Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 569(7756): 409-412, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043746

RESUMO

Denisovans are members of a hominin group who are currently only known directly from fragmentary fossils, the genomes of which have been studied from a single site, Denisova Cave1-3 in Siberia. They are also known indirectly from their genetic legacy through gene flow into several low-altitude East Asian populations4,5 and high-altitude modern Tibetans6. The lack of morphologically informative Denisovan fossils hinders our ability to connect geographically and temporally dispersed fossil hominins from Asia and to understand in a coherent manner their relation to recent Asian populations. This includes understanding the genetic adaptation of humans to the high-altitude Tibetan Plateau7,8, which was inherited from the Denisovans. Here we report a Denisovan mandible, identified by ancient protein analysis9,10, found on the Tibetan Plateau in Baishiya Karst Cave, Xiahe, Gansu, China. We determine the mandible to be at least 160 thousand years old through U-series dating of an adhering carbonate matrix. The Xiahe specimen provides direct evidence of the Denisovans outside the Altai Mountains and its analysis unique insights into Denisovan mandibular and dental morphology. Our results indicate that archaic hominins occupied the Tibetan Plateau in the Middle Pleistocene epoch and successfully adapted to high-altitude hypoxic environments long before the regional arrival of modern Homo sapiens.


Assuntos
Fósseis , Hominidae/anatomia & histologia , Mandíbula/anatomia & histologia , Altitude , Animais , Cavernas , Hominidae/classificação , Migração Humana , Humanos , Filogenia , Tibet , Dente/anatomia & histologia
2.
Nature ; 558(7711): E6, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899442

RESUMO

In the originally published version of this Letter, the x axis in Fig. 3a should have been: 'PC1: 26%' rather than 'PC1: 46%', and the y axis should have been: 'PC2: 16%' rather than 'PC2: 29%'. We also noticed an error in the numbering of the fossils from Qafzeh: Qafzeh 27 should be removed, and Qafzeh 26 is actually Qafzeh 25, following Tillier (2014)1 and Schuh et al. (2017)2 and personal communication with B. Vandermeersch and M. D. Garralda. The correct enumeration of Qafzeh samples in the 'Mandibular metric data' section of the Methods is therefore: 'Qafzeh (9, 25)' rather than 'Qafzeh (9, 26, 27)'. Owing to the removal of Qafzeh 27, the convex hull of early modern humans changes slightly in Extended Data Fig. 1c. The sample sizes in Extended Data Fig. 1c should have read: Middle Pleistocene archaic Homo n = 19 (instead of 11), Neanderthals n = 40 (instead of 41), early modern humans n = 12 (instead of 7), and recent modern humans n = 46 (instead of 48). In Extended Data Table 2, the mean and standard deviation of corpus height and breadth at mental foramen for early modern humans should have been: x̅ = 33.15, σ = 3.26 for height (rather than x̅ = 34.23, σ = 4.57); and x̅ = 16.25, σ = 1.28 for breadth (rather than x̅ = 16.04, σ = 1.75). Accordingly, n = 12 (rather than n = 13) for both breadth and height. These errors have been corrected in the Letter online (the original Extended Data Fig. 1 is shown in Supplementary Information to this Amendment). These changes do not alter any inferences drawn from the data.

3.
J Hum Evol ; 176: 103323, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738521

RESUMO

There are scant human remains associated with Early Upper Paleolithic (EUP) industries. The rock shelter at Ksâr 'Akil, Lebanon, is one of the few circum-Mediterranean archaeological sites with EUP artifacts and associated fossils attributed to Homo sapiens. The skull and post-crania of the juvenile 'Egbert' (Ksâr 'Akil 1) from the EUP levels (conservatively dated from ∼43 to 39 ka) have been lost; the partial edentulous maxilla of 'Ethelruda' (Ksâr 'Akil 2) from the Initial Upper Paleolithic levels has only recently been rediscovered, leaving an isolated deciduous molar (Ksâr 'Akil 3) from Levantine Aurignacian strata. A fourth individual was found adjacent to Ksâr 'Akil 1 in 1938, but never described, and is apparently also lost. New archival research at the Peabody Museum of Archaeology and Ethnography uncovered photographs and radiographs of Ksâr 'Akil 1 and photographs of the fourth individual (which we designate Ksâr 'Akil 4). These new photographs and radiographs allow a comparative dental analysis of both individuals. Radiographs confirm an age of 7-8 years for Ksâr 'Akil 1 and photographs of Ksâr 'Akil 4 suggest a similar, if not slightly younger, age. Compared to other fossil H. sapiens, the teeth of Ksâr 'Akil 1 and Ksâr 'Akil 4 are remarkably modern. The upper deciduous third premolars lack a hypocone and metacone; the upper deciduous fourth premolars of Ksâr 'Akil 1 have reduced hypocones and both individuals have upper fourth premolars and first molars with square (as opposed to skewed) occlusal outlines, resulting from a hypocone that is smaller than, or equal in size to, the metacone. The lower first permanent molars of Ksâr 'Akil 1, and possibly Ksâr 'Akil 4, are four-cusped, which is a rare trait among Paleolithic and recent H. sapiens.


Assuntos
Hominidae , Animais , Humanos , Criança , Dentição , Líbano , Arqueologia , Dente Molar , Fósseis
4.
J Hum Evol ; 180: 103372, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37229947

RESUMO

More than 150 hominin teeth, dated to ∼330-241 thousand years ago, were recovered during the 2013-2015 excavations of the Dinaledi Chamber of the Rising Star cave system, South Africa. These fossils comprise the first large single-site sample of hominin teeth from the Middle Pleistocene of Africa. Though scattered remains attributable to Homo sapiens, or their possible lineal ancestors, are known from older and younger sites across the continent, the distinctive morphological feature set of the Dinaledi teeth supports the recognition of a novel hominin species, Homo naledi. This material provides evidence of African Homo lineage diversity that lasts until at least the Middle Pleistocene. Here, a catalog, anatomical descriptions, and details of preservation and taphonomic alteration are provided for the Dinaledi teeth. Where possible, provisional associations among teeth are also proposed. To facilitate future research, we also provide access to a catalog of surface files of the Rising Star jaws and teeth.


Assuntos
Hominidae , Dente , Humanos , Animais , África do Sul , Hominidae/anatomia & histologia , Fósseis , Cavernas , Evolução Biológica
5.
Biol Lett ; 19(1): 20220438, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651149

RESUMO

Overcoming the non-specificity of histological accentuated growth lines in hard tissues is an ongoing challenge. Identifying season at death and reproductive events has profound implications for evolutionary, ecological and conservation studies. Dental cementum is a mineralized tissue with yearly periodicity that continues deposition from tooth formation until death, maintaining a record spanning almost the entire life of an individual. Recent work has successfully employed elemental analysis of calcified incremental tissues to detect changes in extrinsic conditions such as diet and climate and to identify two important life-history milestones: weaning and sexual maturity. Here, we employ field-emission scanning electron microscopy and energy-dispersive X-ray analysis to measure the relative concentrations of calcium, phosphorous, oxygen, magnesium and sodium in the cementum of 34 teeth from seven male and female rhesus macaques with known medical and life-history information. We find that changes in relative magnesium concentrations correspond with reproductive events in females and breastfeeding in infants. Additionally, we observe seasonal calcium patterns in 77.3% of the samples.


Assuntos
Cálcio , Dente , Animais , Masculino , Feminino , Magnésio , Macaca mulatta , Microscopia Eletrônica de Varredura
6.
Nature ; 546(7657): 289-292, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28593953

RESUMO

Fossil evidence points to an African origin of Homo sapiens from a group called either H. heidelbergensis or H. rhodesiensis. However, the exact place and time of emergence of H. sapiens remain obscure because the fossil record is scarce and the chronological age of many key specimens remains uncertain. In particular, it is unclear whether the present day 'modern' morphology rapidly emerged approximately 200 thousand years ago (ka) among earlier representatives of H. sapiens or evolved gradually over the last 400 thousand years. Here we report newly discovered human fossils from Jebel Irhoud, Morocco, and interpret the affinities of the hominins from this site with other archaic and recent human groups. We identified a mosaic of features including facial, mandibular and dental morphology that aligns the Jebel Irhoud material with early or recent anatomically modern humans and more primitive neurocranial and endocranial morphology. In combination with an age of 315 ± 34 thousand years (as determined by thermoluminescence dating), this evidence makes Jebel Irhoud the oldest and richest African Middle Stone Age hominin site that documents early stages of the H. sapiens clade in which key features of modern morphology were established. Furthermore, it shows that the evolutionary processes behind the emergence of H. sapiens involved the whole African continent.


Assuntos
Fósseis , Hominidae/anatomia & histologia , Hominidae/classificação , Filogenia , África/etnologia , Animais , Cronologia como Assunto , Face/anatomia & histologia , Humanos , Mandíbula/anatomia & histologia , Marrocos , Crânio/anatomia & histologia , Dente/anatomia & histologia
7.
Proc Natl Acad Sci U S A ; 116(30): 14806-14807, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285349

RESUMO

The recently described Denisovan hemimandible from Xiahe, China [F. Chen et al., (2019) Nature 569, 409-412], possesses an unusual dental feature: a 3-rooted lower second molar. A survey of the clinical and bioarchaeological literature demonstrates that the 3-rooted lower molar is rare (less than 3.5% occurrence) in non-Asian Homo sapiens In contrast, its presence in Asian-derived populations can exceed 40% in China and the New World. It has long been thought that the prevalence of 3-rooted lower molars in Asia is a relatively late acquisition occurring well after the origin and dispersal of H. sapiens However, the presence of a 3-rooted lower second molar in this 160,000-y-old fossil hominin suggests greater antiquity for the trait. Importantly, it also provides morphological evidence of a strong link between archaic and recent Asian H. sapiens populations. This link provides compelling evidence that modern Asian lineages acquired the 3-rooted lower molar via introgression from Denisovans.


Assuntos
Evolução Molecular , Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Dente Molar/anatomia & histologia , Animais , Povo Asiático/genética , Hominidae/genética , Humanos , Mandíbula/anatomia & histologia
8.
Am J Phys Anthropol ; 174(2): 299-314, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33290582

RESUMO

OBJECTIVES: The purpose of this study is to help elucidate the taxonomic relationship between Homo naledi and other hominins. MATERIALS AND METHODS: Homo naledi deciduous maxillary and mandibular molars from the Dinaledi Chamber, South Africa were compared to those of Australopithecus africanus, Australopithecus afarensis, Paranthropus robustus, Paranthropus boisei, early Homo sp., Homo erectus, early Homo sapiens, Upper Paleolithic H. sapiens, recent southern African H. sapiens, and Neanderthals by means of morphometric analyses of crown outlines and relative cusp areas. The crown shapes were analyzed using elliptical Fourier analyses followed by principal component analyses (PCA). The absolute and relative cusp areas were obtained in ImageJ and compared using PCA and cluster analyses. RESULTS: PCA suggests that the crown shapes and relative cusp areas of mandibular molars are more diagnostic than the maxillary molars. The H. naledi deciduous mandibular first and second molar (dm1 and dm2 ) do not have a strong affinity to any taxon in the comparative sample in all analyses. While the H. naledi dm2 plots as an outlier in the relative cusp analysis, the H. naledi specimen fall closest to Australopithecus due to their relatively large metaconid, a primitive trait for the genus Homo. Although useful for differentiating Neanderthals from recent southern African H. sapiens and UP H. sapiens, the PCA of the relative cusp areas suggests that the deciduous maxillary second molars (dm2 ) do not differentiate other groups. The three H. naledi dm2 cuspal areas are variable and fall within the ranges of other Homo, as well as Australopithecus, and Paranthropus suggesting weak diagnostic utility. DISCUSSION: This research provides another perspective on the morphology of, and variation within, H. naledi. The H. naledi deciduous molars do not consistently align with any genus or species in the comparative sample in either the crown shape or relative cusp analyses. This line of inquiry is consistent with other cranial and postcranial studies suggesting that H. naledi is unique.


Assuntos
Hominidae/anatomia & histologia , Hominidae/classificação , Dente Molar/anatomia & histologia , Animais , Antropologia Física , Fósseis , Humanos , Homem de Neandertal/anatomia & histologia , Homem de Neandertal/classificação , Odontometria , Análise de Componente Principal , África do Sul
9.
Am J Primatol ; 83(3): e23235, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33522634

RESUMO

Many open questions in evolutionary studies relate to species' physiological adaptations, including the evolution of their life history and reproductive strategies. There are few empirical methods capable of detecting and timing physiologically impactful events such as weaning, parturition and illnesses from hard tissue remains of either extant or extinct species. Cementum is an incremental tissue with post eruption annual periodicity, which covers the tooth root and functions as a recording structure of an animal's physiology. Here we test the hypothesis that it is possible to detect and time physiologically impactful events through the analysis of dental cementum microstructure. Our sample comprises 41 permanent and deciduous teeth from male and female rhesus macaques (Macaca mulatta) with known medical, lifestyle and life history information. We develop a semi-automated method of cementum histological analysis for the purpose of event detection and timing, aimed at significantly reducing the amount of intra- and interobserver errors typically associated with histological analyses. The results of our work show that we were able to detect known events including weaning, parturition, illness and physical trauma with high accuracy (false negative rate = 3.2%; n = 1), and to time them within an average absolute difference of 0.43 years (R2 = .98; p < .05). Nonetheless, we could not distinguish between the several types of stressful events underlying the changes in cementum microstructure. While this study is the first to identify a variety of life history events in macaque dental cementum, laying foundations for future work in conservation and evolutionary studies of both primates and toothed mammals at large, there are some limitations. Other types of analyses (possibly chemical ones) are necessary to tease apart the causes of the stressors.


Assuntos
Cemento Dentário , Dente , Animais , Feminino , Macaca mulatta , Masculino , Parto , Gravidez , Desmame
10.
Am J Phys Anthropol ; 173(3): 500-513, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32767577

RESUMO

OBJECTIVES: Enamel thickness features prominently in hominoid evolutionary studies. To date, however, studies of enamel thickness in humans, great apes, and their fossil relatives have focused on the permanent molar row. Comparatively little research effort has been devoted to tissue proportions within deciduous teeth. Here we attempt to fill this gap by documenting enamel thickness variation in the deciduous dentition of extant large-bodied hominoids. MATERIALS AND METHODS: We used microcomputed tomography to image dental tissues in 80 maxillary and 78 mandibular deciduous premolars of Homo sapiens, Pan troglodytes, Gorilla, and Pongo. Two-dimensional virtual sections were created from the image volumes to quantify average (AET) and relative (RET) enamel thickness, as well as its distribution across the crown. RESULTS: Our results reveal no significant differences in enamel thickness among the great apes. Unlike the pattern present in permanent molars, Pongo does not stand out as having relatively thicker-enameled deciduous premolars than P. troglodytes and Gorilla. Humans, on the other hand, possess significantly thicker deciduous premolar enamel in comparison to great apes. Following expectations from masticatory biomechanics, we also find that the "functional" side (protocone, protoconid) of deciduous premolars generally possesses thicker enamel than the "nonfunctional" side. DISCUSSION: Our study lends empirical support to anecdotal observations that patterns of AET and RET observed for permanent molars of large-bodied apes do not apply to deciduous premolars. By documenting enamel thickness variation in hominoid deciduous teeth, this study provides the comparative context to interpret rates and patterns of wear of deciduous teeth and their utility in life history reconstructions.


Assuntos
Esmalte Dentário/anatomia & histologia , Fósseis , Hominidae/anatomia & histologia , Dente Decíduo/anatomia & histologia , Animais , Dente Pré-Molar/anatomia & histologia , Dente Pré-Molar/diagnóstico por imagem , Esmalte Dentário/diagnóstico por imagem , Feminino , Humanos , Masculino , Dente Decíduo/diagnóstico por imagem , Microtomografia por Raio-X
11.
J Hum Evol ; 136: 102655, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31546194

RESUMO

In 2013, 2014 new hominin remains were uncovered in the Dinaledi chamber of the Rising Star cave system in South Africa. In 2015 Berger and colleagues identified these remains as belonging to a new species Homo naledi (Berger et al., 2015). Subsequent comparative studies of the skull, postcrania and permanent dentition have supported this taxonomic affiliation (Harcourt-Smith et al., 2015; Kivell et al., 2015; Irish et al., 2018). The deciduous teeth can offer unique insights into hominin evolution. Due to their early onset and rapid development their morphology is thought to be under stronger genetic control and less influenced by environment than are the permanent teeth. In this study we compared the H. naledi deciduous teeth from the 2013-2014 excavations to samples representing much of the hominin clade including Australopithecus afarensis, Australopithecus africanus, Paranthropus boisei, Paranthropus robustus, early Homo, Homo antecessor, Homo erectus s.l., Homo floresiensis, Middle Pleistocene Homo, Homo neanderthalensis, early Homo sapiens and recent H. sapiens from Sub-Saharan Africa. By making such a broad morphological comparison, we aimed to contextualize the Dinaledi hominins and to further assess the validity of their taxonomic assignment. Our analysis of the deciduous teeth revealed a unique combination of features that mirror (but also expand) that found in the permanent teeth. This mosaic includes an asymmetrical lower canine with a distal tubercle, an upper first molar with a large hypocone and epicrista associated with a mesial cuspule, a molarized lower first molar resembling Paranthropus, and upper and lower second molars that resemble later Homo in their lack of accessory cusps. The unique combination of deciduous dental characters supports previous studies assigning H. naledi to a new species, although its phylogenetic position vis-à-vis other Homo species remains ambiguous.


Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Dente Decíduo/anatomia & histologia , Animais , Hominidae/crescimento & desenvolvimento , Humanos , Homem de Neandertal/anatomia & histologia , Homem de Neandertal/crescimento & desenvolvimento , Dente Decíduo/crescimento & desenvolvimento
13.
Am J Phys Anthropol ; 170(4): 595-612, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31651996

RESUMO

OBJECTIVES: The taxonomic status of isolated hominoid teeth from the Asian Pleistocene has long been controversial due to difficulties distinguishing between pongine and hominin molars given their high degree of morphometrical variation and overlap. Here, we combine nonmetric and geometric morphometric data to document a dental pattern that appears to be taxonomically diagnostic among Pongo. We focus on the protoconule, a cuspule of well-documented evolutionary history, as well as on shape differences of the mesial fovea of the upper molars. MATERIALS AND METHODS: We examined 469 upper molars of eight hominid genera (Australopithecus, Paranthropus, Homo, Meganthropus, Sivapithecus, Pan, Gorilla, and Pongo), including representatives of Homo erectus and extinct and recent Pongo. Analyses were conducted at the enamel-dentine junction to overcome the limitations introduced by dental wear. RESULTS: We found that a moderate or large protoconule is present in ~80% of Pleistocene and extant Pongo. Conversely, a moderate to pronounced protoconule in hominins, Meganthropus, and African great apes occurs in low frequencies (~0-20%). Canonical variate analyses for the mesial fovea show that Pleistocene and extant Pongo cluster together and are clearly differentiated from all other groups, except for Sivapithecus. DISCUSSION: This study suggests that the protoconule and the shape of the mesial fovea in upper molars are useful features for the taxonomic identification of isolated hominid teeth. By identifying these new features, our results can contribute to the better understanding of hominoid evolutionary history and biogeography during the Asian Pleistocene. However, we emphasize that the reported features should be used in combination with other diagnostic variables for the most accurate taxonomic assessments.


Assuntos
Hominidae/anatomia & histologia , Dente Molar/anatomia & histologia , Animais , Hominidae/classificação , Mandíbula , Pongo/anatomia & histologia
14.
J Hum Evol ; 122: 108-123, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29887210

RESUMO

A new species of Homo, Homo naledi, was described in 2015 based on the hominin skeletal remains from the Dinaledi Chamber of the Rising Star cave system, South Africa. Subsequent craniodental comparative analyses, both phenetic and cladistic, served to support its taxonomic distinctiveness. Here we provide a new quantitative analysis, where up to 78 nonmetric crown and root traits of the permanent dentition were compared among samples of H. naledi (including remains from the recently discovered Lesedi Chamber) and eight other species from Africa: Australopithecus afarensis, Australopithecus africanus, Paranthropus boisei, Paranthropus robustus, Homo habilis, Homo erectus, Middle Pleistocene Homo sp., and Pleistocene and Holocene Homo sapiens. By using the mean measure of divergence distance statistic, phenetic affinities were calculated among samples to evaluate interspecific relatedness. The objective was to compare the results with those previously obtained, to assess further the taxonomic validity of the Rising Star hominin species. In accordance with earlier findings, H. naledi appears most similar dentally to the other African Homo samples. However, the former species is characterized by its retention and full expression of features relating to the main cusps, as well as the root numbers, with a near absence of accessory traits-including many that, based on various cladistic studies, are plesiomorphic in both extinct and extant African hominins. As such, the present findings provide additional support for the taxonomic validity of H. naledi as a distinct species of Homo.


Assuntos
Evolução Biológica , Restos Mortais/anatomia & histologia , Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Dente/anatomia & histologia , Animais , Hominidae/classificação , Fenótipo , África do Sul
16.
J Anat ; 231(4): 585-599, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28718921

RESUMO

Evolutionary studies of mammalian teeth have generally concentrated on the adaptive and functional significance of dental features, whereas the role of development on phenotypic generation and as a source of variation has received comparatively little attention. The present study combines an evolutionary biological framework with state-of-the-art imaging techniques to examine the developmental basis of variation of accessory cusps. Scholars have long used the position and relatedness of cusps to other crown structures as a criterion for differentiating between developmentally homologous and homoplastic features, which can be evaluated with greater accuracy at the enamel-dentine junction (EDJ). Following this approach, we collected digital models of the EDJ and outer enamel surface of more than 1000 hominoid teeth to examine whether cusp 5 of the upper molars (UM C5) and cusps 6 and 7 of the lower molars (LM C6 and LM C7) were associated each with a common developmental origin across species. Results revealed that each of these cusps can develop in a variety of ways, in association with different dental tissues (i.e. oral epithelium, enamel matrix) and dental structures (i.e. from different cusps, crests and cingula). Both within and between species variability in cusp origin was highest in UM C5, followed by LM C7, and finally LM C6. The lack of any species-specific patterns suggests that accessory cusps in hominoids are developmentally homoplastic and that they may not be useful for identifying phylogenetic homology. An important and unanticipated finding of this study was the identification of a new taxonomically informative feature at the EDJ of the upper molars, namely the post-paracone tubercle (PPT). We found that the PPT was nearly ubiquitous in H. neanderthalensis and the small sample of Middle Pleistocene African and European humans (MPAE) examined, differing significantly from the low frequencies observed in all other hominoids, including Pleistocene and recent H. sapiens. We emphasize the utility of the EDJ for human evolutionary studies and demonstrate how features that look similar at the external surface may be the product of different developmental patterns. This study also highlights the importance of incorporating both developmental and morphological data into evolutionary studies in order to gain a better understanding of the evolutionary significance of dental and skeletal features.


Assuntos
Evolução Biológica , Hominidae/anatomia & histologia , Dente Molar/anatomia & histologia , Animais , Humanos
17.
Am J Phys Anthropol ; 162(1): 3-18, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27662194

RESUMO

OBJECTIVES: The Patterning Cascade Model (PCM) provides an evolutionary developmental framework for exploring diversity in tooth crown form. According to the model, proximity of secondary enamel knots and tooth germ size track underlying developmental processes that dictate ultimate crown morphology (i.e., cusp number, accessory cusp presence/size). Previous research has shown the model to successfully predict variation in Carabelli's trait expression between antimeric and metameric pairs of human permanent molars. In this study, we quantify Carabelli's trait expression for metameres of the mixed dentition (dm2 and M1) and assess the PCM's potential for explaining differences in expression between the two elements. MATERIALS AND METHODS: Crown dimensions, intercusp distances, and Carabelli's trait expression were collected from 49 subadults possessing observable dm2/M1 pairs. Wilcoxon signed-rank tests and paired t-tests were performed to assess whether metameres differ significantly in morphometric variables. We explored the relationships between relative intercusp distances (RICDs) and Carabelli's trait expression using proportional odds logistic regression. RESULTS: Intra-individual dm2/M1 pairs differed significantly in Carabelli's trait expression (p = 0.01), with dm2 exhibiting higher grades of expression more commonly despite its smaller crown size. Paired molars differed in only one statistically significant RICD: metacone-hypocone (p < 0.01). Most RICDs shared the predicted negative relationship with Carabelli's trait expression, but this relationship was only statistically significant for three RICDs in the dm2 (mean, protocone-paracone, metacone-hypocone). CONCLUSIONS: We found mixed support for the PCM's ability to explain differences in Carabelli's trait expression between metameres of the mixed molar row. Results suggest that protocone-paracone enamel knot spacing has the greatest influence on Carabelli's trait expression. Lack of statistical significance for many of the relationships explored may reflect limitations related to sample composition and sample size.


Assuntos
Modelos Biológicos , Coroa do Dente/anatomia & histologia , Coroa do Dente/crescimento & desenvolvimento , Dente/anatomia & histologia , Dente/crescimento & desenvolvimento , Antropologia Física , Criança , Pré-Escolar , Dentição , Humanos
18.
Am J Phys Anthropol ; 159(1): 93-105, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26331404

RESUMO

OBJECTIVES: This study investigates the effect of allometry on the shape of lower dm2 (dm2) and lower M1 (M1) crown outlines and examines whether the trajectory and magnitude of allometric scaling are shared between Neandertals and Homo sapiens. METHODS: Our sample included 164 specimens: 57 recent H. sapiens, 44 Upper Paleolithic H. sapiens, 17 early H. sapiens, and 46 Neandertals. Of these, 59 represent dm2/M1 pairs from the same individuals. Occlusal photographs were used to obtain crown shapes of dm2s and M1s. Principal components analysis (PCA) of the matrix of shape coordinates was used to explore the pattern of morphological variation across the dm2 and M1 samples. Allometry was investigated by means of the Pearson product-moment correlation coefficient. Two-block partial least squares (2B-PLS) analysis was used to explore patterns of covariation between dm2 and M1 crown outlines of matched individual pairs. RESULTS: The PCA confirmed significant differences between Neandertal and H. sapiens dm2 and M1 shapes. Allometry accounted for a small but statistically significant proportion of the total morphological variance. The magnitude of the allometric contribution to crown shape was stronger among Neandertals than among H. sapiens. However, we could not reject the null hypothesis that the two species share the same allometric trajectory. The 2B-PLS analysis of the pooled sample of paired individuals revealed a significant correlation in crown shape between dm2 and M1. While Procrustes distances differed significantly between dm2 and M1 in Neandertals, it did not among H. sapiens groups. CONCLUSIONS: Our results confirm several of the results obtained by a similar study of upper dm2/M1 (dm(2)/M(1)), but there are differences as well. Neandertal dm2/M1 shapes are less derived than those of the dm(2)/M(1). Such differences may support previous studies, which have suggested that different developmental and/or epigenetic factors affect the upper and lower dentitions.


Assuntos
Dente Molar/anatomia & histologia , Homem de Neandertal/anatomia & histologia , Coroa do Dente/anatomia & histologia , Dente Decíduo/anatomia & histologia , Animais , Antropologia Física , Fósseis , Humanos , Dente Molar/patologia , Odontometria , Coroa do Dente/patologia , Dente Decíduo/patologia
20.
J Hum Evol ; 72: 1-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24703186

RESUMO

A significant number of Middle to Late Pleistocene sites contain primarily (and sometimes only) deciduous teeth (e.g., Grotta del Cavallo, Mezmaiskaya, Blombos). Not surprisingly, there has been a recent renewed interest in deciduous dental variation, especially in the context of distinguishing Homo neanderthalensis and Homo sapiens. Most studies of the deciduous dentition of fossil hominins have focused on standard metrical variation but morphological (non-metric and morphometric) variation also promises to shed light on long standing taxonomic questions. This study examines the taxonomic significance of the crown outline of the deciduous upper second molar through principal components analysis and linear discriminant analysis. We examine whether or not the crown shape of the upper deciduous second molar separates H. neanderthalensis from H. sapiens and explore whether it can be used to correctly assign individuals to taxa. It builds on previous studies by focusing on crown rather than cervical outline and by including a large sample of geographically diverse recent human populations. Our samples include 17 H. neanderthalensis, five early H. sapiens, and 12 Upper Paleolithic H. sapiens. In addition, we include two Homo erectus specimens in order to evaluate the polarity of crown shape differences observed between H. neanderthalensis and H. sapiens. Our results show that crown outline shape discriminates H. sapiens and H. neanderthalensis quite well, but does not do well at distinguishing H. erectus from H. sapiens. We conclude that the crown outline shape observed in H. sapiens is a primitive retention and that the skewed shape observed in H. neanderthalensis is a derived condition. Finally, we explore the phylogenetic implications of the results for the H. erectus molars.


Assuntos
Dente Molar/anatomia & histologia , Homem de Neandertal/anatomia & histologia , Homem de Neandertal/classificação , Coroa do Dente/anatomia & histologia , Dente Decíduo/anatomia & histologia , Animais , Antropologia Física , Evolução Biológica , Fósseis , Humanos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa