Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(11): 5826-5835, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32127480

RESUMO

Mutations in a number of stress granule-associated proteins have been linked to various neurodegenerative diseases. Several of these mutations are found in aggregation-prone prion-like domains (PrLDs) within these proteins. In this work, we examine the sequence features governing PrLD localization to stress granules upon stress. We demonstrate that many yeast PrLDs are sufficient for stress-induced assembly into microscopically visible foci that colocalize with stress granule markers. Additionally, compositional biases exist among PrLDs that assemble upon stress, and these biases are consistent across different stressors. Using these biases, we have developed a composition-based prediction method that accurately predicts PrLD assembly into foci upon heat shock. We show that compositional changes alter PrLD assembly behavior in a predictable manner, while scrambling primary sequence has little effect on PrLD assembly and recruitment to stress granules. Furthermore, we were able to design synthetic PrLDs that were efficiently recruited to stress granules, and found that aromatic amino acids, which have previously been linked to PrLD phase separation, were dispensable for this recruitment. These results highlight the flexible sequence requirements for stress granule recruitment and suggest that PrLD localization to stress granules is driven primarily by amino acid composition, rather than primary sequence.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas Priônicas/química , Domínios Proteicos , Estresse Fisiológico/fisiologia , Composição de Bases , Proteínas de Choque Térmico/metabolismo , Mutação , Doenças Neurodegenerativas/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/metabolismo , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de Proteína , Azida Sódica/farmacologia , Estresse Fisiológico/genética
3.
Glia ; 64(7): 1190-209, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27100937

RESUMO

Axonal pathology is a key contributor to long-term disability in multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS), but the mechanisms that underlie axonal pathology in MS remain elusive. Evidence suggests that axonal pathology is a direct consequence of demyelination, as we and others have shown that the node of Ranvier disassembles following loss of myelin. In contrast to the node of Ranvier, we now show that the axon initial segment (AIS), the axonal domain responsible for action potential initiation, remains intact following cuprizone-induced cortical demyelination. Instead, we find that the AIS is disrupted in the neocortex of mice that develop experimental autoimmune encephalomyelitis (EAE) independent of local demyelination. EAE-induced mice demonstrate profound compromise of AIS integrity with a progressive disruption that corresponds to EAE clinical disease severity and duration, in addition to cortical microglial reactivity. Furthermore, treatment with the drug didox results in attenuation of AIS pathology concomitantly with microglial reversion to a less reactive state. Together, our findings suggest that inflammation, but not demyelination, disrupts AIS integrity and that therapeutic intervention may protect and reverse this pathology. GLIA 2016;64:1190-1209.


Assuntos
Segmento Inicial do Axônio/fisiologia , Axônios/patologia , Encefalomielite Autoimune Experimental/patologia , Regulação da Expressão Gênica/fisiologia , Microglia/metabolismo , Animais , Animais Geneticamente Modificados , Doenças Autoimunes do Sistema Nervoso/induzido quimicamente , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Doenças Autoimunes do Sistema Nervoso/patologia , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Morte Celular/fisiologia , Células Cultivadas , Cuprizona/toxicidade , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ácidos Hidroxâmicos/uso terapêutico , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Inibidores da Monoaminoxidase/toxicidade , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
J Mol Biol ; 436(18): 168703, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004265

RESUMO

Stress granules (SGs) are large ribonucleoprotein assemblies that form in response to acute stress in eukaryotes. SG formation is thought to be initiated by liquid-liquid phase separation (LLPS) of key proteins and RNA. These molecules serve as a scaffold for recruitment of client molecules. LLPS of scaffold proteins in vitro is highly concentration-dependent, yet biomolecular condensates in vivo contain hundreds of unique proteins, most of which are thought to be clients rather than scaffolds. Many proteins that localize to SGs contain low-complexity, prion-like domains (PrLDs) that have been implicated in LLPS and SG recruitment. The degree of enrichment of proteins in biomolecular condensates such as SGs can vary widely, but the underlying basis for these differences is not fully understood. Here, we develop a toolkit of model PrLDs to examine the factors that govern efficiency of PrLD recruitment to stress granules. Recruitment was highly sensitive to amino acid composition: enrichment in SGs could be tuned through subtle changes in hydrophobicity. By contrast, SG recruitment was largely insensitive to PrLD concentration at both a population level and single-cell level. These observations point to a model wherein PrLDs are enriched in SGs through either simple solvation effects or interactions that are effectively non-saturable even at high expression levels.


Assuntos
Príons , Grânulos de Estresse , Príons/metabolismo , Príons/química , Grânulos de Estresse/metabolismo , Humanos , Domínios Proteicos , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/química , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Interações Hidrofóbicas e Hidrofílicas , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/química
5.
Neurol Res ; 46(10): 972-981, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39007696

RESUMO

OBJECTIVES: For nerve injuries, not amendable to tensionless epineural coaptation of the nerve, autografts are the preferred treatment. Although absorbable sutures are not recommended for nerve repair, there is no evidence that non-absorbable sutures are superior to absorbable sutures. This study aims to assess the effectiveness of non-absorbable monofilament nylon sutures, absorbable monofilament vicryl sutures, and fibrin glue when used for nerve grafting. METHODS: Lewis rats (N = 32) were subjected to a sciatic nerve transection and randomly assigned to a group: graft with Nylon, graft with Vicryl, graft with Fibrin Glue, or no graft. Motor function, sensory function, and thermal pain were assessed during a 12-week recovery period, and immunohistochemistry was used to assess macrophage response. RESULTS: At 12 weeks, the Vicryl and Nylon groups had significantly larger ankle angles at to lift off, which is a measure of motor function, compared to injured controls (p < 0.05). Grafted rats displayed no difference in thermal response but hypersensitivity to mechanical stimuli compared to the uninjured hindlimb. The Nylon, Vicryl, and Fibrin Glue groups all had significantly less atrophy of the gastrocnemius muscle compared to injured controls (p < 0.0001). In the Fibrin Glue group, 3/9 grafts did not incorporate. The Nylon group had significantly less (p = 0.0004) axon growth surrounding the suture holes compared to the Vicryl group. There were no differences in the axon counts, motor neurons, or sensory neurons between all grafted rats. CONCLUSIONS: These results demonstrate that vicryl sutures work just as well as nylon for nerve recovery after injury and grafting.


Assuntos
Adesivo Tecidual de Fibrina , Nylons , Poliglactina 910 , Ratos Endogâmicos Lew , Animais , Adesivo Tecidual de Fibrina/farmacologia , Ratos , Nervo Isquiático/lesões , Regeneração Nervosa/fisiologia , Regeneração Nervosa/efeitos dos fármacos , Modelos Animais de Doenças , Suturas , Adesivos Teciduais/farmacologia , Recuperação de Função Fisiológica/fisiologia , Masculino , Feminino
6.
Proc Natl Acad Sci U S A ; 106(9): 3519-24, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19204282

RESUMO

The "master clock" in the suprachiasmatic nucleus (SCN) of the hypothalamus controls most behavioral, physiological, and molecular circadian rhythms in mammals. However, there are other, still unidentified, circadian oscillators that are able to carry out some SCN functions. Here we show that one of these, the methamphetamine-sensitive circadian oscillator (MASCO), which generates behavioral rhythms in the absence of the SCN, is based on an entirely different molecular mechanism. We tested mice lacking, or with mutations of, genes that form the canonical circadian machinery. In all cases, animals that were arrhythmic as a consequence of genetic defect expressed circadian locomotor rhythms when treated with methamphetamine. These results strongly support the hypothesis that the mechanism generating MASCO does not involve the molecular feedback loops that underlie canonical circadian rhythmicity. The properties of MASCO may provide insight into the evolution of circadian mechanisms. Importantly, MASCO may play a role in addiction to psychostimulants.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Metanfetamina/farmacologia , Animais , Proteínas CLOCK , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Especificidade por Substrato , Transativadores/deficiência , Transativadores/genética , Transativadores/metabolismo
7.
Front Cell Neurosci ; 11: 157, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28634442

RESUMO

The axon initial segment (AIS) is the site of action potential (AP) initiation, thus a crucial regulator of neuronal activity. In excitatory pyramidal neurons, the high density of voltage-gated sodium channels (NaV1.6) at the distal AIS regulates AP initiation. A surrogate AIS marker, ankyrin-G (ankG) is a structural protein regulating neuronal functional via clustering voltage-gated ion channels. In neuronal circuits, changes in presynaptic input can alter postsynaptic output via AIS structural-functional plasticity. Recently, we showed experimental mild traumatic brain injury (mTBI) evokes neocortical circuit disruption via diffuse axonal injury (DAI) of excitatory and inhibitory neuronal systems. A key finding was that mTBI-induced neocortical electrophysiological changes involved non-DAI/ intact excitatory pyramidal neurons consistent with AIS-specific alterations. In the current study we employed Thy1-yellow fluorescent protein (YFP)-H mice to test if mTBI induces AIS structural and/or functional plasticity within intact pyramidal neurons 2 days after mTBI. We used confocal microscopy to assess intact YFP+ pyramidal neurons in layer 5 of primary somatosensory barrel field (S1BF), whose axons were continuous from the soma of origin to the subcortical white matter (SCWM). YFP+ axonal traces were superimposed on ankG and NaV1.6 immunofluorescent profiles to determine AIS position and length. We found that while mTBI had no effect on ankG start position, the length significantly decreased from the distal end, consistent with the site of AP initiation at the AIS. However, NaV1.6 structure did not change after mTBI, suggesting uncoupling from ankG. Parallel quantitative analysis of presynaptic inhibitory terminals along the postsynaptic perisomatic domain of these same intact YFP+ excitatory pyramidal neurons revealed a significant decrease in GABAergic bouton density. Also within this non-DAI population, patch-clamp recordings of intact YFP+ pyramidal neurons showed AP acceleration decreased 2 days post-mTBI, consistent with AIS functional plasticity. Simulations of realistic pyramidal neuron computational models using experimentally determined AIS lengths showed a subtle decrease is NaV1.6 density is sufficient to attenuate AP acceleration. Collectively, these findings highlight the complexity of mTBI-induced neocortical circuit disruption, involving changes in extrinsic/presynaptic inhibitory perisomatic input interfaced with intrinsic/postsynaptic intact excitatory neuron AIS output.

8.
Neural Regen Res ; 11(6): 861-4, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27482197

RESUMO

Studies on a variety of highly regenerative tissues, including the central nervous system (CNS) in non-mammalian vertebrates, have consistently demonstrated that tissue damage induces the formation of an ionic current at the site of injury. These injury currents generate electric fields (EF) that are 100-fold increased in intensity over that measured for uninjured tissue. In vitro and in vivo experiments have convincingly demonstrated that these electric fields (by their orientation, intensity and duration) can drive the migration, proliferation and differentiation of a host of cell types. These cellular behaviors are all necessary to facilitate regeneration as blocking these EFs at the site of injury inhibits tissue repair while enhancing their intensity promotes repair. Consequently, injury-induced currents, and the EFs they produce, represent a potent and crucial signal to drive tissue regeneration and repair. In this review, we will discuss how injury currents are generated, how cells detect these currents and what cellular responses they can induce. Additionally, we will describe the growing evidence suggesting that EFs play a key role in regulating the cellular response to injury and may be a therapeutic target for inducing regeneration in the mammalian CNS.

9.
PLoS One ; 10(11): e0142740, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26562295

RESUMO

Injury to the vertebrate central nervous system (CNS) induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs) at the injury site, which are 50-100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair.


Assuntos
Astrócitos/fisiologia , Sistema Nervoso Central/lesões , Sistema Nervoso Central/fisiopatologia , Regeneração Nervosa , Animais , Astrócitos/metabolismo , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Córtex Cerebral/citologia , Estimulação Elétrica/métodos , Eletricidade , Proteína Glial Fibrilar Ácida/análise , Imuno-Histoquímica , Mamíferos , Microscopia Confocal , Microscopia de Fluorescência , Nestina/análise , Ratos , Imagem com Lapso de Tempo/métodos , Vimentina/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa