Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(14): 5468-73, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23513222

RESUMO

The cross-ß amyloid form of peptides and proteins represents an archetypal and widely accessible structure consisting of ordered arrays of ß-sheet filaments. These complex aggregates have remarkable chemical and physical properties, and the conversion of normally soluble functional forms of proteins into amyloid structures is linked to many debilitating human diseases, including several common forms of age-related dementia. Despite their importance, however, cross-ß amyloid fibrils have proved to be recalcitrant to detailed structural analysis. By combining structural constraints from a series of experimental techniques spanning five orders of magnitude in length scale--including magic angle spinning nuclear magnetic resonance spectroscopy, X-ray fiber diffraction, cryoelectron microscopy, scanning transmission electron microscopy, and atomic force microscopy--we report the atomic-resolution (0.5 Å) structures of three amyloid polymorphs formed by an 11-residue peptide. These structures reveal the details of the packing interactions by which the constituent ß-strands are assembled hierarchically into protofilaments, filaments, and mature fibrils.


Assuntos
Amiloide/química , Amiloide/ultraestrutura , Modelos Moleculares , Estrutura Secundária de Proteína , Microscopia Crioeletrônica , Espectroscopia de Ressonância Magnética/métodos , Microscopia Eletrônica de Transmissão e Varredura , Difração de Raios X
2.
J Am Chem Soc ; 136(1): 164-8, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24313335

RESUMO

Nuclear magnetic resonance (NMR) can reveal the chemical constituents of a complex mixture without resorting to chemical modification, separation, or other perturbation. Recently, we and others have developed magnetic resonance agents that report on the presence of dilute analytes by proportionately altering the response of a more abundant or easily detected species, a form of amplification. One example of such a sensing medium is xenon gas, which is chemically inert and can be optically hyperpolarized, a process that enhances its NMR signal by up to 5 orders of magnitude. Here, we use a combinatorial synthetic approach to produce xenon magnetic resonance sensors that respond to small molecule analytes. The sensor responds to the ligand by producing a small chemical shift change in the Xe NMR spectrum. We demonstrate this technique for the dye, Rhodamine 6G, for which we have an independent optical assay to verify binding. We thus demonstrate that specific binding of a small molecule can produce a xenon chemical shift change, suggesting a general approach to the production of xenon sensors targeted to small molecule analytes for in vitro assays or molecular imaging in vivo.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas de Química Analítica/instrumentação , Peptídeos/química , Xenônio/química , Colorimetria , Biblioteca Gênica , Limite de Detecção , Imageamento por Ressonância Magnética , Peptídeos/genética , Coloração e Rotulagem , Especificidade por Substrato
3.
Angew Chem Int Ed Engl ; 53(37): 9766-70, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25081416

RESUMO

Nuclear magnetic resonance (NMR) relaxometry and diffusometry are important tools for the characterization of heterogeneous materials and porous media, with applications including medical imaging, food characterization and oil-well logging. These methods can be extremely effective in applications where high-resolution NMR is either unnecessary, impractical, or both, as is the case in the emerging field of portable chemical characterization. Here, we present a proof-of-concept experiment demonstrating the use of high-sensitivity optical magnetometers as detectors for ultra-low-field NMR relaxation and diffusion measurements.

4.
J Am Chem Soc ; 135(51): 19237-47, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24304221

RESUMO

Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure, and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide ß-strands into ß-sheets but also the ß-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The ß-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the residues buried within the interior of the fibrils.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular
5.
Proc Natl Acad Sci U S A ; 107(19): 8519-24, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421504

RESUMO

Functional MRI has become an important tool of researchers and clinicians who seek to understand patterns of neuronal activation that accompany sensory and cognitive processes. However, the interpretation of fMRI images rests on assumptions about the relationship between neuronal firing and hemodynamic response that are not firmly grounded in rigorous theory or experimental evidence. Further, the blood-oxygen-level-dependent effect, which correlates an MRI observable to neuronal firing, evolves over a period that is 2 orders of magnitude longer than the underlying processes that are thought to cause it. Here, we instead demonstrate experiments to directly image oscillating currents by MRI. The approach rests on a resonant interaction between an applied rf field and an oscillating magnetic field in the sample and, as such, permits quantitative, frequency-selective measurements of current density without spatial or temporal cancellation. We apply this method in a current loop phantom, mapping its magnetic field and achieving a detection sensitivity near the threshold required for the detection of neuronal currents. Because the contrast mechanism is under spectroscopic control, we are able to demonstrate how ramped and phase-modulated spin-lock radiation can enhance the sensitivity and robustness of the experiment. We further demonstrate the combination of these methods with remote detection, a technique in which the encoding and detection of an MRI experiment are separated by sample flow or translation. We illustrate that remotely detected MRI permits the measurement of currents in small volumes of flowing water with high sensitivity and spatial resolution.


Assuntos
Eletricidade , Imageamento por Ressonância Magnética , Animais , Condutividade Elétrica , Humanos , Espectroscopia de Ressonância Magnética , Neurônios/fisiologia , Imagens de Fantasmas , Marcadores de Spin
6.
Proc Natl Acad Sci U S A ; 106(23): 9244-9, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19474298

RESUMO

Observation and structural studies of reaction intermediates of proteins are challenging because of the mixtures of states usually present at low concentrations. Here, we use a 250 GHz gyrotron (cyclotron resonance maser) and cryogenic temperatures to perform high-frequency dynamic nuclear polarization (DNP) NMR experiments that enhance sensitivity in magic-angle spinning NMR spectra of cryo-trapped photocycle intermediates of bacteriorhodopsin (bR) by a factor of approximately 90. Multidimensional spectroscopy of U-(13)C,(15)N-labeled samples resolved coexisting states and allowed chemical shift assignments in the retinylidene chromophore for several intermediates not observed previously. The correlation spectra reveal unexpected heterogeneity in dark-adapted bR, distortion in the K state, and, most importantly, 4 discrete L substates. Thermal relaxation of the mixture of L's showed that 3 of these substates revert to bR(568) and that only the 1 substate with both the strongest counterion and a fully relaxed 13-cis bond is functional. These definitive observations of functional and shunt states in the bR photocycle provide a preview of the mechanistic insights that will be accessible in membrane proteins via sensitivity-enhanced DNP NMR. These observations would have not been possible absent the signal enhancement available from DNP.


Assuntos
Bacteriorodopsinas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Bacteriorodopsinas/metabolismo , Isótopos de Carbono/metabolismo , Luz , Isótopos de Nitrogênio/metabolismo , Retinaldeído/metabolismo , Temperatura
7.
Anal Chem ; 83(15): 6004-10, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21651234

RESUMO

An application of remotely detected magnetic resonance imaging is demonstrated for the characterization of flow and the detection of fast, small molecule separations within hypercrosslinked polymer monoliths. The hyper-cross-linked monoliths exhibited excellent ruggedness, with a transit time relative standard deviation of less than 2.1%, even after more than 300 column volumes were pumped through at high pressure and flow. Magnetic resonance imaging enabled high-resolution intensity and velocity-encoded images of mobile phase flow through the monolith. The images confirm that the presence of a polymer monolith within the capillary disrupts the parabolic laminar flow profile that is characteristic of mobile phase flow within an open tube. As a result, the mobile phase and analytes are equally distributed in the radial direction throughout the monolith. Also, in-line monitoring of chromatographic separations of small molecules at high flow rates is shown. The coupling of monolithic chromatography columns and NMR provides both real-time peak detection and chemical shift information for small aromatic molecules. These experiments demonstrate the unique power of magnetic resonance, both direct and remote, in studying chromatographic processes.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Compostos Orgânicos/química , Polímeros/química , Cromatografia Líquida de Alta Pressão/métodos
8.
J Phys Chem A ; 115(16): 4023-30, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21401028

RESUMO

Many NMR and MRI methods probe fluid dynamics within macro- and mesoporous materials, but with few exceptions, they report on its macroscopically averaged properties. MRI methods are generally unable to localize microscopic features of flow within macroscopic samples because the fraction of the enclosing detector volume occupied by these features is so small. We have recently overcome this problem using remotely detected MRI velocimetry, a technique in which spatial, chemical, and velocity information about elements of the flow is encoded with a conventional NMR coil and detected sensitively at the sample outflow by a volume-matched microdetector. Here, we apply this method to microporous model systems, recording MRI images that correlate local velocity, spin relaxation, and time-of-flight in microscopic resolution and three spatial dimensions. Our results illustrate that remotely detected MRI is an effective approach to elucidate flow dynamics in porous materials including bead pack microreactors and chromatography columns.


Assuntos
Imageamento por Ressonância Magnética , Cromatografia , Porosidade , Propriedades de Superfície
9.
Proc Natl Acad Sci U S A ; 105(3): 883-8, 2008 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18195364

RESUMO

By exploiting dynamic nuclear polarization (DNP) at 90 K, we observe the first NMR spectrum of the K intermediate in the ion-motive photocycle of bacteriorhodopsin. The intermediate is identified by its reversion to the resting state of the protein in red light and by its thermal decay to the L intermediate. The (15)N chemical shift of the Schiff base in K indicates that contact has been lost with its counterion. Under these circumstances, the visible absorption of K is expected to be more red-shifted than is observed and this suggests torsion around single bonds of the retinylidene chromophore. This is in contrast to the development of a strong counterion interaction and double bond torsion in L. Thus, photon energy is stored in electrostatic modes in K and is transferred to torsional modes in L. This transfer is facilitated by the reduction in bond alternation that occurs with the initial loss of the counterion interaction, and is driven by the attraction of the Schiff base to a new counterion. Nevertheless, the process appears to be difficult, as judged by the multiple L substates, with weaker counterion interactions, that are trapped at lower temperatures. The double-bond torsion ultimately developed in the first half of the photocycle is probably responsible for enforcing vectoriality in the pump by causing a decisive switch in the connectivity of the active site once the Schiff base and its counterion are neutralized by proton transfer.


Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Halobacterium salinarum/química , Halobacterium salinarum/metabolismo , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fotoquímica , Fatores de Tempo
10.
J Am Chem Soc ; 132(17): 5936-7, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20392049

RESUMO

In MRI, anatomical structures are most often differentiated by variations in their bulk magnetic properties. Alternatively, exogenous contrast agents can be attached to chemical moieties that confer affinity to molecular targets; the distribution of such contrast agents can be imaged by magnetic resonance. Xenon-based molecular sensors are molecular imaging agents that rely on the reversible exchange of hyperpolarized xenon between the bulk and a specifically targeted host-guest complex. We have incorporated approximately 125 xenon sensor molecules in the interior of an MS2 viral capsid, conferring multivalency and other properties of the viral capsid to the sensor molecule. The resulting signal amplification facilitates the detection of sensor at 0.7 pM, the lowest to date for any molecular imaging agent used in magnetic resonance. This amplification promises the detection of chemical targets at much lower concentrations than would be possible without the capsid scaffold.


Assuntos
Capsídeo/química , Meios de Contraste/química , Levivirus/química , Imageamento por Ressonância Magnética , Isótopos de Xenônio/química
11.
J Am Chem Soc ; 132(17): 5993-6000, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20387894

RESUMO

Since experimental measurements of NMR chemical shifts provide time and ensemble averaged values, we investigated how these effects should be included when chemical shifts are computed using density functional theory (DFT). We measured the chemical shifts of the N-formyl-L-methionyl-L-leucyl-L-phenylalanine-OMe (MLF) peptide in the solid state, and then used the X-ray structure to calculate the (13)C chemical shifts using the gauge including projector augmented wave (GIPAW) method, which accounts for the periodic nature of the crystal structure, obtaining an overall accuracy of 4.2 ppm. In order to understand the origin of the difference between experimental and calculated chemical shifts, we carried out first-principles molecular dynamics simulations to characterize the molecular motion of the MLF peptide on the picosecond time scale. We found that (13)C chemical shifts experience very rapid fluctuations of more than 20 ppm that are averaged out over less than 200 fs. Taking account of these fluctuations in the calculation of the chemical shifts resulted in an accuracy of 3.3 ppm. To investigate the effects of averaging over longer time scales we sampled the rotameric states populated by the MLF peptides in the solid state by performing a total of 5 micros classical molecular dynamics simulations. By averaging the chemical shifts over these rotameric states, we increased the accuracy of the chemical shift calculations to 3.0 ppm, with less than 1 ppm error in 10 out of 22 cases. These results suggests that better DFT-based predictions of chemical shifts of peptides and proteins will be achieved by developing improved computational strategies capable of taking into account the averaging process up to the millisecond time scale on which the chemical shift measurements report.


Assuntos
N-Formilmetionina Leucil-Fenilalanina/química , Cristalização , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Fatores de Tempo
12.
Phys Chem Chem Phys ; 12(22): 5861-7, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20454732

RESUMO

This contribution addresses four potential misconceptions associated with high-resolution dynamic nuclear polarization/magic angle spinning (DNP/MAS) experiments. First, spectral resolution is not generally compromised at the cryogenic temperatures at which DNP experiments are performed. As we demonstrate at a modest field of 9 T (380 MHz (1)H), 1 ppm linewidths are observed in DNP/MAS spectra of a membrane protein in its native lipid bilayer, and <0.4 ppm linewidths are reported in a crystalline peptide at 85 K. Second, we address the concerns about paramagnetic broadening in DNP/MAS spectra of proteins by demonstrating that the exogenous radical polarizing agents utilized for DNP are distributed in the sample in such a manner as to avoid paramagnetic broadening and thus maintain full spectral resolution. Third, the enhanced polarization is not localized around the polarizing agent, but rather is effectively and uniformly dispersed throughout the sample, even in the case of membrane proteins. Fourth, the distribution of polarization from the electron spins mediated via spin diffusion between (1)H-(1)H strongly dipolar coupled spins is so rapid that shorter magnetization recovery periods between signal averaging transients can be utilized in DNP/MAS experiments than in typical experiments performed at ambient temperature.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Sequência de Aminoácidos , Domínio Catalítico , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Peptídeos/química , Temperatura
13.
J Am Chem Soc ; 131(1): 118-28, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19067520

RESUMO

At reduced temperatures, proteins and other biomolecules are generally found to exhibit dynamic as well as structural transitions. This includes a so-called protein glass transition that is universally observed in systems cooled between 200 and 230 K, and which is generally attributed to interactions between hydrating solvent molecules and protein side chains. However, there is also experimental and theoretical evidence for a low-temperature transition in the intrinsic dynamics of the protein itself, absent any solvent. Here, we use low-temperature solid-state NMR to examine site-specific fluctuations in atomic structure and dynamics in the absence of solvents. In particular, we employ magic angle spinning NMR to examine a structural phase transition associated with dynamic processes in a solvent-free polypeptide, N-f-MLF-OH, lattice at temperatures as low as 90 K. This transition is characterized by the appearance of an extra set of lines in 1D (15)N spectra as well as additional cross peaks in 2D (13)C-(13)C and (13)C-(15)N spectra. Interestingly, the gradual, temperature-dependent appearance of the new spectral component is not accompanied by the line broadening typical of dynamic transitions. A direct comparison between the spectra of N-f-MLF-OH and the analog N-f-MLF-OMe, which does not display this transition, indicates a correlation of the structural transition to the temperature dependent motion of the aromatic phenylalanine side chain. Several quantitative solid state NMR experiments were employed to provide site-specific measurements of structural and motional features of the observed transition.


Assuntos
N-Formilmetionina Leucil-Fenilalanina/análogos & derivados , Ressonância Magnética Nuclear Biomolecular/métodos , Oligopeptídeos/química , Temperatura Baixa , Modelos Moleculares , N-Formilmetionina Leucil-Fenilalanina/química , Conformação Proteica
14.
NPJ Digit Med ; 2: 123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31840094

RESUMO

Technological advances in passive digital phenotyping present the opportunity to quantify neurological diseases using new approaches that may complement clinical assessments. Here, we studied multiple sclerosis (MS) as a model neurological disease for investigating physiometric and environmental signals. The objective of this study was to assess the feasibility and correlation of wearable biosensors with traditional clinical measures of disability both in clinic and in free-living in MS patients. This is a single site observational cohort study conducted at an academic neurological center specializing in MS. A cohort of 25 MS patients with varying disability scores were recruited. Patients were monitored in clinic while wearing biosensors at nine body locations at three separate visits. Biosensor-derived features including aspects of gait (stance time, turn angle, mean turn velocity) and balance were collected, along with standardized disability scores assessed by a neurologist. Participants also wore up to three sensors on the wrist, ankle, and sternum for 8 weeks as they went about their daily lives. The primary outcomes were feasibility, adherence, as well as correlation of biosensor-derived metrics with traditional neurologist-assessed clinical measures of disability. We used machine-learning algorithms to extract multiple features of motion and dexterity and correlated these measures with more traditional measures of neurological disability, including the expanded disability status scale (EDSS) and the MS functional composite-4 (MSFC-4). In free-living, sleep measures were additionally collected. Twenty-three subjects completed the first two of three in-clinic study visits and the 8-week free-living biosensor period. Several biosensor-derived features significantly correlated with EDSS and MSFC-4 scores derived at visit two, including mobility stance time with MSFC-4 z-score (Spearman correlation -0.546; p = 0.0070), several aspects of turning including turn angle (0.437; p = 0.0372), and maximum angular velocity (0.653; p = 0.0007). Similar correlations were observed at subsequent clinic visits, and in the free-living setting. We also found other passively collected signals, including measures of sleep, that correlated with disease severity. These findings demonstrate the feasibility of applying passive biosensor measurement techniques to monitor disability in MS patients both in clinic and in the free-living setting.

16.
J Magn Reson ; 189(2): 251-79, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17942352

RESUMO

In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9T, corresponding to 380 MHz (1)H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP enhanced multidimensional NMR. These results include assignment of active site resonances in [U-(13)C, (15)N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as low 12 mA) at frequencies between 320 and 365 GHz, suggesting an efficient route for the generation of even higher frequency radiation. The low starting currents were attributed to an elevated cavity Q, which is confirmed by cavity thermal load measurements. We conclude with an appendix containing a detailed description of the control system that safely automates all aspects of the gyrotron operation.


Assuntos
Amplificadores Eletrônicos , Bacteriorodopsinas/química , Bacteriorodopsinas/ultraestrutura , Desenho Assistido por Computador , Espectroscopia de Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Oscilometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Espectroscopia de Ressonância Magnética/métodos , Integração de Sistemas
17.
Artigo em Inglês | MEDLINE | ID: mdl-17687412

RESUMO

The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.

18.
Sci Rep ; 7: 43994, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266629

RESUMO

Low thermal-equilibrium nuclear spin polarizations and the need for sophisticated instrumentation render conventional nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) incompatible with small-scale microfluidic devices. Hyperpolarized 129Xe gas has found use in the study of many materials but has required very large and expensive instrumentation. Recently a microfabricated device with modest instrumentation demonstrated all-optical hyperpolarization and detection of 129Xe gas. This device was limited by 129Xe polarizations less than 1%, 129Xe NMR signals smaller than 20 nT, and transport of hyperpolarized 129Xe over millimeter lengths. Higher polarizations, versatile detection schemes, and flow of 129Xe over larger distances are desirable for wider applications. Here we demonstrate an ultra-sensitive microfabricated platform that achieves 129Xe polarizations reaching 7%, NMR signals exceeding 1 µT, lifetimes up to 6 s, and simultaneous two-mode detection, consisting of a high-sensitivity in situ channel with signal-to-noise of 105 and a lower-sensitivity ex situ detection channel which may be useful in a wider variety of conditions. 129Xe is hyperpolarized and detected in locations more than 1 cm apart. Our versatile device is an optimal platform for microfluidic magnetic resonance in particular, but equally attractive for wider nuclear spin applications benefitting from ultra-sensitive detection, long coherences, and simple instrumentation.

19.
Artigo em Inglês | MEDLINE | ID: mdl-17710187

RESUMO

We report the regulated continuous-wave (CW) operation of a second harmonic gyrotron oscillator at output power levels of over 8 W (12.4 kV and 135 mA beam voltage and current) in the TE(0,6,1) mode near 460 GHz. The gyrotron also operates in the second harmonic TE(2,6,1) mode at 456 GHz and in the TE(2,3,1) fundamental mode at 233 GHz. CW operation was demonstrated for a one-hour period in the TE(0,6,1) mode with better than 1% power stability, where the power was regulated using feedback control. Nonlinear simulations of the gyrotron operation agree with the experimentally measured output power and radio-frequency (RF) efficiency when cavity ohmic losses are included in the analysis. The output radiation pattern was measured using a pyroelectric camera and is highly Gaussian, with an ellipticity of 4%. The 460-GHz gyrotron will serve as a millimeter-wave source for sensitivity-enhanced nuclear magnetic resonance (dynamic nuclear polarization) experiments at a magnetic field of 16.4 T.

20.
IEEE Trans Microw Theory Tech ; 53(6 I): 1863-1869, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17901907

RESUMO

A 250-GHz corrugated transmission line with a directional coupler for forward and backward power monitoring has been constructed and tested for use with a 25-W continuous-wave gyrotron for dynamic nuclear polarization (DNP) experiments. The main corrugated line (22-mm internal diameter, 2.4-m long) connects the gyrotron output to the DNP probe input. The directional coupler, inserted approximately midway, is a four-port crossed waveguide beamsplitter design. Two beamsplitters, a quartz plate and ten-wire array, were tested with output coupling of 2.5% (-16 dB) at 250.6 GHz and 1.6% (-18 dB), respectively. A pair of mirrors in the DNP probe transferred the gyrotron beam from the 22-mm waveguide to an 8-mm helically corrugated waveguide for transmission through the final 0.58-m distance inside the NMR magnet to the sample. The transmission-line components were all cold tested with a 248 ± 4-GHz radiometer. A total insertion loss of 0.8 dB was achieved for HE(11) -mode propagation from the gyrotron to the sample with only 1% insertion loss for the 22-mm-diameter waveguide. A clean Gaussian gyrotron beam at the waveguide output and reliable forward power monitoring were achieved for many hours of continuous operation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa