RESUMO
Angiogenic programming in the vascular endothelium is a tightly regulated process for maintaining tissue homeostasis and is activated in tissue injury and the tumor microenvironment. The metabolic basis of how gas signaling molecules regulate angiogenesis is elusive. Here, we report that hypoxic upregulation of ·NO in endothelial cells reprograms the transsulfuration pathway to increase biogenesis of hydrogen sulfide (H2S), a proangiogenic metabolite. However, decreased H2S oxidation due to sulfide quinone oxidoreductase (SQOR) deficiency synergizes with hypoxia, inducing a reductive shift and limiting endothelial proliferation that is attenuated by dissipation of the mitochondrial NADH pool. Tumor xenografts in whole-body (WBCreSqorfl/fl) and endothelial-specific (VE-cadherinCre-ERT2Sqorfl/fl) Sqor-knockout mice exhibit lower mass and angiogenesis than control mice. WBCreSqorfl/fl mice also exhibit decreased muscle angiogenesis following femoral artery ligation compared to control mice. Collectively, our data reveal the molecular intersections between H2S, O2 and ·NO metabolism and identify SQOR inhibition as a metabolic vulnerability for endothelial cell proliferation and neovascularization.
Assuntos
Sulfeto de Hidrogênio , Neovascularização Patológica , Oxirredução , Animais , Camundongos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Sulfeto de Hidrogênio/metabolismo , Humanos , Camundongos Knockout , Proliferação de Células , Células Endoteliais/metabolismo , Sulfetos/metabolismo , Sulfetos/farmacologia , Neovascularização Fisiológica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , AngiogêneseRESUMO
Although tissue culture plastic has been widely employed for cell culture, the rigidity of plastic is not physiologic. Softer hydrogels used to culture cells have not been widely adopted in part because coupling chemistries are required to covalently capture extracellular matrix (ECM) proteins and support cell adhesion. To create an in vitro system with tunable stiffnesses that readily adsorbs ECM proteins for cell culture, we present a novel hydrophobic hydrogel system via chemically converting hydroxyl residues on the dextran backbone to methacrylate groups, thereby transforming non-protein adhesive, hydrophilic dextran to highly protein adsorbent substrates. Increasing methacrylate functionality increases the hydrophobicity in the resulting hydrogels and enhances ECM protein adsorption without additional chemical reactions. These hydrophobic hydrogels permit facile and tunable modulation of substrate stiffness independent of hydrophobicity or ECM coatings. Using this approach, we show that substrate stiffness and ECM adsorption work together to affect cell morphology and proliferation, but the strengths of these effects vary in different cell types. Furthermore, we reveal that stiffness mediated differentiation of dermal fibroblasts into myofibroblasts is modulated by the substrate ECM. Our material system demonstrates remarkable simplicity and flexibility to tune ECM coatings and substrate stiffness and study their effects on cell function.
RESUMO
Capillary scale vascularization is critical to the survival of engineered 3D tissues and remains an outstanding challenge for the field of tissue engineering. Current methods to generate micro-scale vasculature such as 3D printing, two photon hydrogel ablation, angiogenesis, and vasculogenic assembly face challenges in rapidly creating organized, highly vascularized tissues at capillary length-scales. Within metabolically demanding tissues, native capillary beds are highly organized and densely packed to achieve adequate delivery of nutrients and oxygen and efficient waste removal. Here, we adopt two existing techniques to fabricate lattices composed of sacrificial microfibers that can be efficiently and uniformly seeded with endothelial cells (ECs) by magnetizing both lattices and ECs. Ferromagnetic microparticles (FMPs) were incorporated into microfibers produced by solution electrowriting (SEW) and fiber electropulling (FEP). By loading ECs with superparamagnetic iron oxide nanoparticles (SPIONs), the cells could be seeded onto magnetized microfiber lattices. Following encapsulation in a hydrogel, the capillary templating lattice was selectively degraded by a bacterial lipase that does not impact mammalian cell viability or function. This work introduces a novel approach to rapidly producing organized capillary networks within metabolically demanding engineered tissue constructs which should have broad utility for the fields of tissue engineering and regenerative medicine.
RESUMO
Recent far-reaching advances in synthetic biology have yielded exciting tools for the creation of new materials. Conversely, advances in the fundamental understanding of soft-condensed matter, polymers and biomaterials offer new avenues to extend the reach of synthetic biology. The broad and exciting range of possible applications have substantial implications to address grand challenges in health, biotechnology and sustainability. Despite the potentially transformative impact that lies at the interface of synthetic biology and biomaterials, the two fields have, so far, progressed mostly separately. This Perspective provides a review of recent key advances in these two fields, and a roadmap for collaboration at the interface between the two communities. We highlight the near-term applications of this interface to the development of hierarchically structured biomaterials, from bioinspired building blocks to 'living' materials that sense and respond based on the reciprocal interactions between materials and embedded cells.
Assuntos
Materiais Biocompatíveis , Biologia Sintética , PolímerosRESUMO
The transcription factor scleraxis (Scx) is required for tendon development; however, the function of Scx is not fully understood. Although Scx is expressed by all tendon progenitors and cells, only long tendons are disrupted in the Scx-/- mutant; short tendons appear normal and the ability of muscle to attach to skeleton is not affected. We recently demonstrated that long tendons are formed in two stages: first, by muscle anchoring to skeleton via a short tendon anlage; and second, by rapid elongation of the tendon in parallel with skeletal growth. Through lineage tracing, we extend these observations to all long tendons and show that tendon elongation is fueled by recruitment of new mesenchymal progenitors. Conditional loss of Scx in mesenchymal progenitors did not affect the first stage of anchoring; however, new cells were not recruited during elongation and long tendon formation was impaired. Interestingly, for tenocyte recruitment, Scx expression was required only in the recruited cells and not in the recruiting tendon. The phenotype of Scx mutants can thus be understood as a failure of tendon cell recruitment during tendon elongation.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Tendões/citologia , Tendões/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Camundongos , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismoRESUMO
Synthetic hydrogels represent an exciting avenue in the field of regenerative biomaterials given their injectability, orthogonally tunable mechanical properties, and potential for modular inclusion of cellular cues. Separately, recent advances in soluble factor release technology have facilitated control over the soluble milieu in cell microenvironments via tunable microparticles. A composite hydrogel incorporating both of these components can robustly mediate tendon healing following a single injection. Here, a synthetic hydrogel system with encapsulated electrospun fiber segments and a novel microgel-based soluble factor delivery system achieves precise control over topographical and soluble features of an engineered microenvironment, respectively. It is demonstrated that three-dimensional migration of tendon progenitor cells can be enhanced via combined mechanical, topographical, and microparticle-delivered soluble cues in both a tendon progenitor cell spheroid model and an ex vivo murine Achilles tendon model. These results indicate that fiber reinforced hydrogels can drive the recruitment of endogenous progenitor cells relevant to the regeneration of tendon and, likely, a broad range of connective tissues.
RESUMO
Over the past 3 decades, there has been a vast expansion of research in both tissue engineering and organic electronics. Although the two fields have interacted little, the materials and fabrication technologies which have accompanied the rise of organic electronics offer the potential for innovation and translation if appropriately adapted to pattern biological materials for tissue engineering. In this work, we use two organic electronic materials as adhesion points on a biocompatible poly(p-xylylene) surface. The organic electronic materials are precisely deposited via vacuum thermal evaporation and organic vapor jet printing, the proven, scalable processes used in the manufacture of organic electronic devices. The small molecular-weight organics prevent the subsequent growth of antifouling polyethylene glycol methacrylate polymer brushes that grow within the interstices between the molecular patches, rendering these background areas both protein and cell resistant. Last, fibronectin attaches to the molecular patches, allowing for the selective adhesion of fibroblasts. The process is simple, reproducible, and promotes a high yield of cell attachment to the targeted sites, demonstrating that biocompatible organic small-molecule materials can pattern cells at the microscale, utilizing techniques widely used in electronic device fabrication.
Assuntos
Materiais Biocompatíveis , Eletrônica , Materiais Biocompatíveis/toxicidade , Engenharia TecidualRESUMO
Acoustically-responsive scaffolds (ARSs), which are composite fibrin hydrogels, have been used to deliver regenerative molecules. ARSs respond to ultrasound in an on-demand, spatiotemporally-controlled manner via a mechanism termed acoustic droplet vaporization (ADV). Here, we study the ADV-induced, time-dependent micromechanical and microstructural changes to the fibrin matrix in ARSs using confocal fluorescence microscopy as well as atomic force microscopy. ARSs, containing phase-shift double emulsion (PSDE, mean diameter: 6.3 µm), were exposed to focused ultrasound to generate ADV - the phase transitioning of the PSDE into gas bubbles. As a result of ADV-induced mechanical strain, localized restructuring of fibrin occurred at the bubble-fibrin interface, leading to formation of locally denser regions. ADV-generated bubbles significantly reduced fibrin pore size and quantity within the ARS. Two types of ADV-generated bubble responses were observed in ARSs: super-shelled spherical bubbles, with a growth rate of 31 µm per day in diameter, as well as fluid-filled macropores, possibly as a result of acoustically-driven microjetting. Due to the strain stiffening behavior of fibrin, ADV induced a 4-fold increase in stiffness in regions of the ARS proximal to the ADV-generated bubble versus distal regions. These results highlight that the mechanical and structural microenvironment within an ARS can be spatiotemporally modulated using ultrasound, which could be used to control cellular processes and further the understanding of ADV-triggered drug delivery for regenerative applications.
Assuntos
Acústica , Fibrina , Emulsões , Hidrogéis , VolatilizaçãoRESUMO
Mechanical interactions between cells and their surrounding extracellular matrix (ECM) guide many fundamental cell behaviors. Native connective tissue consists of highly organized, 3D networks of ECM fibers with complex, nonlinear mechanical properties. The most abundant stromal matrix component is fibrillar type I collagen, which often possesses a wavy, crimped morphology that confers strain- and load-dependent nonlinear mechanical behavior. Here, we established a new and simple method for engineering electrospun fibrous matrices composed of dextran vinyl sulfone (DexVS) with controllable crimped structure. A hydrophilic peptide was functionalized to DexVS matrices to trigger swelling of individual hydrogel fibers, resulting in crimped microstructure due to the fixed anchorage of fibers. Mechanical characterization of these matrices under tension confirmed orthogonal control over nonlinear stress-strain responses and matrix stiffness. We next examined ECM mechanosensing of individual endothelial cells (ECs) and found that fiber crimp promoted physical matrix remodeling alongside decreases in cell spreading, focal adhesion area, and nuclear localization of Yes-associated protein (YAP). These changes corresponded to an increase in migration speed, along with evidence for long-range interactions between neighboring cells in crimped matrices. Interestingly, when ECs were seeded at high density in crimped matrices, capillary-like networks rapidly assembled and contained tube-like cellular structures wrapped around bundles of synthetic matrix fibers due to increased physical reorganization of matrix fibers. Our work provides an additional level of mechanical and architectural tunability to synthetic fibrous matrices and implicates a critical role for mechanical nonlinearity in EC mechanosensing and network formation.
Assuntos
Células Endoteliais , Matriz Extracelular , Adesões Focais , HidrogéisRESUMO
We describe a multiscale model that incorporates force-dependent mechanical plasticity induced by interfiber cross-link breakage and stiffness-dependent cellular contractility to predict focal adhesion (FA) growth and mechanosensing in fibrous extracellular matrices (ECMs). The model predicts that FA size depends on both the stiffness of ECM and the density of ligands available to form adhesions. Although these two quantities are independent in commonly used hydrogels, contractile cells break cross-links in soft fibrous matrices leading to recruitment of fibers, which increases the ligand density in the vicinity of cells. Consequently, although the size of focal adhesions increases with ECM stiffness in nonfibrous and elastic hydrogels, plasticity of fibrous networks leads to a departure from the well-described positive correlation between stiffness and FA size. We predict a phase diagram that describes nonmonotonic behavior of FA in the space spanned by ECM stiffness and recruitment index, which describes the ability of cells to break cross-links and recruit fibers. The predicted decrease in FA size with increasing ECM stiffness is in excellent agreement with recent observations of cell spreading on electrospun fiber networks with tunable cross-link strengths and mechanics. Our model provides a framework to analyze cell mechanosensing in nonlinear and inelastic ECMs.
Assuntos
Matriz Extracelular/fisiologia , Adesões Focais/fisiologia , Modelos Biológicos , Actomiosina/química , Actomiosina/fisiologia , Fenômenos Biofísicos , Biopolímeros/química , Biopolímeros/fisiologia , Simulação por Computador , Módulo de Elasticidade , Matriz Extracelular/química , Adesões Focais/química , Humanos , Hidrogéis , Mecanotransdução Celular/fisiologia , Fibras de Estresse/química , Fibras de Estresse/fisiologiaRESUMO
We developed molecular tension probes (TPs) that report traction forces of adherent cells with high spatial resolution, can in principle be linked to virtually any surface, and obviate monitoring deformations of elastic substrates. TPs consist of DNA hairpins conjugated to fluorophore-quencher pairs that unfold and fluoresce when subjected to specific forces. We applied TPs to reveal that cellular traction forces are heterogeneous within focal adhesions and localized at their distal edges.
Assuntos
Adesão Celular/fisiologia , Sondas de DNA , Adesões Focais/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Células Cultivadas , Sondas de DNA/química , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Microscopia de FluorescênciaRESUMO
To investigate how cells sense stiffness in settings structurally similar to native extracellular matrices, we designed a synthetic fibrous material with tunable mechanics and user-defined architecture. In contrast to flat hydrogel surfaces, these fibrous materials recapitulated cell-matrix interactions observed with collagen matrices including stellate cell morphologies, cell-mediated realignment of fibres, and bulk contraction of the material. Increasing the stiffness of flat hydrogel surfaces induced mesenchymal stem cell spreading and proliferation; however, increasing fibre stiffness instead suppressed spreading and proliferation for certain network architectures. Lower fibre stiffness permitted active cellular forces to recruit nearby fibres, dynamically increasing ligand density at the cell surface and promoting the formation of focal adhesions and related signalling. These studies demonstrate a departure from the well-described relationship between material stiffness and spreading established with hydrogel surfaces, and introduce fibre recruitment as a previously undescribed mechanism by which cells probe and respond to mechanics in fibrillar matrices.
Assuntos
Matriz Extracelular/fisiologia , Mecanotransdução Celular , Humanos , Ligantes , Células-Tronco Mesenquimais/citologiaRESUMO
The fibrous tissues prevalent throughout the body possess an ordered structure that underlies their refined and robust mechanical properties. Engineered replacements will require recapitulation of this exquisite architecture in three dimensions. Aligned nanofibrous scaffolds can dictate cell and matrix organization; however, their widespread application has been hindered by poor cell infiltration due to the tight packing of fibers during fabrication. Here, we develop and validate an enabling technology in which tunable composite nanofibrous scaffolds are produced to provide instruction without impediment. Composites were formed containing two distinct fiber fractions: slow-degrading poly(ε-caprolactone) and water-soluble, sacrificial poly(ethylene oxide), which can be selectively removed to increase pore size. Increasing the initial fraction of sacrificial poly(ethylene oxide) fibers enhanced cell infiltration and improved matrix distribution. Despite the removal of >50% of the initial fibers, the remaining scaffold provided sufficient instruction to align cells and direct the formation of a highly organized ECM across multiple length scales, which in turn led to pronounced increases in the tensile properties of the engineered constructs (nearly matching native tissue). This approach transforms what is an interesting surface phenomenon (cells on top of nanofibrous mats) into a method by which functional, 3D tissues (>1 mm thick) can be formed, both in vitro and in vivo. As such, this work represents a marked advance in the engineering of load-bearing fibrous tissues, and will find widespread applications in regenerative medicine.
Assuntos
Condrócitos/citologia , Fibrocartilagem/citologia , Nanofibras/uso terapêutico , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Anisotropia , Condrócitos/fisiologia , Fibrocartilagem/fisiologia , Humanos , Lactonas/farmacologia , Masculino , Teste de Materiais , Modelos Animais , Polietilenoglicóis/farmacologia , Ratos , Ratos Sprague-Dawley , Regeneração/fisiologia , Estresse Mecânico , Resistência à Tração/fisiologiaRESUMO
Contractile forces exerted on the surrounding extracellular matrix (ECM) lead to the alignment and stretching of constituent fibers within the vicinity of cells. As a consequence, the matrix reorganizes to form thick bundles of aligned fibers that enable force transmission over distances larger than the size of the cells. Contractile force-mediated remodeling of ECM fibers has bearing on a number of physiologic and pathophysiologic phenomena. In this work, we present a computational model to capture cell-mediated remodeling within fibrous matrices using finite element-based discrete fiber network simulations. The model is shown to accurately capture collagen alignment, heterogeneous deformations, and long-range force transmission observed experimentally. The zone of mechanical influence surrounding a single contractile cell and the interaction between two cells are predicted from the strain-induced alignment of fibers. Through parametric studies, the effect of cell contractility and cell shape anisotropy on matrix remodeling and force transmission are quantified and summarized in a phase diagram. For highly contractile and elongated cells, we find a sensing distance that is ten times the cell size, in agreement with experimental observations.
Assuntos
Colágeno/química , Matriz Extracelular/química , Simulação de Dinâmica Molecular , ElasticidadeRESUMO
Much of our understanding of the biological mechanisms that underlie cellular functions, such as migration, differentiation and force-sensing has been garnered from studying cells cultured on two-dimensional (2D) glass or plastic surfaces. However, more recently the cell biology field has come to appreciate the dissimilarity between these flat surfaces and the topographically complex, three-dimensional (3D) extracellular environments in which cells routinely operate in vivo. This has spurred substantial efforts towards the development of in vitro 3D biomimetic environments and has encouraged much cross-disciplinary work among biologists, material scientists and tissue engineers. As we move towards more-physiological culture systems for studying fundamental cellular processes, it is crucial to define exactly which factors are operative in 3D microenvironments. Thus, the focus of this Commentary will be on identifying and describing the fundamental features of 3D cell culture systems that influence cell structure, adhesion, mechanotransduction and signaling in response to soluble factors, which - in turn - regulate overall cellular function in ways that depart dramatically from traditional 2D culture formats. Additionally, we will describe experimental scenarios in which 3D culture is particularly relevant, highlight recent advances in materials engineering for studying cell biology, and discuss examples where studying cells in a 3D context provided insights that would not have been observed in traditional 2D systems.
Assuntos
Técnicas de Cultura de Células/métodos , Forma Celular , Microambiente Celular , Matriz Extracelular/química , Mecanotransdução Celular , Animais , Materiais Biocompatíveis/química , Transporte Biológico , Adesão Celular , Comunicação Celular , Diferenciação Celular , Movimento Celular , Condrócitos/química , Biologia Computacional/métodos , Humanos , SolubilidadeRESUMO
We present a novel technique to examine cell-cell interactions and directed cell migration using micropatterned substrates of three distinct regions: an adhesive region, a nonadhesive region, and a dynamically adhesive region switched by addition of a soluble factor to the medium. Combining microcontact printing with avidin-biotin capture chemistry, we pattern nonadhesive regions of avidin that become adhesive through the capture of biotinylated fibronectin. Our strategy overcomes several limitations of current two-color dynamically adhesive substrates by incorporating a third, permanently nonadhesive region. Having three spatially and functionally distinct regions allows for the realization of more complex configurations of cellular cocultures as well as intricate interface geometries between two cell populations for diverse heterotypic cell-cell interaction studies. We can now achieve spatial control over the path and direction of migration in addition to temporal control of the onset of migration, enabling studies that better recapitulate coordinated multicellular migration and organization in vitro. We confirm that cellular behavior is unaltered on captured biotinylated fibronectin as compared to printed fibronectin by examining the cells' ability to spread, form adhesions, and migrate. We demonstrate the versatility of this approach in studies of migration and cellular cocultures, and further highlight its utility by probing Notch-Delta juxtacrine signaling at a patterned interface.
Assuntos
Adesivos/química , Técnicas de Química Combinatória , Corantes Fluorescentes , Comunicação Autócrina , Biotinilação , Adesão Celular , Movimento Celular , Células Cultivadas , Cor , Fibronectinas/química , Corantes Fluorescentes/química , Humanos , Microscopia de Contraste de FaseRESUMO
OBJECTIVE: Atherosclerosis-prone regions of arteries are characterized by complex flow patterns where the magnitude of shear stress is low and direction rapidly changes, termed disturbed flow. How endothelial cells sense flow direction and how it impacts inflammatory effects of disturbed flow are unknown. We therefore aimed to understand how endothelial cells respond to changes in flow direction. APPROACH AND RESULTS: Using a recently developed flow system capable of changing flow direction to any angle, we show that responses of aligned endothelial cells are determined by flow direction relative to their morphological and cytoskeletal axis. Activation of the atheroprotective endothelial nitric oxide synthase pathway is maximal at 180° and undetectable at 90°, whereas activation of proinflammatory nuclear factor-κB is maximal at 90° and undetectable at 180°. Similar effects were observed in randomly oriented cells in naive monolayers subjected to onset of shear. Cells aligned on micropatterned substrates subjected to oscillatory flow were also examined. In this system, parallel flow preferentially activated endothelial nitric oxide synthase and production of nitric oxide, whereas perpendicular flow preferentially activated reactive oxygen production and nuclear factor-κB. CONCLUSIONS: These data show that the angle between flow and the cell axis defined by their shape and cytoskeleton determines endothelial cell responses. The data also strongly suggest that the inability of cells to align in low and oscillatory flow is a key determinant of the resultant inflammatory activation.
Assuntos
Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Hemodinâmica , Inflamação/metabolismo , Mecanotransdução Celular , Citoesqueleto de Actina/fisiologia , Animais , Aterosclerose/imunologia , Aterosclerose/fisiopatologia , Bovinos , Técnicas de Cultura de Células , Forma Celular , Células Cultivadas , Células Endoteliais/imunologia , Ativação Enzimática , Inflamação/imunologia , Inflamação/fisiopatologia , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Oscilometria , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fluxo Sanguíneo Regional , Estresse Mecânico , Fatores de TempoRESUMO
This review highlights the promise of fiber-reinforced hydrogel composites (FRHCs) for augmenting tendon and ligament repair and regeneration. Composed of reinforcing fibers embedded in a hydrogel, these scaffolds provide both mechanical strength and a conducive microenvironment for biological processes required for connective tissue regeneration. Typical properties of FRHCs are discussed, highlighting their ability to simultaneously fulfill essential mechanical and biological design criteria for a regenerative scaffold. Furthermore, features of FRHCs are described that improve specific biological aspects of tendon healing including mesenchymal progenitor cell recruitment, early polarization to a pro-regenerative immune response, tenogenic differentiation of recruited progenitor cells, and subsequent production of a mature, aligned collagenous matrix. Finally, the review offers a perspective on clinical translation of tendon FRHCs and outlines key directions for future work.
RESUMO
The growth of new blood vessels through angiogenesis is a highly coordinated process, which is initiated by chemokine gradients that activate endothelial cells within a perfused parent vessel to sprout into the surrounding 3D tissue matrix. While both biochemical signals from pro-angiogenic factors, as well as mechanical cues originating from luminal fluid flow that exerts shear stress on the vessel wall, have individually been identified as major regulators of endothelial cell sprouting, it remains unclear whether and how both types of cues synergize. To fill this knowledge gap, here, we created a 3D biomimetic model of chemokine gradient-driven angiogenic sprouting, in which a micromolded tube inside a hydrogel matrix is seeded with endothelial cells and connected to a perfusion system to control fluid flow rates and resulting shear forces on the vessel wall. To allow for the formation of chemokine gradients despite the presence of luminal flow, a nanoporous synthetic hydrogel that supports angiogenesis but limits the interstitial flow proved crucial. Using this system, we find that luminal flow and resulting shear stress is a major regulator of the speed and morphogenesis of angiogenic sprouting, whose action is mediated through changes in vascular permeability.
Assuntos
Células Endoteliais da Veia Umbilical Humana , Hidrogéis , Neovascularização Fisiológica , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Hidrogéis/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Quimiocinas/metabolismo , Nanoporos , Modelos Biológicos , AngiogêneseRESUMO
Synthetic matrices which mimic the extracellular composition of native tissue create a comprehensive model for studying development and disease. Here, we have engineered a composite material which retains cell-secreted ECM for the culture of ovarian follicles by embedding electrospun dextran fibers functionalized with basement membrane binder (BMB) peptide in PEG hydrogels. In the presence of ECM-sequestering fibers, encapsulated immature primordial follicles and ovarian stromal cells aggregated into large organoid-like structures with dense deposition of laminin, perlecan, and collagen I, leading to steroidogenesis and significantly greater rates of oocyte survival and growth. We determined that cell aggregation restored key cell-cell interactions critical for oocyte survival, whereas oocyte growth was dependent on cell-matrix interactions achieved in the presence of BMB. Here we have shown that sequestration and retention of cell-secreted ECM along synthetic fibers mimics fibrous ECM structure and restores the cell-cell and cell-matrix interactions critical for engineering an artificial ovary.