RESUMO
Humans are chronically exposed to mixtures of xenobiotics referred to as endocrine-disrupting chemicals (EDCs). A vast body of literature links exposure to these chemicals with increased incidences of reproductive, metabolic, or neurological disorders. Moreover, recent data demonstrate that, when used in combination, chemicals have outcomes that cannot be predicted from their individual behavior. In its heterodimeric form with the retinoid X receptor (RXR), the pregnane X receptor (PXR) plays an essential role in controlling the mammalian xenobiotic response and mediates both beneficial and detrimental effects. Our previous work shed light on a mechanism by which a binary mixture of xenobiotics activates PXR in a synergistic fashion. Structural analysis revealed that mutual stabilization of the compounds within the ligand-binding pocket of PXR accounts for the enhancement of their binding affinity. In order to identify and characterize additional active mixtures, we combined a set of cell-based, biophysical, structural, and in vivo approaches. Our study reveals features that confirm the binding promiscuity of this receptor and its ability to accommodate bipartite ligands. We reveal previously unidentified binding mechanisms involving dynamic structural transitions and covalent coupling and report four binary mixtures eliciting graded synergistic activities. Last, we demonstrate that the robust activity obtained with two synergizing PXR ligands can be enhanced further in the presence of RXR environmental ligands. Our study reveals insights as to how low-dose EDC mixtures may alter physiology through interaction with RXR-PXR and potentially several other nuclear receptor heterodimers.
Assuntos
Receptor de Pregnano X/química , Receptores X de Retinoides/química , Xenobióticos , Animais , Linhagem Celular , Cristalografia por Raios X , Dimerização , Polarização de Fluorescência , Regulação da Expressão Gênica , Humanos , Ligantes , Luciferases/genética , Luciferases/metabolismo , Modelos Químicos , Receptor de Pregnano X/metabolismo , Receptores X de Retinoides/metabolismo , Xenobióticos/química , Xenobióticos/metabolismo , Xenobióticos/farmacologia , XenopusRESUMO
Because exposure to bisphenol A (BPA) has been linked to health problems in humans and wildlife, BPA analogues have been synthesized to be considered as replacement molecules. We here have examined estrogenic activity of BPA and five of its analogues, BPAF, BPE, BPC, BPC-Cl, and BPS by a combination of zebrafish-based in vivo and in vitro assays. We used transgenic estrogen reporter (5xERE:GFP) fish to study agonistic effects of bisphenols. Exposures to BPA, BPAF, BPE, and BPC, induced GFP expression in estrogen reporter fish at low exposure concentrations in the heart valves and at higher concentrations in the liver, whereas BPC-Cl activated GFP expression mainly in the liver, and BPS faintly in the heart only. The in vivo response was compared to in vitro estrogenicity of bisphenol exposure using reporter cells that express the zebrafish estrogen receptors driving expression of an estrogen response element (ERE)-luciferase reporter. In these cells, BPA, BPAF, BPC, BPE and BPS preferentially activated Esr1, whereas BPC-Cl preferentially activated Esr2a. By quantitative PCR we found that exposure to BPAF induced expression of the classical estrogen target genes vtg1, esr1, and cyp19a1b in a concentration response manner, but the most responsive target gene was f13a1a. Exposure to BPC-Cl resulted in a different expression pattern of vtg1 and f13a1a with an activation at low concentrations, followed by a declining expression at higher concentrations. Because expression of f13a1a was strongly activated by all compounds tested, we suggest including this mRNA as a biomarker for estrogenicity in larval fish. We further showed that exposure to BPAF and BPC-Cl increased E2 levels in zebrafish larvae, indicating that bisphenol exposures result in a feed-forward response that can further augment the estrogenic activity of these compounds.
Assuntos
Receptores de Estrogênio , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Compostos Benzidrílicos/toxicidade , Estrona , Estrogênios/toxicidade , Estrogênios/metabolismo , Larva/metabolismo , Luciferases , RNA MensageiroRESUMO
Endocrine disrupting chemicals (EDCs) are able to deregulate the hormone system, notably through interactions with nuclear receptors (NRs). The mechanisms of action and biological effects of many EDCs have mainly been tested on human and mouse but other species such as zebrafish and xenopus are increasingly used as a model to study the effects of EDCs. Among NRs, peroxisome proliferator-activated receptor γ (PPARγ) is a main target of EDCs, for which most experimental data have been obtained from human and mouse models. To assess interspecies differences, we tested known human PPARγ ligands on reporter cell lines expressing either human, mouse, zebrafish, or xenopus PPARγ. Using these cell lines, we were able to highlight major interspecies differences. Known hPPARγ pharmaceutical ligands modulated hPPARγ and mPPARγ activities in a similar manner, while xPPARγ was less responsive and zfPPARγ was not modulated at all by these compounds. On the contrary, human liver X receptor (hLXR) ligands GW 3965 and WAY-252623 were only active on zfPPARγ. Among environmental compounds, several molecules activated the PPARγ of the four species similarly, e.g., phthalates (MEHP), perfluorinated compounds (PFOA, PFOS), and halogenated derivatives of BPA (TBBPA, TCBPA), but some of them like diclofenac and the organophosphorus compounds tri-o-tolyl phosphate and triphenyl phosphate were most active on zfPPARγ. This study confirms or shows for the first time the h, m, x, and zfPPARγ activities of several chemicals and demonstrates the importance of the use of species-specific models to study endocrine and metabolism disruption by environmental chemicals.
Assuntos
Disruptores Endócrinos , Preparações Farmacêuticas , Animais , Ligantes , Camundongos , PPAR gama , Peixe-ZebraRESUMO
The environmental risk of natural and synthetic ligands of the nuclear progesterone receptor (nPR) has been pointed out, however there is still a lack of mechanistic information regarding their ability to interact with nuclear PR in aquatic species. To identify possible interspecies differences, we assessed in vitro the ability of manifold progestins to transactivate zebrafish (zf) and human (h) PRs, using two established reporter cell lines, U2OS-zfPR and HELN-hPR, respectively. Reference ligands highlighted some differences between the two receptors. The reference human agonist ligands promegestone and progesterone induced luciferase activity in both cell lines in a concentration-dependent manner, whereas the natural zebrafish progestin 17α,20ß-dihydroxy-4-pregnen-3-one activated zfPR but not hPR. The potent human PR antagonist mifepristone (RU486) blocked PR-induced luciferase in both cell models but with different potencies. In addition, a set of 22 synthetic progestins were screened on the two cell lines. Interestingly, all of the tested compounds activated hPR in the HELN-hPR cell line, whereas the majority of them acted as zfPR antagonists in U2OS-zfPR. Such zfPR-specific response was further confirmed in zebrafish liver cells. This study provides novel information regarding the activity of a large set of progestins on human and zebrafish PR and highlights major interspecies differences in their activity, which may result in differential effects of progestins between fish and humans.
Assuntos
Progesterona , Progestinas , Animais , Humanos , Mifepristona/farmacologia , Receptores de Progesterona , Peixe-ZebraRESUMO
The estrogen-related receptor γ (ERRγ, NR3B3) is a constitutively active nuclear receptor which has been proposed to act as a mediator of the low-dose effects of a number of environmental endocrine-disrupting chemicals (EDCs) such as the xenoestrogen bisphenol-A (BPA). To better characterize the ability of exogenous compounds to bind and activate ERRγ, we used a combination of cell-based, biochemical, structural and computational approaches. A purposely created stable cell line allowed for the determination of the EC50s for over 30 environmental ERRγ ligands, including previously unknown ones. Interestingly, affinity constants (Kds) of the most potent compounds measured by isothermal titration calorimetry were in the 50-500 nM range, in agreement with their receptor activation potencies. Crystallographic analysis of the interaction between the ERRγ ligand-binding domain (LBD) and compounds of the bisphenol, alkylphenol and naphthol families revealed a partially shared binding mode and minimal alterations of the receptor conformation upon ligand binding. Further biophysical characterizations coupled to molecular dynamics simulations suggested a mechanism through which ERRγ ligands would exhibit their agonistic properties by preserving the transcriptionally active form of the receptor while rigidifying some loop regions with associated functions. This unique mechanism contrasts with the classical one involving a ligand-induced repositioning and stabilization of the C-terminal activation helix H12.
Assuntos
Disruptores Endócrinos/química , Receptores de Estrogênio/metabolismo , Compostos Benzidrílicos/química , Compostos Benzidrílicos/metabolismo , Compostos Benzidrílicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Disruptores Endócrinos/metabolismo , Disruptores Endócrinos/farmacologia , Humanos , Ligantes , Simulação de Dinâmica Molecular , Fenóis/química , Fenóis/metabolismo , Fenóis/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Termodinâmica , Ativação Transcricional/efeitos dos fármacosRESUMO
Recent studies strongly support the use of the aryl hydrocarbon receptor (AhR) as a therapeutic target in breast cancer. Glyceollins, a group of soybean phytoalexins, are known to exert therapeutic effects in chronic human diseases and also in cancer. To investigate the interaction between glyceollin I (GI), glyceollin II (GII) and AhR, a computational docking analysis, luciferase assays, immunofluorescence and transcriptome analyses were performed with different cancer cell lines. The docking experiments predicted that GI and GII can enter into the AhR binding pocket, but their interactions with the amino acids of the binding site differ, in part, from those interacting with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Both GI and GII were able to weakly and partially activate AhR, with GII being more potent. The results from the transcriptome assays showed that approximately 10% of the genes regulated by TCDD were also modified by both GI and GII, which could have either antagonistic or synergistic effects upon TCDD activation. In addition, we report here, on the basis of phenotype, that GI and GII inhibit the migration of triple-negative (ER-, PgR-, HER2NEU-) MDA-MB-231 breast cancer cells, and that they inhibit the expression of genes which code for important regulators of cell migration and invasion in cancer tissues. In conclusion, GI and GII are AhR ligands that should be further investigated to determine their usefulness in cancer treatments.
Assuntos
Movimento Celular/efeitos dos fármacos , Pterocarpanos/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Pterocarpanos/química , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genéticaRESUMO
The purpose of this project report is to introduce the European "GOLIATH" project, a new research project which addresses one of the most urgent regulatory needs in the testing of endocrine-disrupting chemicals (EDCs), namely the lack of methods for testing EDCs that disrupt metabolism and metabolic functions. These chemicals collectively referred to as "metabolism disrupting compounds" (MDCs) are natural and anthropogenic chemicals that can promote metabolic changes that can ultimately result in obesity, diabetes, and/or fatty liver in humans. This project report introduces the main approaches of the project and provides a focused review of the evidence of metabolic disruption for selected EDCs. GOLIATH will generate the world's first integrated approach to testing and assessment (IATA) specifically tailored to MDCs. GOLIATH will focus on the main cellular targets of metabolic disruption-hepatocytes, pancreatic endocrine cells, myocytes and adipocytes-and using an adverse outcome pathway (AOP) framework will provide key information on MDC-related mode of action by incorporating multi-omic analyses and translating results from in silico, in vitro, and in vivo models and assays to adverse metabolic health outcomes in humans at real-life exposures. Given the importance of international acceptance of the developed test methods for regulatory use, GOLIATH will link with ongoing initiatives of the Organisation for Economic Development (OECD) for test method (pre-)validation, IATA, and AOP development.
Assuntos
Diabetes Mellitus/epidemiologia , Disruptores Endócrinos/efeitos adversos , Fígado Gorduroso/epidemiologia , Obesidade/epidemiologia , Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Diabetes Mellitus/induzido quimicamente , Diabetes Mellitus/prevenção & controle , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/prevenção & controle , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Obesidade/induzido quimicamente , Obesidade/prevenção & controle , Medição de RiscoRESUMO
Faced with the ban of some organic UV filters such as octinoxate or avobenzone, especially in Hawaii, it became essential to offer new alternatives that are both renewable and safe for humans and the environment. In this context, a class of bio-based molecules displaying interesting UV filter properties and great (photo)stability has been developed from Meldrum's acid and bio-based and synthetic p-hydroxycinnamic acids, furans and pyrroles. Moreover, p-hydroxycinnamic acid-based Meldrum's derivatives possess valuable secondary activities sought by the cosmetic industry such as antioxidant and anti-tyrosinase properties. The evaluation of the properties of mixture of judiciously chosen Meldrum's acid derivatives highlighted the possibility to modulate secondary activity while maintaining excellent UV protection. Meldrum's acid derivatives are not only competitive when benchmarked against organic filters currently on the market (i.e., avobenzone), but they also do not exhibit any endocrine disruption activity.
Assuntos
Materiais Biocompatíveis/química , Dioxanos/química , Sequestradores de Radicais Livres/farmacologia , Raios Ultravioleta , Materiais Biocompatíveis/efeitos da radiação , Compostos de Bifenilo/química , Linhagem Celular , Ácidos Cumáricos/química , Ácidos Cumáricos/efeitos da radiação , Dioxanos/efeitos da radiação , Disruptores Endócrinos/toxicidade , Furanos/química , Furanos/efeitos da radiação , Humanos , Monofenol Mono-Oxigenase/antagonistas & inibidores , Picratos/química , Pirróis/química , Pirróis/efeitos da radiaçãoRESUMO
The high volume production compound bisphenol A (BPA) is of environmental concern largely because of its estrogenic activity. Consequently, BPA analogues have been synthesized to be considered as replacement molecules for BPA. These analogues need to be thoroughly evaluated for their estrogenic activity. Here, we combined mechanism zebrafish-based assays to examine estrogenic and anti-estrogenic activities of BPA and two of its analogues, bisphenol AF (BPAF) and bisphenol C (BPC) in vitro and in vivo. In vitro reporter cell lines were used to investigate agonistic and antagonistic effects of the three bisphenols on the three zebrafish estrogen receptors. The transgenic Tg(5â¯×â¯ERE:GFP) and Cyp19a1b-GFP zebrafish lines were then used to analyze estrogenic and anti-estrogenic responses of the three bisphenols in vivo. BPA, BPAF and BPC were agonists with different potencies for the three zebrafish estrogen receptors in vitro. The potent zfERα-mediated activity of BPA and BPAF in vitro resulted in vivo by activation of GFP expression in zebrafish larvae in the heart (zfERα-dependent) at lower concentrations, and in the liver (zfERß-dependent) at higher concentrations. BPC induced zfERß-mediated luciferase expression in vitro, and the zfERß agonism led to activation of GFP expression in the liver and the brain in vivo. In addition, BPC acted as a full antagonist on zfERα, and completely inhibited estrogen-induced GFP expression in the heart of the zebrafish larvae. To summarize, applying a combination of zebrafish-based in vitro and in vivo methods to evaluate bisphenol analogues for estrogenic activity will facilitate the prioritization of these chemicals for further analysis in higher vertebrates as well as the risk assessment in humans.
Assuntos
Compostos Benzidrílicos/toxicidade , Estrogênios não Esteroides/toxicidade , Fenóis/toxicidade , Receptores de Estrogênio/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Embrião não Mamífero , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores de Estrogênio/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genéticaRESUMO
Synthetic progesterone and 5α/ß-pregnane-3,20-dione derivatives were evaluated as in vitro and in vivo modulators of multidrug-resistance (MDR) using two P-gp-expressing human cell lines, the non-steroidogenic K562/R7 erythroleukaemia cells and the steroidogenic NCI-H295R adrenocortical carcinoma cells, both resistant to doxorubicin. The maximal effect in both cell lines was observed for 7α-O-benzoyloxy,11α(R)-O-tetrahydropyranyloxy-5ß-pregnane-3,20-dione 4. This modulator co-injected with doxorubicin significantly decreased the tumour size and increased the survival time of immunodeficient mice xenografted with NCI-H295R or K562/R7 cells.
Assuntos
Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pregnanos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos SCID , Conformação Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Pregnanos/síntese química , Pregnanos/química , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
Bisphenol A (BPA) is a widely used chemical that has been extensively studied as an endocrine-disrupting chemical (EDC). Other bisphenols sharing close structural features with BPA, are increasingly being used as alternatives, increasing the need to assess associated hazards to the endocrine system. In the present study, the estrogenic activity of BPA, bisphenol S (BPS) and bisphenol F (BPF) was assessed by using a combination of zebrafish-specific mechanism-based in vitro and in vivo assays. The three bisphenols were found to efficiently transactivate all zebrafish estrogen receptor (zfER) subtypes in zebrafish hepatic reporter cell lines (ZELH-zfERs). BPA was selective for zfERα while BPS and BPF were slightly more potent on zfERß subtypes. We further documented the estrogenic effect in vivo by quantifying the expression of brain aromatase using a transgenic cyp19a1b-GFP zebrafish embryo assay. All three bisphenols induced GFP in a concentration-dependent manner. BPS only partially induced brain aromatase at the highest tested concentrations (>30µM) while BPA and BPF strongly induced GFP, in an ER-dependent manner, at 1-10µM. Furthermore, we show that BPF strongly induced vitellogenin synthesis in adult male zebrafish. Overall, this study demonstrates the estrogenic activity of BPA, BPF and BPS in different cell- and tissue-contexts and at different stages of development. Differences between in vitro and in vivo responses are discussed in light of selective ER activation and the fate of the compounds in the models. This study confirms the relevance of combining cellular and whole-organism bioassays in a unique model species for the hazard assessment of candidate EDCs.
Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Receptores de Estrogênio/metabolismo , Sulfonas/toxicidade , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Aromatase/metabolismo , Bioensaio , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Linhagem Celular , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Estrogênios/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Masculino , Receptores de Estrogênio/genética , Vitelogeninas/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismoRESUMO
Mesoporous silica nanoparticles (MSNs) were covalently coated with antioxidant molecules, namely, caffeic acid (MSN-CAF) or rutin (MSN-RUT), in order to diminish the impact of oxidative stress induced after transfection into cells, thus generating safer carriers used for either drug delivery or other applications. Two cellular models involved in the entry of NPs in the body were used for this purpose: the intestinal Caco-2 and the epidermal HaCaT cell lines. Rutin gave the best results in terms of antioxidant capacities preservation during coupling procedures, cellular toxicity alleviation, and decrease of ROS level after 24 h incubation of cells with grafted nanoparticles. These protective effects of rutin were found more pronounced in HaCaT than in Caco-2 cells, indicating some cellular specificity toward defense against oxidative stress. In order to gain more insight about the Nrf2 response, a stable transfected HaCaT cell line bearing repeats of the antioxidant response element (ARE) in front of a luciferase reporter gene was generated. In this cell line, both tBHQ and quercetin (Nrf2 agonists), but not rutin, were able to induce, in a dose-dependent fashion, the luciferase response. Interestingly, at high concentration, MSN-RUT was able to induce a strong Nrf2 protective response in HaCaT cells, accompanied by a comparable induction of HO-1 mRNA. The level of these responses was again less important in Caco-2 cells. To conclude, in keratinocyte cell line, the coupling of rutin to silica nanoparticles was beneficial in term of ROS reduction, cellular viability, and protective effects mediated through the activation of the Nrf2 antioxidant pathway.
Assuntos
Antioxidantes/química , Nanopartículas/química , Dióxido de Silício/química , Antioxidantes/farmacologia , Células CACO-2 , Catecóis/química , Catecóis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidroquinonas/química , Hidroquinonas/farmacologia , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase , Quercetina/química , Quercetina/farmacologiaRESUMO
Bisphenol A (BPA) is an endocrine disruptor that displays estrogenic activity. Several reports suggest that BPA may have estrogen receptor-independent effects. In zebrafish, 50 µM BPA exposure induces otic vesicle abnormalities, including otolith aggregation. The purpose of this study was to test if BPA action was mediated in vivo during zebrafish development by the orphan nuclear estrogen related receptor (ERR) γ. Combining pharmacological and functional approaches, we demonstrate that the zebrafish ERRγ mediates BPA-induced malformations in otoliths. Using different bisphenol derivatives, we show that different compounds can induce a similar otolith phenotype than BPA and that the binding affinity of these derivatives to the zebrafish ERRγ correlates with their ability to induce otolith malformations. Morpholino knockdown of ERRγ function suppresses the BPA effect on otoliths whereas overexpression of ERRγ led to a BPA-like otolith phenotype. Moreover, a subphenotypical dose of BPA (1 µM) combined with ERRγ overexpression led to a full-dose (50 µM) BPA otolith phenotype. We therefore conclude that ERRγ mediates the otic vesicle phenotype generated by BPA. Our results suggest that the range of pathways perturbed by this compound and its potential harmful effect are larger than expected.-Tohmé, M., Prud'homme, S. M., Boulahtouf, A., Samarut, E., Brunet, F., Bernard, L., Bourguet, W., Gibert, Y., Balaguer, P., Laudet, V. Estrogen-related receptor γ is an in vivo receptor of bisphenol A.
Assuntos
Compostos Benzidrílicos/farmacologia , Fenóis/farmacologia , Ligação Proteica/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Peixe-Zebra/metabolismo , Animais , Membrana dos Otólitos/efeitos dos fármacos , Membrana dos Otólitos/metabolismoRESUMO
Several human and fish bioassays have been designed to characterize the toxicity and the estrogenic activity of chemicals. However, their biotransformation capability (bioactivation/detoxification processes) is rarely reported, although this can influence the estrogenic potency of test compounds. The fate of two estrogenic chemicals, the UV filter benzophenone-2 (BP2) and the bisphenol A substitute bisphenol S (BPS) was deciphered in eight human and zebrafish in vitro cell models, encompassing hepatic and mammary cellular contexts. BP2 and BPS were metabolized into a variety of gluco- and sulfo-conjugated metabolites. Similar patterns of BP2 and BPS biotransformation were observed among zebrafish models (primary hepatocytes, ZFL and ZELH-zfER cell lines). Interestingly, metabolic patterns in zebrafish models and in the human hepatic cell line HepaRG shared many similarities, while biotransformation rates in cell lines widely used for estrogenicity testing (MELN and T47D-KBLuc) were quantitatively low and qualitatively different. This study provides new data on the comparative metabolism of BP2 and BPS in human and fish cellular models that will help characterize their metabolic capabilities, and underlines the relevance of using in vitro zebrafish-based bioassays when screening for endocrine disrupting chemicals.
Assuntos
Benzofenonas/metabolismo , Estrogênios/toxicidade , Hepatócitos/metabolismo , Fenóis/metabolismo , Sulfonas/metabolismo , Peixe-Zebra/metabolismo , Animais , Biotransformação/efeitos dos fármacos , Bovinos , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/metabolismoRESUMO
Multi-residue methods permitting the high-throughput and affordable simultaneous determination of an extended range of endocrine disrupting chemicals (EDCs) with reduced time and cost of analysis is of prime interest in order to characterize a whole set of bioactive compounds. Such a method based on UHPLC-MS/MS measurement and dedicated to 13 estrogenic EDCs was developed and applied to biological matrices. Two molecular recognition-based strategies, either molecular imprinted polymer (MIP) with phenolic template or estrogen receptors (ERα) immobilized on a sorbent, were assessed in terms of recovery and purification efficiency. Both approaches demonstrated their suitability to measure ultra-trace levels of estrogenic EDCs in aqueous samples. Applicability of the MIP procedure to urine and serum samples has also been demonstrated.
Assuntos
Disruptores Endócrinos/sangue , Disruptores Endócrinos/urina , Impressão Molecular/métodos , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/sangue , Poluentes Químicos da Água/urina , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Disruptores Endócrinos/isolamento & purificação , Receptor alfa de Estrogênio/química , Humanos , Proteínas Imobilizadas/química , Água/análise , Poluentes Químicos da Água/isolamento & purificaçãoRESUMO
Nuclear receptors (NRs) are members of a large superfamily of evolutionarily related transcription factors that control a plethora of biological processes. NRs orchestrate complex events such as development, organ homeostasis, metabolism, immune function, and reproduction. Approximately one-half of the 48 human NRs have been shown to act as ligand-regulated transcription factors and respond directly to a large variety of endogenous hormones and metabolites that are generally hydrophobic and small in size (eg, retinoic acid or estradiol). The second half of the NR family comprises the so-called orphan receptors, for which regulatory ligands are still unknown or may not exist despite the presence of a C-terminal ligand-binding domain, which is the hallmark of all NRs. Several chemicals released into the environment (eg, bisphenols, phthalates, parabens, etc) share some physicochemical properties with natural ligands, allowing them to bind to NRs and activate or inhibit their action. Collectively referred to as endocrine disruptors or endocrine-disrupting chemicals (EDCs), these environmental pollutants are highly suspected to cause a wide range of developmental, reproductive, neurological, or metabolic defects in humans and wildlife. Crystallographic studies are revealing unanticipated mechanisms by which chemically diverse EDCs interact with the ligand-binding domain of NRs. These studies thereby provide a rational basis for designing novel chemicals with lower impacts on human and animal health. In this review, we provide a structural and mechanistic view of endocrine disrupting action using estrogen receptors α and ß, (ERα/ß), peroxisome proliferator activated receptor γ (PPARγ), and their respective environmental ligands as representative examples.
RESUMO
BACKGROUND: Acne occurs because the sebaceous glands are overstimulated by high levels of androgens or are hypersensitive to normal levels of testosterone. In women with mild or moderate acne, the association of norgestimate (NG), and ethinyl estradiol (EE) is an effective treatment. This is related to the effect of oral contraceptives on androgen production and transport and the antiandrogenic properties of NG itself. DESIGN: The present work was undertaken to find out whether NG and its derivative, 17-deacetylnorgestimate(dNG), present steroid activities other than antiandrogen activities, using human progesterone receptor(PR), estrogen receptor α(ERα) and ß(ERß), glucocorticoid receptor(GR) and mineralocorticoid receptor(MR)-responsive cell lines. RESULTS: We confirmed that NG and its metabolite were progestogen partial agonists (EC50 of 13 and 11.1 nM) and ERα selective agonists (EC50 of 30.4 and 43.4 nM), as well as full antagonists of low affinity for GR (IC50 of 325 and 255 nM) and moderate affinity for MR (IC50 of 81.2 and 83.7). CONCLUSION: We demonstrated that NG and dNG have full progestogen and weak estrogenic (through ERα) properties, which could explain in part the efficacy of NG in association with EE for the treatment of moderate acne in women. Moreover, their antagonist MR activity might have a favorable impact on cardiovascular risk, atherosclerosis and lipid profiles.
Assuntos
Anticoncepcionais Orais Sintéticos/farmacologia , Receptor alfa de Estrogênio/agonistas , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Norgestrel/análogos & derivados , Progestinas/agonistas , Receptores de Glucocorticoides/antagonistas & inibidores , Linhagem Celular , Humanos , Norgestrel/farmacologiaRESUMO
Bisphenol A (BPA) is an industrial compound and a well known endocrine-disrupting chemical with estrogenic activity. The widespread exposure of individuals to BPA is suspected to affect a variety of physiological functions, including reproduction, development, and metabolism. Here we report that the mechanisms by which BPA and two congeners, bisphenol AF and bisphenol C (BPC), bind to and activate estrogen receptors (ER) α and ß differ from that used by 17ß-estradiol. We show that bisphenols act as partial agonists of ERs by activating the N-terminal activation function 1 regardless of their effect on the C-terminal activation function 2, which ranges from weak agonism (with BPA) to antagonism (with BPC). Crystallographic analysis of the interaction between bisphenols and ERs reveals two discrete binding modes, reflecting the different activities of compounds on ERs. BPA and 17ß-estradiol bind to ERs in a similar fashion, whereas, with a phenol ring pointing toward the activation helix H12, the orientation of BPC accounts for the marked antagonist character of this compound. Based on structural data, we developed a protocol for in silico evaluation of the interaction between bisphenols and ERs or other members of the nuclear hormone receptor family, such as estrogen-related receptor γ and androgen receptor, which are two known main targets of bisphenols. Overall, this study provides a wealth of tools and information that could be used for the development of BPA substitutes devoid of nuclear hormone receptor-mediated activity and more generally for environmental risk assessment.
Assuntos
Disruptores Endócrinos/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Modelos Moleculares , Fenóis/metabolismo , Animais , Compostos Benzidrílicos , Linhagem Celular , Cromatografia em Gel , Cristalografia , Relação Dose-Resposta a Droga , Disruptores Endócrinos/química , Estradiol/metabolismo , Receptor alfa de Estrogênio/isolamento & purificação , Receptor beta de Estrogênio/isolamento & purificação , Polarização de Fluorescência , Humanos , Luciferases , Oncorhynchus mykiss , Fenóis/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERß), whereas the zebrafish genome encodes three ERs, zfERα and two zfERßs (zfERß1 and zfERß2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28°C as compared to 37°C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERß selective agonists displayed greater potency for zfERα as compared to zfERßs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology.
Assuntos
Exposição Ambiental , Estrogênios/metabolismo , Receptores de Estrogênio/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Relação Dose-Resposta a Droga , Exposição Ambiental/efeitos adversos , Estrogênios/química , Estrogênios/farmacologia , Feminino , Genes Reporter/fisiologia , Células HeLa , Humanos , Dados de Sequência Molecular , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Peixe-ZebraRESUMO
The use of complementary and alternative medicine and herbal products, especially traditional Chinese medicines, is progressively rising for both adults and children. This increased use is based on the popular belief that these medicines are safe and harmless. In this report, we describe the results of a bedside-to-bench study that involved a short-statured 4-year-old boy with deficiencies in growth hormone, thyroid stimulating hormone, and adrenocorticotropic hormone due to an ectopic posterior pituitary gland and invisible pituitary stalk. Although the boy was given replacement therapy with hydrocortisone and L-thyroxin, the parents refused to treat him with growth hormone and consulted a naturopath who prescribed a traditional Chinese medicine (TCM) to stimulate the boy's growth. From the age of 20 months, the child's growth was regularly monitored while he was being treated with hydrocortisone, thyroxin, and the TCM. Over a 36-month period, the child's growth velocity accelerated (3 cm/year to 8 cm/year), his height increment substantially increased (-2 SD to -0.8 SD), and his bones matured. In the laboratory investigation, estrogen receptor (ER)alpha and ERbeta reporter cell lines were used to characterize the estrogenic activity of the TCM medicine and its 18 components, and the results established that the medicine and some of its components have estrogen receptor ERalpha and ERbeta selectivity and partial estrogen agonism. Partial estrogenic activity of the TCM was confirmed using whole-cell competitive binding, cell proliferation, and endogenous gene expression assays in the ERalpha-positive breast cancer cell lines. Although the presence of evidence is not always evidence of causality, we have concluded that this traditional Chinese medicine contains ingredients with estrogenic activity that can sustain bone growth and maturation without affecting other estrogen-dependent tissues.