Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Neurooncol ; 147(3): 531-545, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32180106

RESUMO

PURPOSE: MYC-driven medulloblastomas are highly aggressive childhood tumors with dismal outcomes and a lack of new treatment paradigms. We identified that targeting replication stress through WEE1 inhibition to suppress the S-phase replication checkpoint, combined with the attenuation of nucleotide synthesis with gemcitabine, is an effective strategy to induce apoptosis in MYC-driven medulloblastoma that could be rapidly translated into early phase clinical trials in children. Attenuation of replication stress is a key component of MYC-driven oncogenesis. Previous studies revealed a vulnerability in MYC medulloblastoma through WEE1 inhibition. Here, we focused on elucidating combinations of agents to synergize with WEE1 inhibition and drive replication stress toward cell death. METHODS: We first analyzed WEE1 expression in patient tissues by immunohistochemistry. Next, we used high-throughput drug screens to identify agents that would synergize with WEE1 inhibition. Synergy was confirmed by in vitro live cell imaging, ex vivo slice culture models, and in vivo studies using orthotopic and flank xenograft models. RESULTS: WEE1 expression was significantly higher in Group 3 and 4 medulloblastoma patients. The WEE1 inhibitor AZD1775 synergized with inhibitors of nucleotide synthesis, including gemcitabine. AZD1775 with gemcitabine suppressed proliferation and induced apoptosis. Ex vivo modeling demonstrated efficacy in Group 3 medulloblastoma patients, and in vivo modeling confirmed that combining AZD1775 and gemcitabine effectively suppressed tumor growth. CONCLUSION: Our results identified a potent new synergistic treatment combination for MYC-driven medulloblastoma that warrants exploration in early phase clinical trials.


Assuntos
Antineoplásicos/administração & dosagem , Proteínas de Ciclo Celular/metabolismo , Neoplasias Cerebelares/metabolismo , Desoxicitidina/análogos & derivados , Genes myc/genética , Meduloblastoma/metabolismo , Proteínas Tirosina Quinases/metabolismo , Pirazóis/administração & dosagem , Pirimidinonas/administração & dosagem , Animais , Linhagem Celular Tumoral , Neoplasias Cerebelares/tratamento farmacológico , Desoxicitidina/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Feminino , Humanos , Meduloblastoma/tratamento farmacológico , Camundongos Transgênicos , Gencitabina
2.
BMC Cancer ; 16: 647, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27538997

RESUMO

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive, fatal, childhood tumors that arise in the brainstem. DIPGs have no effective treatment, and their location and diffuse nature render them inoperable. Radiation therapy remains the only standard of care for this devastating disease. New therapeutic targets are needed to develop novel therapy for DIPG. METHODS: We examined the expression of PLK1 mRNA in DIPG tumor samples through microarray analysis and found it to be up regulated versus normal pons. Using the DIPG tumor cells, we inhibited PLK1 using a clinically relevant specific inhibitor BI 6727 and evaluated the effects on, proliferation, apoptosis, induction of DNA damage and radio sensitization of the DIPG tumor cells. RESULTS: Treatment of DIPG cell lines with BI 6727, a new generation, highly selective inhibitor of PLK1, resulted in decreased cell proliferation and a marked increase in cellular apoptosis. Cell cycle analysis showed a significant arrest in G2-M phase and a substantial increase in cell death. Treatment also resulted in an increased γH2AX expression, indicating induction of DNA damage. PLK1 inhibition resulted in radiosensitization of DIPG cells. CONCLUSION: These findings suggest that targeting PLK1 with small-molecule inhibitors, in combination with radiation therapy, will hold a novel strategy in the treatment of DIPG that warrants further investigation.


Assuntos
Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular/genética , Glioma/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Pteridinas/farmacologia , Radiossensibilizantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA/métodos , Regulação para Cima/efeitos dos fármacos , Quinase 1 Polo-Like
3.
Stem Cells ; 32(3): 662-73, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24038734

RESUMO

Regulation of hematopoietic stem cell proliferation, lineage commitment, and differentiation in adult vertebrates requires extrinsic signals provided by cells in the marrow microenvironment (ME) located within the bone marrow. Both secreted and cell-surface bound factors critical to this regulation have been identified, yet control of their expression by cells within the ME has not been addressed. Herein we hypothesize that microRNAs (miRNAs) contribute to their controlled expression. MiRNAs are small noncoding RNAs that bind to target mRNAs and downregulate gene expression by either initiating mRNA degradation or preventing peptide translation. Testing the role of miRNAs in downregulating gene expression has been difficult since conventional techniques used to define miRNA-mRNA interactions are indirect and have high false-positive and negative rates. In this report, a genome-wide biochemical technique (high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation or HITS-CLIP) was used to generate unbiased genome-wide maps of miRNA-mRNA interactions in two critical cellular components of the marrow ME: marrow stromal cells and bone marrow endothelial cells. Analysis of these datasets identified miRNAs as direct regulators of JAG1, WNT5A, MMP2, and VEGFA; four factors that are important to ME function. Our results show the feasibility and utility of unbiased genome-wide biochemical techniques in dissecting the role of miRNAs in regulation of complex tissues such as the marrow ME.


Assuntos
Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Genoma Humano/genética , MicroRNAs/metabolismo , Proteínas Argonautas/metabolismo , Sequência de Bases , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Microambiente Celular , Regulação para Baixo/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Metaloproteinase 2 da Matriz/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , MicroRNAs/genética , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Serrate-Jagged , Células Estromais/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a
4.
J Biol Chem ; 288(3): 1918-28, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23212916

RESUMO

Aberrant expression of microRNAs has been implicated in many cancers. We recently demonstrated differential expression of several microRNAs in medulloblastoma. In this study, the regulation and function of microRNA 218 (miR-218), which is significantly underexpressed in medulloblastoma, was evaluated. Re-expression of miR-218 resulted in a significant decrease in medulloblastoma cell growth, cell colony formation, cell migration, invasion, and tumor sphere size. We used C17.2 neural stem cells as a model to show that increased miR-218 expression results in increased cell differentiation and also decreased malignant transformation when transfected with the oncogene REST. These results suggest that miR-218 acts as a tumor suppressor in medulloblastoma. MicroRNAs function by down-regulating translation of target mRNAs. Targets are determined by imperfect base pairing of the microRNA to the 3'-UTR of the mRNA. To comprehensively identify actual miR-218 targets, medulloblastoma cells overexpressing miR-218 and control cells were subjected to high throughput sequencing of RNA isolated by cross-linking immunoprecipitation, a technique that identifies the mRNAs bound to the RNA-induced silencing complex component protein Argonaute 2. High throughput sequencing of mRNAs identified 618 genes as targets of miR-218 and included both previously validated targets and many targets not predicted computationally. Additional work further confirmed CDK6, RICTOR, and CTSB (cathepsin B) as targets of miR-218 and examined the functional role of one of these targets, CDK6, in medulloblastoma.


Assuntos
Neoplasias Cerebelares/genética , Cerebelo/metabolismo , Regulação Neoplásica da Expressão Gênica , Meduloblastoma/genética , MicroRNAs/genética , RNA Mensageiro/antagonistas & inibidores , Regiões 3' não Traduzidas , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Catepsina B/genética , Catepsina B/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Cerebelo/patologia , Pré-Escolar , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Camundongos , MicroRNAs/metabolismo , Invasividade Neoplásica , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Fenótipo , RNA Mensageiro/biossíntese , Proteína Companheira de mTOR Insensível à Rapamicina , Proteínas Repressoras , Transdução de Sinais
5.
Mol Cancer ; 13: 72, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24661910

RESUMO

BACKGROUND: Medulloblastoma is the most common type of malignant brain tumor that afflicts children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients do poorly with significant morbidity. METHODS: To identify new molecular targets, we performed an integrated genomic analysis using structural and functional methods. Gene expression profiling in 16 medulloblastoma patient samples and subsequent gene set enrichment analysis indicated that cell cycle-related kinases were associated with disease development. In addition a kinome-wide small interfering RNA (siRNA) screen was performed to identify kinases that, when inhibited, could prevent cell proliferation. The two genome-scale analyses were combined to identify key vulnerabilities in medulloblastoma. The inhibition of one of the identified targets was further investigated using RNAi and a small molecule inhibitor. RESULTS: Combining the two analyses revealed that mitosis-related kinases were critical determinants of medulloblastoma cell proliferation. RNA interference (RNAi)-mediated knockdown of WEE1 kinase and other mitotic kinases was sufficient to reduce medulloblastoma cell proliferation. These data prompted us to examine the effects of inhibiting WEE1 by RNAi and by a small molecule inhibitor of WEE1, MK-1775, in medulloblastoma cell lines. MK-1775 inhibited the growth of medulloblastoma cell lines, induced apoptosis and increased DNA damage at nanomolar concentrations. Further, MK-1775 was synergistic with cisplatin in reducing medulloblastoma cell proliferation and resulted in an associated increase in cell death. In vivo MK-1775 suppressed medulloblastoma tumor growth as a single agent. CONCLUSIONS: Taken together, these findings highlight mitotic kinases and, in particular, WEE1 as a rational therapeutic target for medulloblastoma.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Meduloblastoma/genética , Terapia de Alvo Molecular , Proteínas Nucleares/biossíntese , Proteínas Tirosina Quinases/biossíntese , Apoptose/efeitos dos fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Pré-Escolar , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano , Genômica , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Proteínas Nucleares/genética , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Tirosina Quinases/genética , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Pirimidinonas
6.
Nat Commun ; 15(1): 4616, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816355

RESUMO

Dynamic regulation of gene expression is fundamental for cellular adaptation to exogenous stressors. P-TEFb-mediated pause-release of RNA polymerase II (Pol II) is a conserved regulatory mechanism for synchronous transcriptional induction in response to heat shock, but this pro-survival role has not been examined in the applied context of cancer therapy. Using model systems of pediatric high-grade glioma, we show that rapid genome-wide reorganization of active chromatin facilitates P-TEFb-mediated nascent transcriptional induction within hours of exposure to therapeutic ionizing radiation. Concurrent inhibition of P-TEFb disrupts this chromatin reorganization and blunts transcriptional induction, abrogating key adaptive programs such as DNA damage repair and cell cycle regulation. This combination demonstrates a potent, synergistic therapeutic potential agnostic of glioma subtype, leading to a marked induction of tumor cell apoptosis and prolongation of xenograft survival. These studies reveal a central role for P-TEFb underpinning the early adaptive response to radiotherapy, opening avenues for combinatorial treatment in these lethal malignancies.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioma , Fator B de Elongação Transcricional Positiva , Humanos , Glioma/radioterapia , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Animais , Fator B de Elongação Transcricional Positiva/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Camundongos , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Transcrição Gênica/efeitos da radiação , Apoptose/efeitos da radiação , Apoptose/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Reparo do DNA/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
7.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747867

RESUMO

Dynamic regulation of gene expression is fundamental for cellular adaptation to exogenous stressors. PTEFb-mediated pause-release of RNA polymerase II (Pol II) is a conserved regulatory mechanism for synchronous transcriptional induction in response to heat shock, but this pro-survival role has not been examined in the applied context of cancer therapy. Using model systems of pediatric high-grade glioma, we show that rapid genome-wide reorganization of active chromatin facilitates PTEFb-mediated nascent transcriptional induction within hours of exposure to therapeutic ionizing radiation. Concurrent inhibition of PTEFb disrupts this chromatin reorganization and blunts transcriptional induction, abrogating key adaptive programs such as DNA damage repair and cell cycle regulation. This combination demonstrates a potent, synergistic therapeutic potential agnostic of glioma subtype, leading to a marked induction of tumor cell apoptosis and prolongation of xenograft survival. These studies reveal a central role for PTEFb underpinning the early adaptive response to radiotherapy, opening new avenues for combinatorial treatment in these lethal malignancies.

8.
Int J Oncol ; 60(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35179215

RESUMO

Atypical teratoid rhabdoid tumor (ATRT) is a highly aggressive pediatric brain tumor. Despite radiation, aggressive chemotherapy and autologous stem cell rescue, children usually have a poor survival time. In the present study, the role of TP53/MDM2 interaction in ATRT was investigated. A functional genomic screen identified the TP53/MDM2 axis as a therapeutic target in the central nervous system (CNS) ATRT. Gene expression analysis revealed that all ATRT sub­groups expressed high levels of MDM2, which is a negative regulator of TP53. Using cell viability, colony formation and methylcellulose assays it was found that genetic MDM2 inhibition with short hairpin RNA or chemical MDM2 inhibition with small molecule inhibitors, Nutlin3 and idasanutlin (RG7388) decreased the growth of ATRT cell lines. Furthermore, idasanutlin significantly decreased the growth of intracranial orthotopic ATRT brain tumors, as evaluated using T2 MRI, and prolonged survival time relative to control animals. MRI of intracranial tumors showed that diffusion coefficient, an effective marker for successful treatment, significantly increased with idasanutlin treatment showing tumor necrosis/apoptosis. Immunohistochemistry revealed an increased number of caspase­3­positive cells in the idasanutlin treatment group, confirming the induction of apoptosis in vivo. Using flow cytometry and western blot analysis we show that inhibition of MDM2 enhanced radiation sensitivity in vitro by potentiating DNA damage via the induction of the TP53/Bax/Puma proapoptotic axis. Furthermore, DNA damage was associated with increased mitochondrial reactive oxygen species accumulation. The present study demonstrated that MDM2 expression level was increased in ATRT patient samples and MDM2 inhibition suppressed ATRT cell growth in vitro, and leads to apoptosis in vivo. MDM2 inhibition potentiates DNA damage and sensitizes ATRT cells to radiation. These findings highlight the TP53/MDM2 axis as a rational therapeutic target in CNS ATRT.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/efeitos dos fármacos , Tolerância a Radiação/efeitos dos fármacos , Tumor Rabdoide/radioterapia , Proteína Supressora de Tumor p53/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Proliferação de Células/efeitos dos fármacos , Colorado , Humanos , Tolerância a Radiação/genética , Teratoma/radioterapia
9.
Clin Cancer Res ; 28(11): 2409-2424, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35344040

RESUMO

PURPOSE: Tumor relapse after radiotherapy is a major hurdle in treating pediatric H3K27M-mutant diffuse midline gliomas (DMG). Radiotherapy-induced stress increases association of BCL2 family of proteins with BH3 pro-apoptotic activators preventing apoptosis. We hypothesized that inhibition of radiotherapy-induced BCL2 with a clinically relevant inhibitor, venetoclax, will block BCL2 activity leading to increased apoptosis. BCL2 has never been implicated in DMG as a radiotherapy-induced resistant mechanism. EXPERIMENTAL DESIGN: We performed an integrated genomic analysis to determine genes responsible for radioresistance and a targeted drug screen to identify drugs that synergize with radiation in DMG. Effect of venetoclax on radiation-naïve and 6 Gy radiation on cells was evaluated by studying cell death, changes in BCL2 phosphorylation, reactive oxygen species (ROS), and apoptosis, as well as BCL2 association with BH3 apoptosis initiators. The efficacy of combining venetoclax with radiation was evaluated in vivo using orthotopic xenograft models. RESULTS: BCL2 was identified as a key regulator of tumor growth after radiation in DMGs. Radiation sensitizes DMGs to venetoclax treatment independent of p53 status. Venetoclax as a monotherapy was not cytotoxic to DMG cells. Postradiation venetoclax treatment significantly increased cell death, reduced BCL2-BIM association, and augmented mitochondrial ROS leading to increased apoptosis. Combining venetoclax with radiotherapy significantly enhanced the survival of mice with DMG tumors. CONCLUSIONS: This study shows that venetoclax impedes the antiapoptotic function of radiation-induced BCL2 in DMG, leading to increased apoptosis. Results from these preclinical studies demonstrate the potential use of the BCL2 inhibitor venetoclax combined with radiotherapy for pediatric DMG.


Assuntos
Antineoplásicos , Glioma , Animais , Antineoplásicos/farmacologia , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/radioterapia , Humanos , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2 , Radiação Ionizante , Espécies Reativas de Oxigênio , Sulfonamidas
10.
Neuro Oncol ; 24(3): 414-426, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-34477871

RESUMO

BACKGROUND: Group 3 medulloblastoma (MB) is often accompanied by MYC amplification. PLK1 is an oncogenic kinase that controls cell cycle and proliferation and has been preclinically validated as a cancer therapeutic target. Onvansertib (PCM-075) is a novel, orally available PLK1 inhibitor, which shows tumor growth inhibition in various types of cancer. We aim to explore the effect of onvansertib on MYC-driven medulloblastoma as a monotherapy or in combination with radiation. METHODS: Crisper-Cas9 screen was used to discover essential genes for MB tumor growth. Microarray and immunohistochemistry on pediatric patient samples were performed to examine the expression of PLK1. The effect of onvansertib in vitro was measure by cell viability, colony-forming assays, extreme limiting dilution assay, and RNA-Seq. ALDH activity, cell-cycle distribution, and apoptosis were analyzed by flow cytometry. DNA damage was assessed by immunofluorescence staining. Medulloblastoma xenografts were generated to explore the monotherapy or radio-sensitizing effect. RESULTS: PLK1 is overexpressed in Group 3 MB. The IC50 concentrations of onvansertib in Group 3 MB cell lines were in a low nanomolar range. Onvansertib reduced colony formation, cell proliferation, stem cell renewal and induced G2/M arrest in vitro. Moreover, onvansertib in combination with radiation increased DNA damage and apoptosis compared with radiation treatment alone. The combination radiotherapy resulted in marked tumor regression in xenografts. CONCLUSIONS: These findings demonstrate the efficacy of a novel PLK1 inhibitor onvansertib in vitro and in xenografts of Group 3 MB, which suggests onvansertib is an effective strategy as monotherapy or in combination with radiotherapy in MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Apoptose , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Cerebelares/patologia , Criança , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/patologia , Meduloblastoma/radioterapia , Piperazinas , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Pirazóis , Quinazolinas
11.
Cell Rep ; 31(1): 107485, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268092

RESUMO

Histone 3 gene mutations are the eponymous drivers in diffuse midline gliomas (DMGs), aggressive pediatric brain cancers for which no curative therapy currently exists. These recurrent oncohistones induce a global loss of repressive H3K27me3 residues and broad epigenetic dysregulation. In order to identify therapeutically targetable dependencies within this disease context, we performed an RNAi screen targeting epigenetic/chromatin-associated genes in patient-derived DMG cultures. This identified AFF4, the scaffold protein of the super elongation complex (SEC), as a molecular dependency in DMG. Interrogation of SEC function demonstrates a key role for maintaining clonogenic potential while promoting self-renewal of tumor stem cells. Small-molecule inhibition of SEC using clinically relevant CDK9 inhibitors restores regulatory RNA polymerase II pausing, promotes cellular differentiation, and leads to potent anti-tumor effect both in vitro and in patient-derived xenograft models. These studies present a rationale for further exploration of SEC inhibition as a promising therapeutic approach to this intractable disease.


Assuntos
Glioma/genética , Histonas/genética , Fatores de Elongação da Transcrição/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Epigênese Genética/genética , Epigenômica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Glioma/metabolismo , Histonas/metabolismo , Humanos , Fatores de Elongação da Transcrição/genética
12.
Cell Rep ; 33(3): 108286, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33086074

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is an incurable brain tumor of childhood characterized by histone mutations at lysine 27, which results in epigenomic dysregulation. There has been a failure to develop effective treatment for this tumor. Using a combined RNAi and chemical screen targeting epigenomic regulators, we identify the polycomb repressive complex 1 (PRC1) component BMI1 as a critical factor for DIPG tumor maintenance in vivo. BMI1 chromatin occupancy is enriched at genes associated with differentiation and tumor suppressors in DIPG cells. Inhibition of BMI1 decreases cell self-renewal and attenuates tumor growth due to induction of senescence. Prolonged BMI1 inhibition induces a senescence-associated secretory phenotype, which promotes tumor recurrence. Clearance of senescent cells using BH3 protein mimetics co-operates with BMI1 inhibition to enhance tumor cell killing in vivo.


Assuntos
Envelhecimento/genética , Glioma Pontino Intrínseco Difuso/genética , Complexo Repressor Polycomb 1/metabolismo , Astrocitoma/genética , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Criança , Pré-Escolar , Cromatina/genética , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/metabolismo , Epigenômica , Feminino , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Mutação , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/genética
13.
Oncogene ; 39(12): 2641, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31969682

RESUMO

The original version of this Article omitted the following from the Acknowledgements: This work was supported by the Luke's Army Pediatric Cancer Research Fund St. Baldrick's Scholar Award. This has now been corrected in both the PDF and HTML versions of the Article.

14.
Oncogene ; 39(11): 2305-2327, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31844250

RESUMO

High-grade gliomas (HGG) afflict both children and adults and respond poorly to current therapies. Epigenetic regulators have a role in gliomagenesis, but a broad, functional investigation of the impact and role of specific epigenetic targets has not been undertaken. Using a two-step, in vitro/in vivo epigenomic shRNA inhibition screen, we determine the chromatin remodeler BPTF to be a key regulator of adult HGG growth. We then demonstrate that BPTF knockdown decreases HGG growth in multiple pediatric HGG models as well. BPTF appears to regulate tumor growth through cell self-renewal maintenance, and BPTF knockdown leads these glial tumors toward more neuronal characteristics. BPTF's impact on growth is mediated through positive effects on expression of MYC and MYC pathway targets. HDAC inhibitors synergize with BPTF knockdown against HGG growth. BPTF inhibition is a promising strategy to combat HGG through epigenetic regulation of the MYC oncogenic pathway.

15.
Oncotarget ; 8(57): 97290-97303, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29228610

RESUMO

Atypical teratoid rhabdoid tumor (ATRT) is an aggressive and malignant pediatric brain tumor. Polo-like kinase 1 (PLK1) is highly expressed in many cancers and essential for mitosis. Overexpression of PLK1 promotes chromosome instability and aneuploidy by overriding the G2-M DNA damage and spindle checkpoints. Recent studies suggest that targeting PLK1 by small molecule inhibitors is a promising approach to tumor therapy. We investigated the effect of PLK1 inhibition in ATRT. Gene expression analysis showed that PLK1 was overexpressed in ATRT patient samples and tumor cell lines. Genetic inhibition of PLK1 with shRNA potently suppressed ATRT cell growth in vitro. Treatment with the PLK1 inhibitor BI 6727 (Volasertib) significantly decreased cell growth, inhibited clonogenic potential, and induced apoptosis. BI6727 treatment led to G2-M phase arrest, consistent with PLK1's role as a critical regulator of mitosis. Moreover, inhibition of PLK1 by BI6727 suppressed the tumor-sphere formation of ATRT cells. Treatment also significantly decreased levels of the DNA damage proteins Ku80 and RAD51 and increased γ-H2AX expression, indicating that BI 6727 can induce DNA damage. Importantly, BI6727 significantly enhanced radiation sensitivity of ATRT cells. In vivo, BI6727 slowed growth of ATRT tumors and prolonged survival in a xenograft model. PLK1 inhibition is a compelling new therapeutic approach for treating ATRT, and the use of BI6727 should be evaluated in clinical studies.

16.
Neuro Oncol ; 19(10): 1350-1360, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28510691

RESUMO

BACKGROUND: Inflammation has been identified as a hallmark of high-risk Group A (GpA) ependymoma (EPN). Chronic interleukin (IL)-6 secretion from GpA tumors drives an immune suppressive phenotype by polarizing infiltrating monocytes. This study determines the mechanism by which IL-6 is dysregulated in GpA EPN. METHODS: Twenty pediatric GpA and 21 pediatric Group B (GpB) EPN had gene set enrichment analysis for MSigDB Hallmark gene sets performed. Protein and RNA from patients and cell lines were used to validate transcriptomic findings. GpA cell lines 811 and 928 were used for in vitro experiments performed in this study. RESULTS: The nuclear factor-kappaB (NF-κB) pathway is a master regulator of IL-6 and a signaling pathway enriched in GpA compared with GpB EPN. Knockdown of NF-κB led to significant downregulation of IL-6 in 811 and 928. NF-κB activation was independent of tumor necrosis factor alpha (TNF-α) stimulation in both cell lines, suggesting that NF-κB hyperactivation is mediated through an alternative mechanism. Leucine zipper downregulated in cancer 1 (LDOC1) is a known transcriptional repressor of NF-κB. In many cancers, LDOC1 promoter is methylated, which inhibits gene transcription. We found decreased LDOC1 gene expression in GpA compared with GpB EPN, and in other pediatric brain tumors. EPN cells treated with 5AZA-DC, demethylated LDOC1 regulatory regions, upregulated LDOC1 expression, and concomitantly decreased IL-6 secretion. Stable knockdown of LDOC1 in EPN cell lines resulted in a significant increase in gene transcription of v-rel avian reticuloendotheliosis viral oncogene homolog A, which correlated to an increase in NF-κB target genes. CONCLUSION: These results suggest that epigenetic silencing of LDOC1 in GpA EPN regulates tumor biology and drives inflammatory immune phenotype.


Assuntos
Ependimoma/metabolismo , Imunofenotipagem , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Ependimoma/genética , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imunofenotipagem/métodos , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Ativação Transcricional/fisiologia , Proteínas Supressoras de Tumor/metabolismo
17.
Oncotarget ; 7(33): 53881-53894, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27449089

RESUMO

Checkpoint kinase 1 (CHK1) is an integral component of the cell cycle as well as the DNA Damage Response (DDR) pathway. Previous work has demonstrated the effectiveness of inhibiting CHK1 with small-molecule inhibitors, but the role of CHK1 mediated DDR in medulloblastoma is unknown. CHK1, both at the mRNA and protein level, is highly expressed in medulloblastoma and elevated CHK1 expression in Group3 medulloblastoma is an adverse prognostic marker. CHK1 inhibition with the small-molecule drug AZD7762, results in decreased cell growth, increased DNA damage and cell apoptosis. Furthermore, AZD7762 acts in synergy with cisplatin in reducing cell proliferation in medulloblastoma. Similar phenotypic changes were observed with another CHK1 inhibitor, PF477736, as well as genetic knockdown using siRNA against CHK1. Treatments with small-molecule inhibitors of CHK1 profoundly modulated the expression of both upstream and downstream target proteins within the CHK1 signaling pathways. This suggests the presence of a feedback loop in activating CHK1. Overall, our results demonstrate that small-molecule inhibition of CHK1 in combination with, cisplatin, is more advantageous than either treatment alone, especially for Group 3 medulloblastoma, and therefore this combined therapeutic approach serves as an avenue for further investigation.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Cerebelares/patologia , Quinase 1 do Ponto de Checagem/biossíntese , Meduloblastoma/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Benzodiazepinonas/farmacologia , Biomarcadores Tumorais/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Cerebelares/enzimologia , Neoplasias Cerebelares/mortalidade , Cisplatino/farmacologia , Intervalo Livre de Doença , Genes myc , Humanos , Estimativa de Kaplan-Meier , Meduloblastoma/enzimologia , Meduloblastoma/mortalidade , Prognóstico , Pirazóis/farmacologia , Tiofenos/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia
18.
Oncotarget ; 5(9): 2355-71, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24796395

RESUMO

Medulloblastoma is a pediatric brain tumor with a variable prognosis due to clinical and genomic heterogeneity. Among the 4 major genomic sub-groups, patients with MYC amplified tumors have a particularly poor prognosis despite therapy with surgery, radiation and chemotherapy. Targeting the MYC oncogene has traditionally been problematic. Here we report that MYC driven medulloblastoma can be targeted by inhibition of the bromodomain protein BRD4. We show that bromodomain inhibition with JQ1 restricts c-MYC driven transcriptional programs in medulloblastoma, suppresses medulloblastoma cell growth and induces a cell cycle arrest. Importantly JQ1 suppresses stem cell associated signaling in medulloblastoma cells and inhibits medulloblastoma tumor cell self-renewal. Additionally JQ1 also promotes senescence in medulloblastoma cells by activating cell cycle kinase inhibitors and inhibiting activity of E2F1. Furthermore BRD4 inhibition displayed an anti-proliferative, pro-senescence effect in a medulloblastoma model in vivo. In clinical samples we found that transcriptional programs suppressed by JQ1 are associated with adverse risk in medulloblastoma patients. Our work indicates that BRD4 inhibition attenuates stem cell signaling in MYC driven medulloblastoma and demonstrates the feasibility BET domain inhibition as a therapeutic approach in vivo.


Assuntos
Proliferação de Células , Neoplasias Cerebelares/prevenção & controle , Meduloblastoma/prevenção & controle , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Animais , Apoptose , Azepinas/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Ciclo Celular , Proteínas de Ciclo Celular , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/mortalidade , Neoplasias Cerebelares/patologia , Criança , Perfilação da Expressão Gênica , Humanos , Meduloblastoma/genética , Meduloblastoma/mortalidade , Meduloblastoma/patologia , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triazóis/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Adv Hematol ; 2012: 142530, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22400029

RESUMO

Marrow stromal cells (MSCs, also termed mesenchymal stem cells) have been proposed as a promising cellular therapy for tissue injury including radiation-induced marrow failure, but evidence for a direct effect is lacking. To assess the effects of MSCs on survival after lethal irradiation, we infused syngeneic MSCs (either as immortalized MSCs clones or primary MSCs) intravenously into wild-type C57/Bl6 mice within 24 hours of lethal total body irradiation (TBI). Mice receiving either of the MSC preparations had significantly improved survival when compared to controls. In vivo imaging, immune histochemistry, and RT-PCR employed to detect MSCs indicated that the infused MSCs were predominantly localized to the lungs and rapidly cleared following infusion. Our results suggest that a single infusion of MSCs can improve survival after otherwise lethal TBI but the effect is not due to a direct interaction with, or contribution to, the damaged marrow by MSCs.

20.
PLoS One ; 5(12): e14304, 2010 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-21179442

RESUMO

Stromal Derived Factor 1 (SDF1 or CXCL12), is a chemokine known to be critical for the migration of cells in several tissue systems including the homing of the hematopoietic stem cell (HSC) to its niche in the bone marrow. A comparative analysis of miRNA expression profiles of two stromal cell lines, distinguishable by function and by CXCL12 expression (CXCL12+ and CXCL12-), revealed that the CXCL12- cells expressed>40 fold more miR-886-3p than the CXCL12+ cells. Screening studies showed that when miR-886-3p was transfected into the CXCL12+ stromal cells, the expression of CXCL12 was down-regulated by as much as 85% when compared to appropriate controls, and results in the loss of CXCL12-directed chemotaxis. Similar reductions in CXCL12 were obtained with the transfection of miR-886-3p into primary stromal cell cultures. Additional studies showed that miR-886-3p specifically targeted the 3' untranslated region (UTR) of CXCL12 mRNA. These data suggest a role for miRNA in modulating the expression of CXCL12, a gene product with a critical role in hematopoietic regulation.


Assuntos
Células da Medula Óssea/citologia , Quimiocina CXCL12/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , MicroRNAs/farmacologia , Células Estromais/citologia , Regiões 3' não Traduzidas , Antígeno CD146/biossíntese , Linhagem Celular , Separação Celular , Quimiotaxia , Fibroblastos/metabolismo , Citometria de Fluxo , Hematopoese , Humanos , Ligantes , MicroRNAs/genética , MicroRNAs/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa