 to 21.03 µGy/h. Disease prevalence decreased significantly with increasing radiation level, possibly due to lower pollinator abundance and altered pollinator behaviour. Viability and fertility, measured as the budding rate of haploid sporidia following meiosis from the diploid teliospores, did not vary with increasing radiation levels and neither did karyotype overall structure and level of chromosomal size heterozygosity. We sequenced the genomes of twelve samples from Chernobyl and of four samples collected from uncontaminated areas and analysed alignments of 6068 predicted genes, corresponding to 1.04 × 10(7)  base pairs. We found no dose-dependent differences in substitution rates (neither dN, dS, nor dN/dS). Thus, we found no significant evidence of increased deleterious mutation rates at higher levels of background radiation in this plant pathogen. We even found lower levels of nonsynonymous substitution rates in contaminated areas compared to control regions, suggesting that purifying selection was stronger in contaminated than uncontaminated areas. We briefly discuss the possibilities for a mechanistic basis of radio resistance in this nonmelanized fungus.


Assuntos
Basidiomycota/genética , Basidiomycota/efeitos da radiação , Aptidão Genética , Radiação Ionizante , Silene/microbiologia , Animais , Basidiomycota/patogenicidade , Borboletas , Acidente Nuclear de Chernobyl , DNA Fúngico/genética , Flores/microbiologia , Genoma Fúngico , Insetos Vetores , Cariótipo , Taxa de Mutação , Doenças das Plantas/microbiologia , Reprodução Assexuada , Seleção Genética , Análise de Sequência de DNA , Ucrânia
7.
BMC Genomics ; 16: 461, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26076695

RESUMO

BACKGROUND: The genus Microbotryum includes plant pathogenic fungi afflicting a wide variety of hosts with anther smut disease. Microbotryum lychnidis-dioicae infects Silene latifolia and replaces host pollen with fungal spores, exhibiting biotrophy and necrosis associated with altering plant development. RESULTS: We determined the haploid genome sequence for M. lychnidis-dioicae and analyzed whole transcriptome data from plant infections and other stages of the fungal lifecycle, revealing the inventory and expression level of genes that facilitate pathogenic growth. Compared to related fungi, an expanded number of major facilitator superfamily transporters and secretory lipases were detected; lipase gene expression was found to be altered by exposure to lipid compounds, which signaled a switch to dikaryotic, pathogenic growth. In addition, while enzymes to digest cellulose, xylan, xyloglucan, and highly substituted forms of pectin were absent, along with depletion of peroxidases and superoxide dismutases that protect the fungus from oxidative stress, the repertoire of glycosyltransferases and of enzymes that could manipulate host development has expanded. A total of 14% of the genome was categorized as repetitive sequences. Transposable elements have accumulated in mating-type chromosomal regions and were also associated across the genome with gene clusters of small secreted proteins, which may mediate host interactions. CONCLUSIONS: The unique absence of enzyme classes for plant cell wall degradation and maintenance of enzymes that break down components of pollen tubes and flowers provides a striking example of biotrophic host adaptation.


Assuntos
Fungos/genética , Genoma Fúngico/genética , Parasitos/genética , Doenças das Plantas/microbiologia , Plantas/microbiologia , Silene/microbiologia , Transcriptoma/genética , Animais , Mapeamento Cromossômico/métodos , Perfilação da Expressão Gênica/métodos , Interações Hospedeiro-Parasita/genética , Lipase/genética , Peroxidases/genética , Superóxido Dismutase/genética
8.
Mol Ecol ; 23(4): 753-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24341913

RESUMO

Fungi are ideal model organisms for dissecting the genomic bases of adaptive divergence in eukaryotes. They have simple morphologies and small genomes, occupy contrasting, well-identified ecological niches and tend to have short generation times, and many are amenable to experimental approaches. Fungi also display diverse lifestyles, from saprotrophs to pathogens or mutualists, and they play extremely important roles in both ecosystems and human activities, as wood decayers, mycorrhizal fungi, lichens, endophytes, plant and animal pathogens, and in fermentation or drug production. We review here recent insights into the patterns and mechanisms of adaptive divergence in fungi, including sources of divergence, genomic variation and, ultimately, speciation. We outline the various ecological sources of divergent selection and genomic changes, showing that gene loss and changes in gene expression and in genomic architecture are important adaptation processes, in addition to the more widely recognized processes of amino acid substitution and gene duplication. We also review recent findings regarding the interspecific acquisition of genomic variation and suggesting an important role for introgression, hybridization and horizontal gene transfers (HGTs). We show that transposable elements can mediate several of these genomic changes, thus constituting important factors for adaptation. Finally, we review the consequences of divergent selection in terms of speciation, arguing that genetic incompatibilities may not be as widespread as generally thought and that pleiotropy between adaptation and reproductive isolation is an important route of speciation in fungal pathogens.


Assuntos
Adaptação Biológica , Evolução Biológica , Fungos/genética , Especiação Genética , Elementos de DNA Transponíveis , Eucariotos/genética , Transferência Genética Horizontal , Genômica , Hibridização Genética , Isolamento Reprodutivo
9.
Genes (Basel) ; 11(7)2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668777

RESUMO

About 15,000 angiosperms are dioecious, but the mechanisms of sex determination in plants remain poorly understood. In particular, how Y chromosomes evolve and degenerate, and whether dosage compensation evolves as a response, are matters of debate. Here, we focus on Coccinia grandis, a dioecious cucurbit with the highest level of X/Y heteromorphy recorded so far. We identified sex-linked genes using RNA sequences from a cross and a model-based method termed SEX-DETector. Parents and F1 individuals were genotyped, and the transmission patterns of SNPs were then analyzed. In the >1300 sex-linked genes studied, maximum X-Y divergence was 0.13-0.17, and substantial Y degeneration is implied by an average Y/X expression ratio of 0.63 and an inferred gene loss on the Y of ~40%. We also found reduced Y gene expression being compensated by elevated expression of corresponding genes on the X and an excess of sex-biased genes on the sex chromosomes. Molecular evolution of sex-linked genes in C. grandis is thus comparable to that in Silene latifolia, another dioecious plant with a strongly heteromorphic XY system, and cucurbits are the fourth plant family in which dosage compensation is described, suggesting it might be common in plants.


Assuntos
Cucurbitaceae/genética , Mecanismo Genético de Compensação de Dose/genética , Evolução Molecular , Processos de Determinação Sexual/genética , Cromossomos de Plantas/genética , Cucurbitaceae/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Humanos , Cromossomos Sexuais/genética
10.
Genome Biol ; 21(1): 223, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32892750

RESUMO

BACKGROUND: A key step in domestication of the grapevine was the transition from separate sexes (dioecy) in wild Vitis vinifera ssp. sylvestris (V. sylvestris) to hermaphroditism in cultivated Vitis vinifera ssp. sativa (V. vinifera). It is known that V. sylvestris has an XY system and V. vinifera a modified Y haplotype (Yh) and that the sex locus is small, but it has not previously been precisely characterized. RESULTS: We generate a high-quality de novo reference genome for V. sylvestris, onto which we map whole-genome re-sequencing data of a cross to locate the sex locus. Assembly of the full X, Y, and Yh haplotypes of V. sylvestris and V. vinifera sex locus and examining their gene content and expression profiles during flower development in wild and cultivated accessions show that truncation and deletion of tapetum and pollen development genes on the X haplotype likely causes male sterility, while the upregulation of a Y allele of a cytokinin regulator (APRT3) may cause female sterility. The downregulation of this cytokinin regulator in the Yh haplotype may be sufficient to trigger reversal to hermaphroditism. Molecular dating of X and Y haplotypes is consistent with the sex locus being as old as the Vitis genus, but the mechanism by which recombination was suppressed remains undetermined. CONCLUSIONS: We describe the genomic and evolutionary characterization of the sex locus of cultivated and wild grapevine, providing a coherent model of sex determination in the latter and for transition from dioecy to hermaphroditism during domestication.


Assuntos
Domesticação , Genoma de Planta , Processos de Determinação Sexual , Vitis/genética , Haplótipos , Infertilidade das Plantas/genética , Sequenciamento Completo do Genoma
11.
Nat Commun ; 9(1): 2000, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29784936

RESUMO

Convergent adaptation provides unique insights into the predictability of evolution and ultimately into processes of biological diversification. Supergenes (beneficial gene linkage) are striking examples of adaptation, but little is known about their prevalence or evolution. A recent study on anther-smut fungi documented supergene formation by rearrangements linking two key mating-type loci, controlling pre- and post-mating compatibility. Here further high-quality genome assemblies reveal four additional independent cases of chromosomal rearrangements leading to regions of suppressed recombination linking these mating-type loci in closely related species. Such convergent transitions in genomic architecture of mating-type determination indicate strong selection favoring linkage of mating-type loci into cosegregating supergenes. We find independent evolutionary strata (stepwise recombination suppression) in several species, with extensive rearrangements, gene losses, and transposable element accumulation. We thus show remarkable convergence in mating-type chromosome evolution, recurrent supergene formation, and repeated evolution of similar phenotypes through different genomic changes.


Assuntos
Cromossomos Fúngicos/genética , Evolução Molecular , Fungos/genética , Genes Fúngicos Tipo Acasalamento , Fungos/classificação , Fungos/fisiologia , Genômica , Filogenia , Recombinação Genética
12.
Nat Genet ; 50(6): 772-777, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29713014

RESUMO

Roses have high cultural and economic importance as ornamental plants and in the perfume industry. We report the rose whole-genome sequencing and assembly and resequencing of major genotypes that contributed to rose domestication. We generated a homozygous genotype from a heterozygous diploid modern rose progenitor, Rosa chinensis 'Old Blush'. Using single-molecule real-time sequencing and a meta-assembly approach, we obtained one of the most comprehensive plant genomes to date. Diversity analyses highlighted the mosaic origin of 'La France', one of the first hybrids combining the growth vigor of European species and the recurrent blooming of Chinese species. Genomic segments of Chinese ancestry identified new candidate genes for recurrent blooming. Reconstructing regulatory and secondary metabolism pathways allowed us to propose a model of interconnected regulation of scent and flower color. This genome provides a foundation for understanding the mechanisms governing rose traits and should accelerate improvement in roses, Rosaceae and ornamentals.


Assuntos
Genoma de Planta , Rosa/genética , Domesticação , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Proteínas de Plantas/genética , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos
13.
PLoS One ; 11(11): e0165656, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832131

RESUMO

BACKGROUND: Anther-smut fungi belonging to the genus Microbotryum sterilize their host plants by aborting ovaries and replacing pollen by fungal spores. Sibling Microbotryum species are highly specialized on their host plants and they have been widely used as models for studies of ecology and evolution of plant pathogenic fungi. However, most studies have focused, so far, on M. lychnidis-dioicae that parasitizes the white campion Silene latifolia. Microbotryum saponariae, parasitizing mainly Saponaria officinalis, is an interesting anther-smut fungus, since it belongs to a tetrapolar lineage (i.e., with two independently segregating mating-type loci), while most of the anther-smut Microbotryum fungi are bipolar (i.e., with a single mating-type locus). Saponaria officinalis is a widespread long-lived perennial plant species with multiple flowering stems, which makes its anther-smut pathogen a good model for studying phylogeography and within-host multiple infections. PRINCIPAL FINDINGS: Here, based on a generated genome sequence of M. saponariae we developed 6 multiplexes with a total of 22 polymorphic microsatellite markers using an inexpensive and efficient method. We scored these markers in fungal individuals collected from 97 populations across Europe, and found that the number of their alleles ranged from 2 to 11, and their expected heterozygosity from 0.01 to 0.58. Cross-species amplification was examined using nine other Microbotryum species parasitizing hosts belonging to Silene, Dianthus and Knautia genera. All loci were successfully amplified in at least two other Microbotryum species. SIGNIFICANCE: These newly developed markers will provide insights into the population genetic structure and the occurrence of within-host multiple infections of M. saponariae. In addition, the draft genome of M. saponariae, as well as one of the described markers will be useful resources for studying the evolution of the breeding systems in the genus Microbotryum and the evolution of specialization onto different plant species.


Assuntos
Basidiomycota/genética , Dianthus/microbiologia , Dipsacaceae/microbiologia , Repetições de Microssatélites , Silene/microbiologia , Basidiomycota/isolamento & purificação , Genoma Fúngico , Doenças das Plantas/microbiologia , Polimorfismo Genético , Ustilaginales
14.
Genetics ; 200(4): 1275-84, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26044594

RESUMO

Sex chromosomes in plants and animals and fungal mating-type chromosomes often show exceptional genome features, with extensive suppression of homologous recombination and cytological differentiation between members of the diploid chromosome pair. Despite strong interest in the genetics of these chromosomes, their large regions of suppressed recombination often are enriched in transposable elements and therefore can be challenging to assemble. Here we show that the latest improvements of the PacBio sequencing yield assembly of the whole genome of the anther-smut fungus, Microbotryum lychnidis-dioicae (the pathogenic fungus causing anther-smut disease of Silene latifolia), into finished chromosomes or chromosome arms, even for the repeat-rich mating-type chromosomes and centromeres. Suppressed recombination of the mating-type chromosomes is revealed to span nearly 90% of their lengths, with extreme levels of rearrangements, transposable element accumulation, and differentiation between the two mating types. We observed no correlation between allelic divergence and physical position in the nonrecombining regions of the mating-type chromosomes. This may result from gene conversion or from rearrangements of ancient evolutionary strata, i.e., successive steps of suppressed recombination. Centromeres were found to be composed mainly of copia-like transposable elements and to possess specific minisatellite repeats identical between the different chromosomes. We also identified subtelomeric motifs. In addition, extensive signs of degeneration were detected in the nonrecombining regions in the form of transposable element accumulation and of hundreds of gene losses on each mating-type chromosome. Furthermore, our study highlights the potential of the latest breakthrough PacBio chemistry to resolve complex genome architectures.


Assuntos
Basidiomycota/genética , Cromossomos Fúngicos/genética , Rearranjo Gênico , Genes Fúngicos Tipo Acasalamento/genética , Centrômero/genética , Evolução Molecular , Genômica , Recombinação Genética/genética , Telômero/genética
15.
PLoS One ; 8(7): e68200, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874539

RESUMO

BACKGROUND: Despite the recent sequencing of seven ant genomes, no genomic data are available for the genus Formica, an important group for the study of eusocial traits. We sequenced the transcriptome of the ant Formica exsecta with the 454 FLX Titanium technology from a pooled sample of workers from 70 Finnish colonies. RESULTS: About 1,000,000 reads were obtained from a normalised cDNA library. We compared the assemblers MIRA3.0 and Newbler2.6 and showed that the latter performed better on this dataset due to a new option which is dedicated to improve contig formation in low depth portions of the assemblies. The 29,579 contigs represent 27 Mb. 50% showed similarity with known proteins and 25% could be assigned a category of gene ontology. We found more than 13,000 high-quality single nucleotide polymorphisms. The Δ9 desaturase gene family is an important multigene family involved in chemical communication in insects. We found six Δ9 desaturases in this Formica exsecta transcriptome dataset that were used to reconstruct a maximum-likelihood phylogeny of insect desaturases and to test for signatures of positive selection in this multigene family in ant lineages. We found differences with previous phylogenies of this gene family in ants, and found two clades potentially under positive selection. CONCLUSION: This first transcriptome reference sequence of Formica exsecta provided sequence and polymorphism data that will allow researchers working on Formica ants to develop studies to tackle the genetic basis of eusocial phenotypes. In addition, this study provided some general guidelines for de novo transcriptome assembly that should be useful for future transcriptome sequencing projects. Finally, we found potential signatures of positive selection in some clades of the Δ9 desaturase gene family in ants, which suggest the potential role of sequence divergence and adaptive evolution in shaping the large diversity of chemical cues in social insects.


Assuntos
Formigas/enzimologia , Formigas/genética , Evolução Molecular , Ácidos Graxos Dessaturases/genética , Genes de Insetos/genética , Comportamento Social , Transcriptoma/genética , Animais , Ontologia Genética , Funções Verossimilhança , Anotação de Sequência Molecular , Família Multigênica , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa