Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Genomics ; 114(4): 110433, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35863676

RESUMO

Cultivated in tropical and subtropical regions, Oryza sativa L. ssp. indica is largely affected by cold-stress, especially at the seedling stage. The present model of the stress-responsive regulatory network in plants entails the role of genetic and epigenetic factors in stress-responsive gene expression. Despite extensive transcriptomic studies, the regulation of various epigenetic factors in plants cold-stress response is less explored. The present study addresses the effect of genome-wide changes of H3K27 modifications on gene expression in IR64 rice, during cold-stress. Our results suggest a positive correlation between the changes in H3K27 modifications and stress-responsive gene activation in indica rice. Cold-induced enrichment of H3K27 acetylation promotes nucleosomal rearrangement, thereby facilitating the accessibility of the transcriptional machinery at the stress-responsive loci for transcription activation. Although H3K27ac exhibits uniform distribution throughout the loci of enriched genes; occupancy of H3K27me3 is biased to intergenic regions. Integration of the ChIP-seq data with transcriptome indicated that upregulation of stress-responsive TFs, photosynthesis-TCA-related, water-deficit genes, redox and JA signalling components, was associated with differential changes of H3K27ac and H3K27me3 levels. Furthermore, cold-induced upregulation of histone acetyltransferases and downregulation of DNA methyltransferases was noted through the antagonistic switch of H3K27ac and H3K27me3. Moreover, motif analysis of H3K27ac and H3K27me3 enriched regions are associated with putative stress responsive transcription factors binding sites, GAGA element and histone H3K27demethylase. Collectively our analysis suggests that differential expression of various chromatin and DNA modifiers coupled with increased H3K27ac and depleted H3K27me3 increases DNA accessibility, thereby promoting transcription of the cold-responsive genes in indica rice.


Assuntos
Histonas , Oryza , Acetilação , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Oryza/genética , Oryza/metabolismo
2.
Funct Integr Genomics ; 22(5): 989-1002, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35788822

RESUMO

Advancement of the gene expression study provides comprehensive information on pivotal genes at different cotton fiber development stages. For the betterment of cotton fiber yield and their quality, genetic improvement is a major target point for the cotton community. Therefore, various studies were carried out to understand the transcriptional machinery of fiber leading to the detailed integrative as well as innovative study. Through data mining and statistical approaches, we identified and validated the transcriptional biomarkers for staged specific differentiation of fiber. With the unique mapping read matrix of ~ 200 cotton transcriptome data and sequential statistical analysis, we identified several important genes that have a deciding and specific role in fiber cell commitment, initiation and elongation, or secondary cell wall synthesis stage. Based on the importance score and validation analysis, IQ domain 26, Aquaporin, Gibberellin regulated protein, methionine gamma lyase, alpha/beta hydrolases, and HAD-like superfamily have shown the specific and determining role for fiber developmental stages. These genes are represented as transcriptional biomarkers that provide a base for molecular characterization for cotton fiber development which will ultimately determine the high yield.


Assuntos
Fibra de Algodão , Liases , Biomarcadores , Mineração de Dados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Giberelinas , Gossypium/genética , Hidrolases , Metionina
3.
Genomics ; 111(5): 1066-1077, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31533899

RESUMO

Acute prediction of SNPs (Single Nucleotide Polymorphisms) from high throughput sequencing data is a challenging problem, having potential to explore possible variation within plants species. For the extraction of profitable information from bulk of data, machine learning (ML) could lead to development of accurate model based on the learning of prior information. We performed state of art, in-depth learning on six different plant species. Comparative evaluation of five different algorithms showed that Random Forest substantially outperformed in selection of potential SNPs, with markedly improved prediction accuracy via 10-fold cross validation technique and integrated in system known as PLANET-SNP. We present the accurate method to extract the potential SNPs with user specific customizable parameters. It will facilitate the identification of efficient and functional SNPs in most easy and intuitive way. PLANET-SNP pipeline is very flexible in terms of data input and output formats. PLANET-SNP Pipeline is available at http://www.ncgd.nbri.res.in/PLANET-SNP-Pipeline.aspx.


Assuntos
Magnoliopsida/genética , Polimorfismo de Nucleotídeo Único , Software , Estudo de Associação Genômica Ampla/métodos , Aprendizado de Máquina , Magnoliopsida/classificação , Ploidias
4.
Genomics ; 106(6): 367-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26456591

RESUMO

A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing the pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen - a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for a species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars - Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Genoma Microbiano/genética , Anotação de Sequência Molecular/métodos , Fases de Leitura Aberta/genética , Proteínas de Bactérias/genética , Transferência Genética Horizontal/genética , Genoma Bacteriano/genética , Filogenia , Reprodutibilidade dos Testes , Salmonella enterica/classificação , Salmonella enterica/genética , Especificidade da Espécie
5.
BMC Bioinformatics ; 16: 120, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25888493

RESUMO

BACKGROUND: Sterol glycosyltransferases (SGTs) are ubiquitous but one of the most diverse group of enzymes of glycosyltransferases family. Members of this family modulate physical and chemical properties of secondary plant products important for various physiological processes. The role of SGTs has been demonstrated in the biosynthesis of pharmaceutically important molecules of medicinal plants like Withania somnifera. RESULTS: Analysis suggested conserved behaviour and high similarity in active sites of WsSGTs with other plant GTs. Substrate specificity of WsSGTs were analysed through docking performance of WsSGTs with different substrates (sterols and withanolides). Best docking results of WsSGTL1 in the form of stable enzyme-substrate complex having lowest binding energies were obtained with brassicasterol, transandrosteron and WsSGTL4 with solasodine, stigmasterol and 24-methylene cholesterol. CONCLUSION: This study reveals topological characters and conserved nature of two SGTs from W. somnifera (WsSGTs) i.e. WsSGTL1 and WsSGTL4. However, besides being ubiquitous in nature and with broad substrate specificity, difference between WsSGTL1 and WsSGTL4 is briefly described by difference in stability (binding energy) of enzyme-substrate complexes through comparative docking.


Assuntos
Glicosiltransferases/metabolismo , Simulação de Acoplamento Molecular , Esteróis/metabolismo , Withania/metabolismo , Vitanolídeos/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Glicosiltransferases/química , Glicosiltransferases/classificação , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Withania/crescimento & desenvolvimento
6.
Funct Integr Genomics ; 14(1): 161-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24275941

RESUMO

Mitogen-activated protein kinases (MAPKs) are important components of the tripartite mitogen-activated protein kinase signaling cascade and play an important role in plant growth and development. Although members of the MAPK gene family have been identified in model plants, little information is available regarding this gene family in fruit crops. In this study, we carried out a computational analysis using the Musa Genome database to identify members of the MAPK gene family in banana, an economically important crop and the most popular fruit worldwide. Our analysis identified 25 members of the MAP kinase (MAPK or MPK) gene family. Phylogenetic analyses of MPKs in Arabidopsis, Oryza, and Populus have classified these MPKs into four subgroups. The presence of conserved domains in the deduced amino acid sequences, phylogeny, and genomic organization strongly support their identity as members of the MPK gene family. Expression analysis during ethylene-induced banana fruit ripening suggests the involvement of several MPKs in the ethylene signal transduction pathway that are necessary for banana fruit ripening. Analysis of the cis-regulatory elements in the promoter regions and the involvement of the identified MPKs in various cellular processes, as analyzed using Pathway Studio, suggest a role for the banana MPK gene family in diverse functions related to growth, development, and the stress response. This report is the first concerning the identification of members of a gene family and the elucidation of their role in various processes using the Musa Genome database.


Assuntos
Frutas/enzimologia , Proteínas Quinases Ativadas por Mitógeno/genética , Musa/enzimologia , Sequência de Aminoácidos , Mapeamento Cromossômico , Etilenos/metabolismo , Etilenos/farmacologia , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Redes e Vias Metabólicas/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Família Multigênica , Musa/efeitos dos fármacos , Musa/microbiologia , Musa/fisiologia , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética
7.
BMC Plant Biol ; 14: 316, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25442405

RESUMO

BACKGROUND: Banana is one of the most important crop plants grown in the tropics and sub-tropics. It is a climacteric fruit and undergoes ethylene dependent ripening. Once ripening is initiated, it proceeds at a fast rate making postharvest life short, which can result in heavy economic losses. During the fruit ripening process a number of physiological and biochemical changes take place and thousands of genes from various metabolic pathways are recruited to produce a ripe and edible fruit. To better understand the underlying mechanism of ripening, we undertook a study to evaluate global changes in the transcriptome of the fruit during the ripening process. RESULTS: We sequenced the transcriptomes of the unripe and ripe stages of banana (Musa accuminata; Dwarf Cavendish) fruit. The transcriptomes were sequenced using a 454 GSFLX-Titanium platform that resulted in more than 7,00,000 high quality (HQ) reads. The assembly of the reads resulted in 19,410 contigs and 92,823 singletons. A large number of the differentially expressed genes identified were linked to ripening dependent processes including ethylene biosynthesis, perception and signalling, cell wall degradation and production of aromatic volatiles. In the banana fruit transcriptomes, we found transcripts included in 120 pathways described in the KEGG database for rice. The members of the expansin and xyloglucan transglycosylase/hydrolase (XTH) gene families were highly up-regulated during ripening, which suggests that they might play important roles in the softening of the fruit. Several genes involved in the synthesis of aromatic volatiles and members of transcription factor families previously reported to be involved in ripening were also identified. CONCLUSIONS: A large number of differentially regulated genes were identified during banana fruit ripening. Many of these are associated with cell wall degradation and synthesis of aromatic volatiles. A large number of differentially expressed genes did not align with any of the databases and might be novel genes in banana. These genes can be good candidates for future studies to establish their role in banana fruit ripening. The datasets developed in this study will help in developing strategies to manipulate banana fruit ripening and reduce post harvest losses.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Musa/genética , Musa/metabolismo , Proteínas de Plantas/genética , Transcriptoma , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Redes e Vias Metabólicas , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
BMC Genomics ; 14: 241, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23577705

RESUMO

BACKGROUND: Cotton (Gossypium hirsutum L.) is a major fiber crop that is grown worldwide; it faces extensive damage from sap-sucking insects, including aphids and whiteflies. Genome-wide transcriptome analysis was performed to understand the molecular details of interaction between Gossypium hirsutum L. and sap-sucking pests, namely Aphis gossypii (Aphid) and Bemisia tabacci (Whiteflies). Roche's GS-Titanium was used to sequence transcriptomes of cotton infested with aphids and whiteflies for 2 h and 24 h. RESULTS: A total of 100935 contigs were produced with an average length of 529 bp after an assembly in all five selected conditions. The Blastn of the non-redundant (nr) cotton EST database resulted in the identification of 580 novel contigs in the cotton plant. It should be noted that in spite of minimal physical damage caused by the sap-sucking insects, they can change the gene expression of plants in 2 h of infestation; further change in gene expression due to whiteflies is quicker than due to aphids. The impact of the whitefly 24 h after infestation was more or less similar to that of the aphid 2 h after infestation. Aphids and whiteflies affect many genes that are regulated by various phytohormones and in response to microbial infection, indicating the involvement of complex crosstalk between these pathways. The KOBAS analysis of differentially regulated transcripts in response to aphids and whiteflies indicated that both the insects induce the metabolism of amino acids biosynthesis specially in case of whiteflies infestation at later phase. Further we also observed that expression of transcript related to photosynthesis specially carbon fixation were significantly influenced by infestation of Aphids and Whiteflies. CONCLUSIONS: A comparison of different transcriptomes leads to the identification of differentially and temporally regulated transcripts in response to infestation by aphids and whiteflies. Most of these differentially expressed contigs were related to genes involved in biotic, abiotic stresses and enzymatic activities related to hydrolases, transferases, and kinases. The expression of some marker genes such as the overexpressors of cationic peroxidase 3, lipoxygenase I, TGA2, and non-specific lipase, which are involved in phytohormonal-mediated plant resistance development, was suppressed after infestation by aphids and whiteflies, indicating that insects suppressed plant resistance in order to facilitate their infestation. We also concluded that cotton shares several pathways such as phagosomes, RNA transport, and amino acid metabolism with Arabidopsis in response to the infestation by aphids and whiteflies.


Assuntos
Afídeos , Gossypium/genética , Hemípteros , Transcriptoma , Animais , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , RNA de Plantas/genética
9.
Plant Biotechnol J ; 11(8): 953-63, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23782852

RESUMO

The sequence information has been proved to be an essential genomic resource in case of crop plants for their genetic improvement and better utilization by humans. To dissect the Gossypium hirsutum genome for large-scale development of genomic resources, we adopted hypomethylated restriction-based genomic enrichment strategy to sequence six diverse genotypes. Approximately 5.2-Gb data (more than 18.36 million reads) was generated which, after assembly, represents nearly 1.27-Gb genomic sequences. We predicted a total of 93,363 gene models (21,399 full length) and identified 35,923 gene models which were validated against already sequenced plant genomes. A total of 1,093 transcription factor-encoding genes, 3,135 promoter sequences and 78 miRNA (including 17 newly identified in Gossypium) were predicted. We identified significant no. of molecular markers including 47,093 novel simple sequence repeats and 66,364 novel single nucleotide polymorphisms. In addition, we developed NBRI-Comprehensive Cotton Genomics database, a web resource to provide access of cotton-related genomic resources developed at NBRI. This study contributes considerable amount of genomic resources and suggests a potential role of genic-enriched sequencing in genomic resource development for orphan crop plants.


Assuntos
Bases de Dados Genéticas , Biblioteca Gênica , Gossypium/genética , DNA de Plantas/química , Marcadores Genéticos , Genótipo , Repetições de Microssatélites , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
10.
Nucleic Acids Res ; 39(Database issue): D933-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21037256

RESUMO

Indians, representing about one-sixth of the world population, consist of several thousands of endogamous groups with strong potential for excess of recessive diseases. However, no database is available on Indian population with comprehensive information on the diseases common in the country. To address this issue, we present Indian Genetic Disease Database (IGDD) release 1.0 (http://www.igdd.iicb.res.in)--an integrated and curated repository of growing number of mutation data on common genetic diseases afflicting the Indian populations. Currently the database covers 52 diseases with information on 5760 individuals carrying the mutant alleles of causal genes. Information on locus heterogeneity, type of mutation, clinical and biochemical data, geographical location and common mutations are furnished based on published literature. The database is currently designed to work best with Internet Explorer 8 (optimal resolution 1440 × 900) and it can be searched based on disease of interest, causal gene, type of mutation and geographical location of the patients or carriers. Provisions have been made for deposition of new data and logistics for regular updation of the database. The IGDD web portal, planned to be made freely available, contains user-friendly interfaces and is expected to be highly useful to the geneticists, clinicians, biologists and patient support groups of various genetic diseases.


Assuntos
Bases de Dados de Ácidos Nucleicos , Doenças Genéticas Inatas/genética , Mutação , População Branca/genética , Doenças Genéticas Inatas/etnologia , Humanos , Índia
11.
Theor Appl Genet ; 124(3): 565-76, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22038488

RESUMO

Four microsatellite-enriched genomic libraries for CA(15), GA(15), AAG(8) and ATG(8) repeats and transcriptome sequences of five cDNA libraries of Gossypium herbaceum were explored to develop simple sequence repeat (SSR) markers. A total of 428 unique clones from repeat enriched genomic libraries were mined for 584 genomic SSRs (gSSRs). In addition, 99,780 unigenes from transcriptome sequencing were explored for 8,900 SSR containing sequences with 12,471 expressed SSRs. The present study adds 1,970 expressed SSRs and 263 gSSRs to the public domain for the use of genetic studies of cotton. When 150 gSSRs and 50 expressed SSRs were tested on a panel of four species of cotton, 68 gSSRs and 12 expressed SSRs revealed polymorphism. These 200 SSRs were further deployed on 15 genotypes of levant cotton for the genetic diversity assessment. This is the first report on the successful use of repeat enriched genomic library and expressed sequence database for microsatellite markers development in G. herbaceum.


Assuntos
Gossypium/genética , Repetições de Microssatélites/genética , Polimorfismo Genético , Sequência de Bases , Análise por Conglomerados , Biologia Computacional , Mineração de Dados , Biblioteca Gênica , Genômica/métodos , Dados de Sequência Molecular , Fenótipo , Análise de Sequência de DNA
12.
Front Plant Sci ; 13: 811655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283936

RESUMO

Cotton fiber development is still an intriguing question to understand fiber commitment and development. At different fiber developmental stages, many genes change their expression pattern and have a pivotal role in fiber quality and yield. Recently, numerous studies have been conducted for transcriptional regulation of fiber, and raw data were deposited to the public repository for comprehensive integrative analysis. Here, we remapped > 380 cotton RNAseq data with uniform mapping strategies that span ∼400 fold coverage to the genome. We identified stage-specific features related to fiber cell commitment, initiation, elongation, and Secondary Cell Wall (SCW) synthesis and their putative cis-regulatory elements for the specific regulation in fiber development. We also mined Exclusively Expressed Transcripts (EETs) that were positively selected during cotton fiber evolution and domestication. Furthermore, the expression of EETs was validated in 100 cotton genotypes through the nCounter assay and correlated with different fiber-related traits. Thus, our data mining study reveals several important features related to cotton fiber development and improvement, which were consolidated in the "CottonExpress-omics" database.

13.
BMC Genomics ; 11: 103, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20146791

RESUMO

BACKGROUND: The marine cyanobacterium Prochlorococcus marinus, having multiple ecotypes of distinct genotypic/phenotypic traits and being the first documented example of genome shrinkage in free-living organisms, offers an ideal system for studying niche-driven molecular micro-diversity in closely related microbes. The present study, through an extensive comparative analysis of various genomic/proteomic features of 6 high light (HL) and 6 low light (LL) adapted strains, makes an attempt to identify molecular determinants associated with their vertical niche partitioning. RESULTS: Pronounced strand-specific asymmetry in synonymous codon usage is observed exclusively in LL strains. Distinct dinucleotide abundance profiles are exhibited by 2 LL strains with larger genomes and G+C-content approximately 50% (group LLa), 4 LL strains having reduced genomes and G+C-content approximately 35-37% (group LLb), and 6 HL strains. Taking into account the emergence of LLa, LLb and HL strains (based on 16S rRNA phylogeny), a gradual increase in average aromaticity, pI values and beta- & coil-forming propensities and a decrease in mean hydrophobicity, instability indices and helix-forming propensities of core proteins are observed. Greater variations in orthologous gene repertoire are found between LLa and LLb strains, while higher number of positively selected genes exist between LL and HL strains. CONCLUSION: Strains of different Prochlorococcus groups are characterized by distinct compositional, physicochemical and structural traits that are not mere remnants of a continuous genetic drift, but are potential outcomes of a grand scheme of niche-oriented stepwise diversification, that might have driven them chronologically towards greater stability/fidelity and invoked upon them a special ability to inhabit diverse oceanic environments.


Assuntos
Ecossistema , Evolução Molecular , Genoma Bacteriano , Prochlorococcus/genética , Proteoma/genética , Composição de Bases , Análise por Conglomerados , Hibridização Genômica Comparativa , DNA Bacteriano/genética , DNA Intergênico/genética , Variação Genética , Análise Multivariada , Análise de Sequência de DNA
14.
BMC Genomics ; 11: 648, 2010 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-21092124

RESUMO

BACKGROUND: Widespread use of chromium (Cr) contaminated fields due to careless and inappropriate management practices of effluent discharge, mostly from industries related to metallurgy, electroplating, production of paints and pigments, tanning, and wood preservation elevates its concentration in surface soil and eventually into rice plants and grains. In spite of many previous studies having been conducted on the effects of chromium stress, the precise molecular mechanisms related to both the effects of chromium phytotoxicity, the defense reactions of plants against chromium exposure as well as translocation and accumulation in rice remain poorly understood. RESULTS: Detailed analysis of genome-wide transcriptome profiling in rice root is reported here, following Cr-plant interaction. Such studies are important for the identification of genes responsible for tolerance, accumulation and defense response in plants with respect to Cr stress. Rice root metabolome analysis was also carried out to relate differential transcriptome data to biological processes affected by Cr (VI) stress in rice. To check whether the Cr-specific motifs were indeed significantly over represented in the promoter regions of Cr-responsive genes, occurrence of these motifs in whole genome sequence was carried out. In the background of whole genome, the lift value for these 14 and 13 motifs was significantly high in the test dataset. Though no functional role has been assigned to any of the motifs, but all of these are present as promoter motifs in the Database of orthologus promoters. CONCLUSION: These findings clearly suggest that a complex network of regulatory pathways modulates Cr-response of rice. The integrated matrix of both transcriptome and metabolome data after suitable normalization and initial calculations provided us a visual picture of the correlations between components. Predominance of different motifs in the subsets of genes suggests the involvement of motif-specific transcription modulating proteins in Cr stress response of rice.


Assuntos
Cromo/toxicidade , Perfilação da Expressão Gênica , Metabolômica , Oryza/genética , Oryza/metabolismo , Raízes de Plantas/genética , Estresse Fisiológico/efeitos dos fármacos , Biomassa , Análise por Conglomerados , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Malondialdeído/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Anotação de Sequência Molecular , Oryza/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/efeitos dos fármacos , Prolina/metabolismo , Regiões Promotoras Genéticas/genética , Plântula/efeitos dos fármacos , Plântula/fisiologia , Estresse Fisiológico/genética , Compostos de Sulfidrila/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
15.
Biochim Biophys Acta Gene Regul Mech ; 1863(12): 194644, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33068782

RESUMO

AtHMGB15 belongs to a group of ARID-HMG proteins which are plant specific. The presence of two known DNA binding domains: AT rich interacting domain (ARID) and High Mobility Group (HMG)-box, in one polypeptide, makes this protein intriguing. Although proteins containing individual HMG and ARID domains have been characterized, not much is known about the role of ARID-HMG proteins. Promoter analysis of AtHMGB15 showed the presence of various stress responsive cis regulatory elements along with MADS-box containing transcription factors. Our result shows that the expression of AtHMGB15 increased significantly upon application of cold stress. Using ChIP-chip approach, we have identified 6128 and 4689 significantly enriched loci having AtHMGB15 occupancy under control and cold stressed condition respectively. GO analysis shows genes belonging to abiotic stress response, cold response and root development were AtHMGB15 targets during cold stress. DNA binding and footprinting assays further identified A(A/C)--ATA---(A/T)(A/T) as AtHMGB15 binding motif. The enriched probe distribution in both control and cold condition shows a bias of AtHMGB15 binding towards the transcribed (gene body) region. Further, the expression of cold stress responsive genes decreased in athmgb15 knockout plants compared to wild-type. Taken together, binding enrichment of AtHMGB15 to the promoter and upstream to stress loci suggest an unexplored role of the protein in stress induced transcription regulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Resposta ao Choque Frio/genética , Proteínas de Ligação a DNA/metabolismo , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Mutagênese , Plântula/metabolismo , Estresse Fisiológico
16.
DNA Res ; 14(4): 141-54, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17895298

RESUMO

Genome-wide analysis of sequence divergence patterns in 12,024 human-mouse orthologous pairs reveals, for the first time, that the trends in nucleotide and amino acid substitutions in orthologs of high and low GC composition are highly asymmetric and polarized to opposite directions. The entire dataset has been divided into three groups on the basis of the GC content at third codon sites of human genes: high, medium, and low. High-GC orthologs exhibit significant bias in favor of the replacements, Thr --> Ala, Ser --> Ala, Val --> Ala, Lys --> Arg, Asn --> Ser, Ile --> Val etc., from mouse to human, whereas in low-GC orthologs, the reverse trends prevail. In general, in the high-GC group, residues encoded by A/U-rich codons of mouse proteins tend to be replaced by the residues encoded by relatively G/C-rich codons in their human orthologs, whereas the opposite trend is observed among the low-GC orthologous pairs. The medium-GC group shares some trends with high-GC group and some with low-GC group. The only significant trend common in all groups of orthologs, irrespective of their GC bias, is (Asp)(Mouse) --> (Glu)(Human) replacement. At the nucleotide level, high-GC orthologs have undergone a large excess of (A/T)(Mouse) --> (G/C)(Human) substitutions over (G/C)(Mouse) --> (A/T)(Human) at each codon position, whereas for low-GC orthologs, the reverse is true.


Assuntos
Substituição de Aminoácidos , Genômica , Nucleotídeos/análise , Homologia de Sequência de Aminoácidos , Animais , Composição de Bases , Códon/genética , Humanos , Camundongos , Análise Multivariada , Purinas , Pirimidinas
17.
BMC Genomics ; 7: 186, 2006 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16869956

RESUMO

BACKGROUND: Nanoarchaeum equitans, the only known hyperthermophilic archaeon exhibiting parasitic life style, has raised some new questions about the evolution of the Archaea and provided a model of choice to study the genome landmarks correlated with thermo-parasitic adaptation. In this context, we have analyzed the genome and proteome composition of N. equitans and compared the same with those of other mesophiles, hyperthermophiles and obligatory host-associated organisms. RESULTS: Analysis of nucleotide, codon and amino acid usage patterns in N. equitans indicates the presence of distinct selective constraints, probably due to its adaptation to a thermo-parasitic life-style. Among the conspicuous characteristics featuring its hyperthermophilic adaptation are overrepresentation of purine bases in protein coding sequences, higher GC-content in tRNA/rRNA sequences, distinct synonymous codon usage, enhanced usage of aromatic and positively charged residues, and decreased frequencies of polar uncharged residues, as compared to those in mesophilic organisms. Positively charged amino acid residues are relatively abundant in the encoded gene-products of N. equitans and other hyperthermophiles, which is reflected in their isoelectric point distribution. Pairwise comparison of 105 orthologous protein sequences shows a strong bias towards replacement of uncharged polar residues of mesophilic proteins by Lys/Arg, Tyr and some hydrophobic residues in their Nanoarchaeal orthologs. The traits potentially attributable to the symbiotic/parasitic life-style of the organism include the presence of apparently weak translational selection in synonymous codon usage and a marked heterogeneity in membrane-associated proteins, which may be important for N. equitans to interact with the host and hence, may help the organism to adapt to the strictly host-associated life style. Despite being strictly host-dependent, N. equitans follows cost minimization hypothesis. CONCLUSION: The present study reveals that the genome and proteome composition of N. equitans are marked with the signatures of dual adaptation--one to high temperature and the other to obligatory parasitism. While the analysis of nucleotide/amino acid preferences in N. equitans offers an insight into the molecular strategies taken by the archaeon for thermo-parasitic adaptation, the comparative study of the compositional characteristics of mesophiles, hyperthermophiles and obligatory host-associated organisms demonstrates the generality of such strategies in the microbial world.


Assuntos
Genoma Arqueal/genética , Nanoarchaeota/genética , Proteoma/genética , Aminoácidos/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Composição de Bases/genética , Códon/genética , Simulação por Computador , Modelos Moleculares , Nanoarchaeota/metabolismo , Fator Tu de Elongação de Peptídeos/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteoma/química , RNA Arqueal/genética , Homologia Estrutural de Proteína
18.
Sci Rep ; 6: 38715, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929054

RESUMO

Single Nucleotide Polymorphisms (SNPs), an important source of genetic variations, are often used in crop improvement programme. The present study represented comprehensive In silico analysis of nucleotide polymorphisms in wild (Solanum habrochaites) and cultivated (Solanum lycopersicum) species of tomato to explore the consequence of substitutions both at sequence and structure level. A total of 8978 SNPs having Ts/Tv (Transition/Transversion) ratio 1.75 were identified from the Expressed Sequence Tag (EST) and Next Generation Sequence (NGS) data of both the species available in public databases. Out of these, 1838 SNPs were non-synonymous and distributed in 988 protein coding genes. Among these, 23 genes containing 96 SNPs were involved in traits markedly different between the two species. Furthermore, there were 28 deleterious SNPs distributed in 27 genes and a few of these genes were involved in plant pathogen interaction and plant hormone pathways. Molecular docking and simulations of several selected proteins showed the effect of SNPs in terms of compactness, conformation and interaction ability. Observed SNPs exhibited various types of motif binding effects due to nucleotide changes. SNPs that provide the evidence of differential motif binding and interaction behaviour could be effectively used for the crop improvement program.


Assuntos
Simulação por Computador , Genes de Plantas , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Solanum lycopersicum/genética , Especificidade da Espécie
19.
Plant Genome ; 8(2): eplantgenome2014.09.0054, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33228320

RESUMO

Accumulation of arsenic (As) in rice (Oryza sativa L.) grain is a serious concern worldwide. Long-term exposure to As affects nutritional status in rice grain and is associated with higher rates of skin, bladder, and lung cancers, and heart disease. Genotypic variations in rice for As accumulation or tolerance are prevalent and are regulated by genetic and environmental factors. To understand molecular networks involved in As accumulation, genome-wide expression analysis was performed in roots of low- and high-As accumulating rice genotypes (LARGs and HARGs). Six rice genotypes with contrasting As accumulation potential and tolerance were used in this study. Genome-wide expression analysis suggested their differential response against As stress. This study suggests up- and downregulation of a number of unique genes involved in various pathways and biological processes in response to As stress in rice genotypes. A comparison of gene expression profiles, principal component analysis, and K-means clustering suggests that an independent pathway is operating during As stress tolerance or accumulation in contrasting genotypes. It was also observed that the differential behavior of aus genotype, Nayanmoni, from other LARGs might be due to its different genetic background. Cis-motif profiling of As-induced coexpressed genes in diverse rice genotypes led to the identification of unique cis-motifs present in differentially expressed genes. This study suggests that the genetic mechanism regulating the differential As accumulation in different genotypes may not be dependent on gene expression at the transcriptional level. However, many genes identified in this study can be analyzed and used for marker-trait associations related to As accumulation in diverse genotypes around the world.

20.
G3 (Bethesda) ; 5(6): 1187-209, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25908569

RESUMO

High-throughput genotyping arrays provide a standardized resource for plant breeding communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), complex trait dissection, and studying patterns of genomic diversity among cultivars and wild accessions. We have developed the CottonSNP63K, an Illumina Infinium array containing assays for 45,104 putative intraspecific single nucleotide polymorphism (SNP) markers for use within the cultivated cotton species Gossypium hirsutum L. and 17,954 putative interspecific SNP markers for use with crosses of other cotton species with G. hirsutum. The SNPs on the array were developed from 13 different discovery sets that represent a diverse range of G. hirsutum germplasm and five other species: G. barbadense L., G. tomentosum Nuttal × Seemann, G. mustelinum Miers × Watt, G. armourianum Kearny, and G. longicalyx J.B. Hutchinson and Lee. The array was validated with 1,156 samples to generate cluster positions to facilitate automated analysis of 38,822 polymorphic markers. Two high-density genetic maps containing a total of 22,829 SNPs were generated for two F2 mapping populations, one intraspecific and one interspecific, and 3,533 SNP markers were co-occurring in both maps. The produced intraspecific genetic map is the first saturated map that associates into 26 linkage groups corresponding to the number of cotton chromosomes for a cross between two G. hirsutum lines. The linkage maps were shown to have high levels of collinearity to the JGI G. raimondii Ulbrich reference genome sequence. The CottonSNP63K array, cluster file and associated marker sequences constitute a major new resource for the global cotton research community.


Assuntos
Mapeamento Cromossômico/métodos , Gossypium/genética , Polimorfismo de Nucleotídeo Único/genética , Cromossomos de Plantas/genética , Troca Genética , Bases de Dados Genéticas , Frequência do Gene/genética , Ligação Genética , Marcadores Genéticos , Genótipo , Técnicas de Genotipagem , Poliploidia , Reprodutibilidade dos Testes , Especificidade da Espécie , Sintenia/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa