Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biogeochemistry ; 156(1): 145-160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720281

RESUMO

Managed grasslands have the potential to store carbon (C) and partially mitigate climate change. However, it remains difficult to predict potential C storage under a given soil or management practice. To study C storage dynamics due to long-term (1952-2009) phosphorus (P) fertilizer and irrigation treatments in New Zealand grasslands, we measured radiocarbon (14C) in archived soil along with observed changes in C stocks to constrain a compartmental soil model. Productivity increases from P application and irrigation in these trials resulted in very similar C accumulation rates between 1959 and 2009. The ∆14C changes over the same time period were similar in plots that were both irrigated and fertilized, and only differed in a non-irrigated fertilized plot. Model results indicated that decomposition rates of fast cycling C (0.1 to 0.2 year-1) increased to nearly offset increases in inputs. With increasing P fertilization, decomposition rates also increased in the slow pool (0.005 to 0.008 year-1). Our findings show sustained, significant (i.e. greater than 4 per mille) increases in C stocks regardless of treatment or inputs. As the majority of fresh inputs remain in the soil for less than 10 years, these long term increases reflect dynamics of the slow pool. Additionally, frequent irrigation was associated with reduced stocks and increased decomposition of fresh plant material. Rates of C gain and decay highlight trade-offs between productivity, nutrient availability, and soil C sequestration as a climate change mitigation strategy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10533-021-00838-z.

2.
Sci Total Environ ; 651(Pt 2): 2228-2234, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326455

RESUMO

Nitrate isotopes (δ15N-NO3- and δ18O-NO3-) are a potentially powerful tool for tracking the biological removal of reactive nitrogen (N) as it is transported from land to sea. However, uncertainties about, 1) the variability of the strength of biological isotopic fractionation during anaerobic benthic NO3- reduction (the kinetic enrichment factor: εdenit), and, 2) how accurately these εdenit values are expressed in overlying aerobic surface waters (the effective enrichment factor: εeff), currently limit their use in freshwater systems. Here we used a combination of incubation experiments and numerical modelling to construct a simple framework for defining freshwater εdenit based on interactions between benthic denitrification and diffusive transport to surface waters. Under non-limited, anaerobic conditions the εdenit values produced in submerged soils (n = 3) and sediments (n = 4) with denitrification rates between 10 and 600 mg N m-2 d-1 ranged from -3‰ to -28‰. Critically, model results indicated that diffusive transport would homogenise this to an effective fractionation range of -6 ±â€¯4‰. Evidence for biological and hydrological variability of NO3- isotope fractionation means that values measured in aerobic surface water environments are most appropriately evaluated by a range of fractionation values, rather than commonly used single 'site specific' εdenit values.

3.
Isotopes Environ Health Stud ; 52(4-5): 343-52, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27007914

RESUMO

Predictive understanding of precipitation δ(2)H and δ(18)O in New Zealand faces unique challenges, including high spatial variability in precipitation amounts, alternation between subtropical and sub-Antarctic precipitation sources, and a compressed latitudinal range of 34 to 47 °S. To map the precipitation isotope ratios across New Zealand, three years of integrated monthly precipitation samples were acquired from >50 stations. Conventional mean-annual precipitation δ(2)H and δ(18)O maps were produced by regressions using geographic and annual climate variables. Incomplete data and short-term variation in climate and precipitation sources limited the utility of this approach. We overcome these difficulties by calculating precipitation-weighted monthly climate parameters using national 5-km-gridded daily climate data. This data plus geographic variables were regressed to predict δ(2)H, δ(18)O, and d-excess at all sites. The procedure yields statistically-valid predictions of the isotope composition of precipitation (long-term average root mean square error (RMSE) for δ(18)O = 0.6 ‰; δ(2)H = 5.5 ‰); and monthly RMSE δ(18)O = 1.9 ‰, δ(2)H = 16 ‰. This approach has substantial benefits for studies that require the isotope composition of precipitation during specific time intervals, and may be further improved by comparison to daily and event-based precipitation samples as well as the use of back-trajectory calculations.


Assuntos
Clima , Monitoramento Ambiental/métodos , Modelos Teóricos , Chuva/química , Neve/química , Deutério/análise , Meteorologia , Nova Zelândia , Isótopos de Oxigênio/análise , Estações do Ano
4.
Sci Rep ; 5: 8280, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25655192

RESUMO

Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

5.
Environ Pollut ; 182: 190-200, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23920316

RESUMO

In February 2011 a MW 6.3 earthquake in Christchurch, New Zealand inundated urban waterways with sediment from liquefaction and triggered sewage spills. The impacts of, and recovery from, this natural disaster on the stream biogeochemistry and biology were assessed over six months along a longitudinal impact gradient in an urban river. The impact of liquefaction was masked by earthquake triggered sewage spills (~20,000 m(3) day(-1) entering the river for one month). Within 10 days of the earthquake dissolved oxygen in the lowest reaches was <1 mg l(-1), in-stream denitrification accelerated (attenuating 40-80% of sewage nitrogen), microbial biofilm communities changed, and several benthic invertebrate taxa disappeared. Following sewage system repairs, the river recovered in a reverse cascade, and within six months there were no differences in water chemistry, nutrient cycling, or benthic communities between severely and minimally impacted reaches. This study highlights the importance of assessing environmental impact following urban natural disasters.


Assuntos
Ecossistema , Monitoramento Ambiental , Rios/química , Poluentes Químicos da Água/análise , Animais , Terremotos , Invertebrados/classificação , Nova Zelândia
6.
Water Res ; 45(14): 4141-51, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21696799

RESUMO

Denitrifying woodchip bioreactors (denitrification beds) are increasingly used to remove excess nitrate (NO3⁻) from point-sources such as wastewater effluent or subsurface drains from agricultural fields. NO3⁻ removal in these beds is assumed to be due to microbial denitrification but direct measurements of denitrification are lacking. Our objective was to test four different approaches for measuring denitrification rates in a denitrification bed that treated effluent discharged from a glasshouse. We compared these denitrification rates with the rate of NO3⁻ removal along the length of the bed. The NO3⁻ removal rate was 8.73 ± 1.45 g m⁻³ d⁻¹. In vitro acetylene inhibition assays resulted in highly variable denitrification rates (DR(AI)) along the length of the bed and generally 5 times greater than the measured (NO3⁻-N removal rate. An in situ push-pull test, where enriched ¹5N-NO3⁻ was injected into 2 locations along the bed, resulted in rates of 23.2 ± 1.43 g N m⁻³ d⁻¹ and 8.06 ± 1.64 g N m⁻³ d⁻¹. The denitrification rate calculated from the increase in dissolved N2 and N2O concentrations (DR(N2) along the length of the denitrification bed was 6.7 ± 1.61 g N m⁻³ d⁻¹. Lastly, denitrification rates calculated from changes in natural abundance measurements of δ¹5N-N2 and δ¹5N-NO3⁻ along the length of the bed yielded a denitrification rate (DR(NA)) of 6.39 ± 2.07 g m⁻³ d⁻¹. Based on our experience, DR(N2) measurements were the easiest and most efficient approach for determining the denitrification rate and N2O production of a denitrification bed. However, the other approaches were useful for testing other hypotheses such as factors limiting denitrification or may be applied to determine denitrification rates in environmental systems different to our study site. DR(N2) does require very careful sampling to avoid atmospheric N2 contamination but could be used to rapidly determine denitrification rates in a variety of aquatic systems with high N2 production and even water flows. These measurements demonstrated that the majority of NO3⁻ removal was due to heterotrophic denitrification.


Assuntos
Reatores Biológicos , Nitratos/análise , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Desnitrificação , Nova Zelândia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa