Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 31(39): 395201, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32531776

RESUMO

Silver nanowires (Ag NWs) have good promised for flexible and transparent electronics. However, It remains an open question on how to achieve large-scale printing of Ag NWs with high optical transparency, electrical conductivity, and mechanical durability for practical applications, though extensive research has been conducted for more than a decade. In this work, we propose a possible solution that integrates screen printing of Ag NWs with flash-light sintering (FLS). We demonstrate that the use of low-concentration, screen-printable Ag NW ink enables large-area and high-resolution patterning of Ag NWs. A critical advantage comes from the FLS process that allows low-temperature processing, short operational time, and high output rate-characteristics that fit the scalable manufacturing. Importantly, we show that the resultant Ag NW patterns feature low sheet resistance (1.1-9.2 Ohm sq-1), high transparency (75.2-92.6%), and thus a remarkable figure of merit comparable to state of the art. These outstanding properties of Ag NW patterns, together with the scalable fabrication method we propose, would facilitate many Ag NW-based applications, such as transparent heaters, stretchable displays, and wearable devices; here, we demonstrate the novel design of flexible and transparent radio frequency 5G antennas.

2.
Nat Commun ; 13(1): 3260, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672406

RESUMO

The massive deployment of fifth generation and internet of things technologies requires precise and high-throughput fabrication techniques for the mass production of radio frequency electronics. We use printable indium-gallium-zinc-oxide semiconductor in spontaneously formed self-aligned <10 nm nanogaps and flash-lamp annealing to demonstrate rapid manufacturing of nanogap Schottky diodes over arbitrary size substrates operating in 5 G frequencies. These diodes combine low junction capacitance with low turn-on voltage while exhibiting cut-off frequencies (intrinsic) of >100 GHz. Rectifier circuits constructed with these co-planar diodes can operate at ~47 GHz (extrinsic), making them the fastest large-area electronic devices demonstrated to date.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa