Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nat Immunol ; 24(10): 1654-1670, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37667051

RESUMO

Glioblastoma (GBM) tumors consist of multiple cell populations, including self-renewing glioblastoma stem cells (GSCs) and immunosuppressive microglia. Here we identified Kunitz-type protease inhibitor TFPI2 as a critical factor connecting these cell populations and their associated GBM hallmarks of stemness and immunosuppression. TFPI2 promotes GSC self-renewal and tumor growth via activation of the c-Jun N-terminal kinase-signal transducer and activator of transcription (STAT)3 pathway. Secreted TFPI2 interacts with its functional receptor CD51 on microglia to trigger the infiltration and immunosuppressive polarization of microglia through activation of STAT6 signaling. Inhibition of the TFPI2-CD51-STAT6 signaling axis activates T cells and synergizes with anti-PD1 therapy in GBM mouse models. In human GBM, TFPI2 correlates positively with stemness, microglia abundance, immunosuppression and poor prognosis. Our study identifies a function for TFPI2 and supports therapeutic targeting of TFPI2 as an effective strategy for GBM.


Assuntos
Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/metabolismo , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Microambiente Tumoral , Transdução de Sinais , Proteínas de Transporte/metabolismo , Imunossupressores/farmacologia , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo
2.
Neurochem Int ; 175: 105719, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452814

RESUMO

Cortical synaptic loss has emerged as an early abnormality in Alzheimer's disease (AD) with a strong relationship to cognitive performance. However, the status of synapses in frontotemporal lobar degeneration (FTLD) has received meager experimental attention. The purpose of this study was to investigate changes in cortical synaptic proteins in FTLD with tar DNA binding protein-43 (TDP-43) proteinopathy. A second aim was to study phagocytosis of synaptic proteins by microglia as a surrogate for synaptic pruning. Western blot analysis in frozen tissue from the middle frontal gyrus revealed decreased levels of the presynaptic protein synaptophysin, but slightly increased levels of the postsynaptic density protein 95 (PSD95) in FTLD-TDP. Levels of the dendritic spine protein spinophilin displayed the largest decrease. Double immunofluorescent staining visualized aggregate or punctate synaptic protein immunoreactivity in microglia. Overall, the proportion of microglia containing synaptic proteins was larger in FTLD-TDP when compared with normal controls. The increase in PSD95 levels may represent reactive upregulation of this protein, as suggested in AD. While greater numbers of microglia containing synaptic proteins is consistent with loss of synapses in FTLD-TDP, it may also be an indication of abnormal synaptic pruning by microglia.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Proteinopatias TDP-43 , Humanos , Microglia/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Proteinopatias TDP-43/genética , Lobo Frontal/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa