Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Technol Adv Mater ; 16(3): 033504, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27877785

RESUMO

Cardiovascular disease claims millions of lives every year throughout the world. Biomaterials are used widely for the treatment of this fatal disease. With the advent of nanotechnology, the use of nanocomposites has become almost inevitable in the field of biomaterials. The versatile properties of nanocomposites, such as improved durability and biocompatibility, make them an ideal choice for various biomedical applications. Among the various nanocomposites, polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane, bacterial cellulose with polyvinyl alcohol, carbon nanotubes, graphene oxide and nano-hydroxyapatite nanocomposites have gained popularity as putative choices for biomaterials in cardiovascular applications owing to their superior properties. In this review, various studies performed utilizing these nanocomposites for improving the mechanical strength, anti-calcification potential and hemocompatibility of heart valves are reviewed and summarized. The primary motive of this work is to shed light on the emerging nanocomposites for heart valve applications. Furthermore, we aim to promote the prospects of these nanocomposites in the campaign against cardiovascular diseases.

2.
Adv Sci (Weinh) ; 10(29): e2301423, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37594661

RESUMO

Alzheimer's disease (AD) is a leading form of dementia where the presence of extra-neuronal plaques of Amyloid-ß (Aß) is a pathological hallmark. However, Aß peptide is also observed in the intestinal tissues of AD patients and animal models. In this study, it is reported that Aß monomers can target and disintegrate microbial amyloids of FapC and CsgA formed by opportunistic gut pathogens, Pseudomonas aeruginosa and Escherichia coli, explaining a potential role of Aß in the gut-brain axis. Employing a zebrafish-based transparent in vivo system and whole-mount live-imaging, Aß is observed to diffuse into the vasculature and subsequently localize with FapC or CsgA fibrils that were injected into the tail muscles of the fish. FapC aggregates, produced after Aß treatment (Faß), present selective toxicity to SH-SY5Y neuronal cells while the intestinal Caco-2 cells are shown to phagocytose Faß in a non-toxic cellular process. After remodeling by Aß, microbial fibrils lose their native function of cell adhesion with intestinal Caco-2 cells and Aß dissolves and detaches the microbial fibrils already attached to the cell membrane. Taken together, this study strongly indicates an anti-biofilm role for Aß monomers that can help aid in the future development of selective anti-Alzheimer's and anti-infective medicine.


Assuntos
Doença de Alzheimer , Neuroblastoma , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Células CACO-2 , Peixe-Zebra/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Escherichia coli/metabolismo , Biofilmes
3.
Biomaterials ; 302: 122318, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37708659

RESUMO

Nanoparticle-based drug delivery systems (DDS) have shown promising results in reversing hepatic fibrosis, a common pathological basis of chronic liver diseases (CLDs), in preclinical animal models. However, none of these nanoparticle formulations has transitioned to clinical usage and there are currently no FDA-approved drugs available for liver fibrosis. This highlights the need for a better understanding of the challenges faced by nanoparticles in this complex disease setting. Here, we have systematically studied the impact of targeting strategy, the degree of macrophage infiltration during fibrosis, and the severity of fibrosis, on the liver uptake and intrahepatic distribution of nanocarriers. When tested in mice with advanced liver fibrosis, we demonstrated that the targeting ligand density plays a significant role in determining the uptake and retention of the nanoparticles in the fibrotic liver whilst the type of targeting ligand modulates the trafficking of these nanoparticles into the cell population of interest - activated hepatic stellate cells (aHSCs). Engineering the targeting strategy indeed reduced the uptake of nanoparticles in typical mononuclear phagocyte (MPS) cell populations, but not the infiltrated macrophages. Meanwhile, additional functionalization may be required to enhance the efficacy of DDS in end-stage fibrosis/cirrhosis compared to early stages.


Assuntos
Cirrose Hepática , Nanopartículas , Camundongos , Animais , Ligantes , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Fígado/patologia , Biomarcadores
4.
Int J Nanomedicine ; 11: 4339-55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27621626

RESUMO

Management of burn injury is an onerous clinical task since it requires continuous monitoring and extensive usage of specialized facilities. Despite rapid improvizations and investments in burn management, >30% of victims hospitalized each year face severe morbidity and mortality. Excessive loss of body fluids, accumulation of exudate, and the development of septic shock are reported to be the main reasons for morbidity in burn victims. To assist burn wound management, a novel polyurethane (PU)-based bio-nanofibrous dressing loaded with honey (HN) and Carica papaya (PA) fruit extract was fabricated using a one-step electrospinning technique. The developed dressing material had a mean fiber diameter of 190±19.93 nm with pore sizes of 4-50 µm to support effective infiltration of nutrients and gas exchange. The successful blending of HN- and PA-based active biomolecules in PU was inferred through changes in surface chemistry. The blend subsequently increased the wettability (14%) and surface energy (24%) of the novel dressing. Ultimately, the presence of hydrophilic biomolecules and high porosity enhanced the water absorption ability of the PU-HN-PA nanofiber samples to 761.67% from 285.13% in PU. Furthermore, the ability of the bio-nanofibrous dressing to support specific protein adsorption (45%), delay thrombus formation, and reduce hemolysis demonstrated its nontoxic and compatible nature with the host tissues. In summary, the excellent physicochemical and hemocompatible properties of the developed PU-HN-PA dressing exhibit its potential in reducing the clinical complications associated with the treatment of burn injuries.


Assuntos
Bandagens , Queimaduras/tratamento farmacológico , Carica/química , Mel , Nanofibras/química , Extratos Vegetais/farmacologia , Poliuretanos/química , Adsorção , Queimaduras/fisiopatologia , Gerenciamento Clínico , Hemólise/efeitos dos fármacos , Humanos , Porosidade , Cicatrização/efeitos dos fármacos
5.
Int J Nanomedicine ; 10: 5909-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26425089

RESUMO

Developing multifaceted, biocompatible, artificial implants for tissue engineering is a growing field of research. In recent times, several works have been reported about the utilization of biomolecules in combination with synthetic materials to achieve this process. Accordingly, in this study, the ability of an extract obtained from Aloe vera, a commonly used medicinal plant in influencing the biocompatibility of artificial material, is scrutinized using metallocene polyethylene (mPE). The process of coating dense fibrous Aloe vera extract on the surface of mPE was carried out using microwaves. Then, several physicochemical and blood compatibility characterization experiments were performed to disclose the effects of corresponding surface modification. The Fourier transform infrared spectrum showed characteristic vibrations of several active constituents available in Aloe vera and exhibited peak shifts at far infrared regions due to aloe-based mineral deposition. Meanwhile, the contact angle analysis demonstrated a drastic increase in wettability of coated samples, which confirmed the presence of active components on glazed mPE surface. Moreover, the bio-mimic structure of Aloe vera fibers and the influence of microwaves in enhancing the coating characteristics were also meticulously displayed through scanning electron microscopy micrographs and Hirox 3D images. The existence of nanoscale roughness was interpreted through high-resolution profiles obtained from atomic force microscopy. And the extent of variations in irregularities was delineated by measuring average roughness. Aloe vera-induced enrichment in the hemocompatible properties of mPE was established by carrying out in vitro tests such as activated partial thromboplastin time, prothrombin time, platelet adhesion, and hemolysis assay. In conclusion, the Aloe vera-glazed mPE substrate was inferred to attain desirable properties required for multifaceted biomedical implants.


Assuntos
Aloe/química , Compostos Organometálicos/química , Polietileno/química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Eritrócitos/efeitos dos fármacos , Humanos , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Micro-Ondas , Tempo de Tromboplastina Parcial , Extratos Vegetais/química , Adesividade Plaquetária/efeitos dos fármacos , Próteses e Implantes , Tempo de Protrombina , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Molhabilidade
6.
Int J Nanomedicine ; 10: 4267-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26170663

RESUMO

Neuroregeneration is the regrowth or repair of nervous tissues, cells, or cell products involved in neurodegeneration and inflammatory diseases of the nervous system like Alzheimer's disease and Parkinson's disease. Nowadays, application of nanotechnology is commonly used in developing nanomedicines to advance pharmacokinetics and drug delivery exclusively for central nervous system pathologies. In addition, nanomedical advances are leading to therapies that disrupt disarranged protein aggregation in the central nervous system, deliver functional neuroprotective growth factors, and change the oxidative stress and excitotoxicity of affected neural tissues to regenerate the damaged neurons. Carbon nanotubes and graphene are allotropes of carbon that have been exploited by researchers because of their excellent physical properties and their ability to interface with neurons and neuronal circuits. This review describes the role of carbon nanotubes and graphene in neuroregeneration. In the future, it is hoped that the benefits of nanotechnologies will outweigh their risks, and that the next decade will present huge scope for developing and delivering technologies in the field of neuroscience.


Assuntos
Sistemas de Liberação de Medicamentos , Grafite , Nanomedicina , Nanotubos de Carbono , Regeneração Nervosa
7.
Anticancer Agents Med Chem ; 15(1): 48-56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25052987

RESUMO

Recent statistics revealed that cancer is one among the main reasons for death throughout the world. Several treatments are available but still there is no cure when it is detected at late stages. One of the treatment modes for cancer is chemotherapy which utilizes anticancer drugs in order to eradicate the cancer cells by apoptosis. Apoptosis is a programmed cell death through which body maintains homeostasis or kills cancer cells by utilizing its cell machinery. Recent researches have concluded that dietary agents have a putative role in instituting apoptosis of cancer cells. Honey, one of the victuals rich in antioxidants, has a long-standing exposure to humans and its role in cancer prevention and treatment is a topic of current interest. Various researchers have been experimenting honey against different cancers and provided valuable insights about the apoptosis induced by the honey. This review will highlight the recent findings of apoptotic mechanism involved in different cancer cells. Further it also reports antitumor activity of honey in some animal models. Hence it is high-time to initiate more preclinical trials as well as clinical experiments which would further add to the knowledge of anticancer nature of honey and also endorse honey as a potential candidate in the war against cancer.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Fatores Biológicos/farmacologia , Fatores Biológicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Mel , Humanos
8.
Int J Nanomedicine ; 10: 2785-803, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25897223

RESUMO

Cardiovascular disease is the leading cause of death across the globe. The use of synthetic materials is indispensable in the treatment of cardiovascular disease. Major drawbacks related to the use of biomaterials are their mechanical properties and biocompatibility, and these have to be circumvented before promoting the material to the market or clinical setting. Revolutionary advancements in nanotechnology have introduced a novel class of materials called nanocomposites which have superior properties for biomedical applications. Recently, there has been a widespread recognition of the nanocomposites utilizing polyhedral oligomeric silsesquioxane, bacterial cellulose, silk fibroin, iron oxide magnetic nanoparticles, and carbon nanotubes in cardiovascular grafts and stents. The unique characteristics of these nanocomposites have led to the development of a wide range of nanostructured copolymers with appreciably enhanced properties, such as improved mechanical, chemical, and physical characteristics suitable for cardiovascular implants. The incorporation of advanced nanocomposite materials in cardiovascular grafts and stents improves hemocompatibility, enhances antithrombogenicity, improves mechanical and surface properties, and decreases the microbial response to the cardiovascular implants. A thorough attempt is made to summarize the various applications of nanocomposites for cardiovascular graft and stent applications. This review will highlight the recent advances in nanocomposites and also address the need of future research in promoting nanocomposites as plausible candidates in a campaign against cardiovascular disease.


Assuntos
Prótese Vascular , Doenças Cardiovasculares/terapia , Nanocompostos/química , Stents , Humanos
9.
Biomed Res Int ; 2014: 459465, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24895577

RESUMO

Cardiovascular biomaterials (CB) dominate the category of biomaterials based on the demand and investments in this field. This review article classifies the CB into three major classes, namely, metals, polymers, and biological materials and collates the information about the CB. Blood compatibility is one of the major criteria which limit the use of biomaterials for cardiovascular application. Several key players are associated with blood compatibility and they are discussed in this paper. To enhance the compatibility of the CB, several surface modification strategies were in use currently. Some recent applications of surface modification technology on the materials for cardiovascular devices were also discussed for better understanding. Finally, the current trend of the CB, endothelization of the cardiac implants and utilization of induced human pluripotent stem cells (ihPSCs), is also presented in this review. The field of CB is growing constantly and many new investigators and researchers are developing interest in this domain. This review will serve as a one stop arrangement to quickly grasp the basic research in the field of CB.


Assuntos
Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/uso terapêutico , Doenças Cardiovasculares/terapia , Próteses e Implantes , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Animais , Humanos , Engenharia Tecidual/métodos
10.
World J Gastroenterol ; 20(45): 17029-36, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25493015

RESUMO

Colon cancer arises due to the conversion of precancerous polyps (benign) found in the inner lining of the colon. Prevention is better than cure, and this is very true with respect to colon cancer. Various epidemiologic studies have linked colorectal cancer with food intake. Apple and berry juices are widely consumed among various ethnicities because of their nutritious values. In this review article, chemopreventive effects of these fruit juices against colon cancer are discussed. Studies dealing with bioavailability, in vitro and in vivo effects of apple and berry juices are emphasized in this article. A thorough literature survey indicated that various phenolic phytochemicals present in these fruit juices have the innate potential to inhibit colon cancer cell lines. This review proposes the need for more preclinical evidence for the effects of fruit juices against different colon cancer cells, and also strives to facilitate clinical studies using these juices in humans in large trials. The conclusion of the review is that these apple and berry juices will be possible candidates in the campaign against colon cancer.


Assuntos
Anticarcinógenos/administração & dosagem , Bebidas , Neoplasias do Colo/prevenção & controle , Dieta , Frutas , Malus , Compostos Fitoquímicos/administração & dosagem , Administração Oral , Animais , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/epidemiologia , Humanos , Fatores de Proteção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa