Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 56(22): 13982-13990, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29087699

RESUMO

Pu(III), Pu(IV), and a higher oxidation state of Pu, likely Pu(VI), are for the first time characterized simultaneously present in a borosilicate glass using Pu M5 edge high energy resolution X-ray absorption near edge structure (HR-XANES) technique. We illustrate that the method can be very efficiently used to determine Pu oxidation states, which control the solubility limit of Pu in a glass matrix. HR-XANES results show that the addition of excess Si3N4 is not sufficient for complete reduction of Pu to Pu(III), which has a relatively high solubility limit (9-22 wt % Pu) due to its network-modifying behavior in glasses. We provide evidence that the initially added Pu(VI) might be partly preserved during vitrification at 1200/1400 °C in Ar atmosphere. Pu(VI) could be very advantageous for vitrification of Pu-rich wastes, since it might reach solubility limits of 40 wt % comparable to U(VI).

2.
Environ Sci Technol ; 51(4): 2217-2225, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28094921

RESUMO

Uranium redox states and speciation in magnetite nanoparticles coprecipitated with U(VI) for uranium loadings varying from 1000 to 10 000 ppm are investigated by X-ray absorption spectroscopy (XAS). It is demonstrated that the U M4 high energy resolution X-ray absorption near edge structure (HR-XANES) method is capable to clearly characterize U(IV), U(V), and U(VI) existing simultaneously in the same sample. The contributions of the three different uranium redox states are quantified with the iterative transformation factor analysis (ITFA) method. U L3 XAS and transmission electron microscopy (TEM) reveal that initially sorbed U(VI) species recrystallize to nonstoichiometric UO2+x nanoparticles within 147 days when stored under anoxic conditions. These U(IV) species oxidize again when exposed to air. U M4 HR-XANES data demonstrate strong contribution of U(V) at day 10 and that U(V) remains stable over 142 days under ambient conditions as shown for magnetite nanoparticles containing 1000 ppm U. U L3 XAS indicates that this U(V) species is protected from oxidation likely incorporated into octahedral magnetite sites. XAS results are supported by density functional theory (DFT) calculations. Further characterization of the samples include powder X-ray diffraction (pXRD), scanning electron microscopy (SEM) and Fe 2p X-ray photoelectron spectroscopy (XPS).


Assuntos
Nanopartículas de Magnetita , Urânio/química , Oxirredução , Espectroscopia Fotoeletrônica , Espectroscopia por Absorção de Raios X
3.
Chem Commun (Camb) ; 54(91): 12824-12827, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30379154

RESUMO

Pu L3 HR-XANES and FEFF9 computations provide evidence for band-like 6d states in colloidal Pu contrasting to narrow 6d states in molecular Pu(iv). Pu L3 HR-XANES is valuable for bond length estimation in plutonyl, whereas Pu M5 HR-XANES is an advanced tool for analysing Pu redox states and 5f unoccupied density of states.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa