RESUMO
Multishot scan magnetic resonance imaging (MRI) acquisition is inherently sensitive to motion, and motion artifact reduction is essential for improving the image quality in MRI. This work proposes and validates a new end-to-end motion-correction method for the multishot sequence that incorporates a conditional generative adversarial network with minimum entropy (cGANME) of MR images. The cGANME contains an encoder-decoder generator to obtain motion-corrected images and a PatchGAN discriminator to classify the image as either real (motion-free) or fake (motion-corrected). The entropy of the images is set as one loss item in the cGAN's loss as the entropy increases monotonically with the motion artifacts. An ablation experiment of the different weights of entropy loss was performed to evaluate the function of entropy loss. The preclinical dataset was acquired with a fast spin echo pulse sequence on a 7.0-T scanner. After the simulation, we had 10,080/2880/1440 slices for training, testing, and validating, respectively. The clinical dataset was downloaded from the Human Connection Project website, and 11,300/3500/2000 slices were used for training, testing, and validating after simulation, respectively. Extensive experiments for different motion patterns, motion levels, and protocol parameters demonstrate that cGANME outperforms traditional and some state-of-the-art, deep learning-based methods. In addition, we tested cGANME on in vivo awake rats and mitigated the motion artifacts, indicating that the model has some generalizability.
Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Animais , Ratos , Processamento de Imagem Assistida por Computador/métodos , Estudos Retrospectivos , Entropia , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , ArtefatosRESUMO
This study aims to propose and evaluate DR-CycleGAN, a disentangled unsupervised network by introducing a novel content-consistency loss, for removing arterial-phase motion artifacts in gadoxetic acid-enhanced liver MRI examinations. From June 2020 to July 2021, gadoxetic acid-enhanced liver MRI data were retrospectively collected in this center to establish training and testing datasets. Motion artifacts were semi-quantitatively assessed using a five-point Likert scale (1 = no artifact, 2 = mild, 3 = moderate, 4 = severe, and 5 = non-diagnostic) and quantitatively evaluated using the structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR). The datasets comprised a training dataset (308 examinations, including 58 examinations with artifact grade = 1 and 250 examinations with artifact grade ≥ 2), a paired test dataset (320 examinations, including 160 examinations with artifact grade = 1 and paired 160 examinations with simulated motion artifacts of grade ≥ 2), and an unpaired test dataset (474 examinations with artifact grade ranging from 1 to 5). The performance of DR-CycleGAN was evaluated and compared with a state-of-the-art network, Cycle-MedGAN V2.0. As a result, in the paired test dataset, DR-CycleGAN demonstrated significantly higher SSIM and PSNR values and lower motion artifact grades compared to Cycle-MedGAN V2.0 (0.89 ± 0.07 vs. 0.84 ± 0.09, 32.88 ± 2.11 vs. 30.81 ± 2.64, and 2.7 ± 0.7 vs. 3.0 ± 0.9, respectively; p < 0.001 each). In the unpaired test dataset, DR-CycleGAN also exhibited a superior motion artifact correction performance, resulting in a significant decrease in motion artifact grades from 2.9 ± 1.3 to 2.0 ± 0.6 compared to Cycle-MedGAN V2.0 (to 2.4 ± 0.9, p < 0.001). In conclusion, DR-CycleGAN effectively reduces motion artifacts in the arterial phase images of gadoxetic acid-enhanced liver MRI examinations, offering the potential to enhance image quality.