Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Sensors (Basel) ; 23(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36772671

RESUMO

The development of a fluorescent sensor has attracted much attention for the detection of various toxic pollutants in the environment. In this work, fluorescent carbon dots (N,Zn-CDs) doped with nitrogen and zinc were synthesized using citric acid monohydrate and 4-pyridinecarboxyaldehyde as carbon and nitrogen sources, respectively. The synthesized N,Zn-CDs served as an "off" fluorescence detector for the rapid and sensitive detection of hexavalent chromium ions (Cr(VI)). The zinc metal integrated into the heteroatomic fluorescent carbon dot played a functional role by creating a coordination site for the hydrogen ions that were displaced after the addition of Cr to the solution matrix. The stepwise addition of Cr(VI) effectively quenched the fluorescence intensity of the N,Zn-CDs, and this phenomenon was attributed to the internal filter effect. A low detection limit of 0.47 nmol/L for Cr(VI) was achieved in the fluorescence experiments. Real water samples were used to evaluate the practical application of N,Zn-CDs for the quantification of Cr(VI). The results show acceptable recoveries and agreement with ion chromatography-ultraviolet spectrometry results. These good recoveries indicate that the fluorescence probe is very well suited for environmental measurements.

2.
J Phys Chem A ; 122(30): 6328-6342, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-29995411

RESUMO

This paper reports new D-D-π-A dyes based on N-annulated perylene, emphasizing the enhanced dye-to-semiconductor charge-transfer mechanism. A series of DFT calculations for new tPA-perylene-based dyes was conducted, starting from the systematic selection of DFT methods by reproducing the experimentally obtained properties of known perylene-based sensitizers. Accordingly, using the LC-ωPBE xc functional with 6-31+G(d) basis set for the time-dependent calculations of the excitation energies, a damping parameter of ω = 0.150 Bohr-1 was found to be most appropriate for dyes having spatial orbital overlap value of 0.21 ≤ ΛHL ≤ 0.38, while ω = 0.175 Bohr-1 is suitable for analogues with 0.43 ≤ ΛHL ≤ 0.57. Moreover, the mPWHandHPW91/6-31G(d) method gave high accuracy in GSOP calculations. The comparison between the properties of tPA-based donor groups has revealed that the semirigid tPA-based D4 unit is an effective donor group for perylene-based dye. Initial screening of the acceptor designs resulted in PLz4 dye with promising charge-transfer mechanism and highly favorable dye-TiO2 interaction based on the calculated dipole moment of the dye and dye-TiO2 complex. The attachment of the substituted-hydroacridine donor unit (D4) to PLz4 afforded a bathochromically shifted absorbance and improved molar absorptivity signifying its effective electron-donating ability. Among the D-D-π-A dyes, DP46 is expected to render a relatively high Voc and Jsc supported by the calculated optical properties, oxidation potentials, ionization potential, and electron affinity values.

3.
J Phys Chem A ; 121(35): 6660-6669, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28800232

RESUMO

Bacteriochlorin-based dyes, having a push-pull type of configuration similar to that of the YD2 dye, were theoretically designed based on modification of the macrocycle and π-conjugated bridge for use in dye-sensitized solar cells. Various parameters were assessed to determine its structure-property relationships, such as the absorption profile based on time-dependent density functional theory, nonlinear optical properties from (hyper)polarizability data, ground- and excited-state oxidation potentials, and the electronic properties of the free and adsorbed dyes. On the basis of the results, the most appropriate macrocycle would be 7,7,17,17-tetramethyl-7H,8H,17H,18H-porphyrin and, for its π-conjugated bridge, either thieno[3,2-b]thiophene, dithieno[3,2-b:2',3'-d]thiophene, or 4,4-diisopropyl-4H-cyclopenta[2,1-b:3,4-b']dithiophene. These newly designed dyes produced an absorption spectra having a range of 300-800 nm, which could likely increase the light harvesting efficiency. It has better nonlinear properties than the reference, thereby ensuring higher charge-transfer properties. Also, the dye regeneration efficiency is within the optimized value of 0.2 eV, which could minimize the excessive loss of voltage. This shows that through theoretical approach we can deductively design analogues before synthesis to streamline the process in the design of dyes to produce efficient dye-sensitized solar cells.

4.
J Phys Chem A ; 121(6): 1371-1380, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28118007

RESUMO

Experimental and theoretical HOMO energy correlation of tetraphenylbenzidine (TPB)-based hole transport materials (HTMs) was successfully achieved through adiabatic ground-state oxidation potential calculation using LC-ωPBE. Similarly, trends in the computed excitation energies and hole reorganization energies of the HTMs are in agreement with the experimental band gaps and hole mobilities, respectively. Using these established correlations, the calculated properties of novel TPB-based HTMs were analyzed, and among the derivatives, TPB with attached fluorene (Fl) has less absorption in the visible region, a lower hole reorganization energy, and a deeper HOMO level compared to the reference. These properties signify that Fl could be a promising HTM in perovskite solar cells because this material will not compete with the perovskite absorption, will be efficient for hole transport due to its better hole mobility, and will eventually enhance the open-circuit voltage of the device. All of these factors could improve the efficiency of the perovskite solar cell.

5.
J Phys Chem A ; 120(29): 5917-27, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27388927

RESUMO

One of the most significant aspects in the development of dye-sensitized solar cells is the exploration and design of high-efficiency and low-cost dyes. This paper reports the theoretical design of various triphenylamine analogues, wherein the central nitrogen moiety establishes an sp(2)-hybridization, which endows a significant participation in the charge-transfer properties. Density functional theory (DFT) and time-dependent DFT methodologies were utilized to investigate the geometry, electronic structure, photochemical properties, and electrochemical properties of these dyes. Different exchange-correlation functionals were initially evaluated to establish a proper methodology for calculating the excited-state energy of the reference dye, known as DIA3. Consequently, TD-LC-ωPBE with a damping parameter of 0.175 Bohr(-1) best correlates with the experimental value. Four new dyes, namely, Dhk1, Dhk2, Dhk3, and Dhk4, were designed by modifying the rigidity of the donor moiety. According to the results, altering the type and position of binding in the donor group leads to distinct planarity of the dyes, which significantly affects their properties. The designed Dhk4 dye showed more red-shifted and broadened absorption spectra owing to the enhanced coplanarity between its donor and π-bridge moiety, which brings an advantage for its potential use as sensitizer for photovoltaic applications.

6.
J Chem Phys ; 144(15): 154302, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27389215

RESUMO

The liquid phase of ethanol in pure and in non-polar solvents was studied at room temperature using Fourier transform infrared (FT-IR) and (1)H nuclear magnetic resonance (NMR) spectroscopies together with theoretical approach. The FT-IR spectra for pure ethanol and solution in cyclohexane at different dilution stages are consistent with (1)H NMR results. The results from both methods were best explained by the results of the density functional theory based on a multimeric model. It is suggested that cyclic trimers and tetramers are dominated in the solution of cyclohexane/hexane with the concentration greater than 0.5M at room temperature. In liquid ethanol, while the primary components at room temperature are cyclic trimers and tetramers, there is a certain amount (∼14%) of open hydroxide group representing the existence of chain like structures in the equilibria. The cyclic cluster model in the liquid and concentrated solution phase (>0.5M) can be used to explain the anomalously lower freezing point of ethanol (159 K) than that of water (273 K) at ambient conditions. In addition, (1)H NMR at various dilution stages reveals the dynamics for the formation of cyclic clusters.

7.
Environ Pollut ; 344: 123210, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154776

RESUMO

Hexavalent chromium (Cr(VI)) is a known carcinogen derived from both anthropogenic and natural sources. This work reports the size-segregated concentrations of total Cr(VI) in particulate matter (PM) in Astana, the capital of Kazakhstan, and provides new insights into the gas-solid reactions of atmospheric Cr. A study of total Cr(VI) in the particulate matter, via a microwave-assisted digestion technique, was conducted using a 5-stage Sioutas Cascade impactor that captures airborne particles in size ranges: >2.5 µm, 1.0-2.5 µm, 0.50-1.0 µm, 0.25-0.50 µm, and <0.25 µm. The total Cr(VI) concentration in the size fraction <0.25 µm was the highest with a maximum value of 9.7 ng/m3. This high concentration may pose a greater risk because smaller airborne particles can penetrate deeper into the lower respiratory tract of the lungs. Total suspended particles Cr(VI) exceeded the 8.0 ng/m3 Reference Concentration (RfC) by 22 times. The overall total Cr(VI) concentration in summer was significantly higher than in fall (p < 0.05), which could be due to factors, including higher temperatures, ozone, and NO2 concentrations in summer and a higher VOC concentration in fall. The results indicate that the interaction between Cr(III) and Cr(VI) through gas-solid reaction can control the speciation of atmospheric Cr.


Assuntos
Cromo , Ozônio , Cazaquistão , Cromo/análise , Material Particulado
8.
Polymers (Basel) ; 15(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37447568

RESUMO

The application potential of flexible electrochromic materials for wearable devices, smart textiles, flexible displays, electronic paper, and implantable biomedical devices is enormous. These materials offer the advantages of conformability and mechanical robustness, making them highly desirable for these applications. In this review, we comprehensively examine the field of flexible electrochromic materials, covering topics such as synthesis methods, structure design, electrochromic mechanisms, and current applications. We also address the challenges associated with achieving flexibility in electrochromic materials and discuss strategies to overcome them. By shedding light on these challenges and proposing solutions, we aim to advance the development of flexible electrochromic materials. We also highlight recent advances in the field and present promising directions for future research. We intend to stimulate further innovation and development in this rapidly evolving field and encourage researchers to explore new opportunities and applications for flexible electrochromic materials. Through this review, readers can gain a comprehensive understanding of the synthesis, design, mechanisms, and applications of flexible electrochromic materials. It serves as a valuable resource for researchers and industry professionals looking to harness the potential of these materials for various technological applications.

9.
Membranes (Basel) ; 13(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36984665

RESUMO

The study of tau protein aggregation and interactions with other molecules or solvents using molecular dynamics simulations (MDs) is of interest to many researchers to propose new mechanism-based therapeutics for neurodegenerative diseases such as Alzheimer's disease, Pick's disease, chronic traumatic encephalopathy, and other tauopathies. In this review, we present recent MD simulation studies of tau oligomers and fibrils such as tau-NPK, tau-PHF, tau-K18, and tau-R3-R4 monomers and dimers. All-atom simulations by replica exchange MDs and coarse-grained MDs in lipid bilayers and in solution were used. The simulations revealed different mechanisms in the binding of tau in bilayers and in solutions, depending on the peptide size. Phosphorylation is also an important factor in MD simulations. The use of steered MDs was also included to simulate the dissociation of tau fibrils. The exponential improvement in the computing power of computers has led to an increasing number of scientists and engineers using a cost-effective, high-performance computing platform to study how the tau protein interacts and the effects of changing its structure, such as the phosphorylation of tau fibrils.

10.
Nanomaterials (Basel) ; 13(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37887961

RESUMO

In this study, we synthesized a ternary transition metal sulfide, Zn0.76Co0.24S (ZCS-CE), using a one-step solvothermal method and explored its potential as a Pt-free counter electrode for dye-sensitized solar cells (DSSCs). Comprehensive investigations were conducted to characterize the structural, morphological, compositional, and electronic properties of the ZCS-CE electrode. These analyses utilized a range of techniques, including X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The electrocatalytic performance of ZCS-CE for the reduction of I3- species in a symmetrical cell configuration was evaluated through electrochemical impedance spectroscopy and cyclic voltammetry. Our findings reveal that ZCS-CE displayed superior electrocatalytic activity and stability when compared to platinum in I-/I3- electrolyte systems. Furthermore, ZCS-CE-based DSSCs achieved power conversion efficiencies on par with their Pt-based counterparts. Additionally, we expanded the applicability of this material by successfully powering an electrochromic cell with ZCS-CE-based DSSCs. This work underscores the versatility of ZCS-CE and establishes it as an economically viable and environmentally friendly alternative to Pt-based counter electrodes in DSSCs and other applications requiring outstanding electrocatalytic performance.

11.
Chemosphere ; 307(Pt 4): 136057, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35995192

RESUMO

Hexavalent chromium (Cr(VI)), a known carcinogen, emanates from both anthropogenic and natural sources. A pilot study of the ambient Cr(VI) concentrations was conducted at the center of Aktobe which is a few kilometers away from major industrial chromium plants. Total Cr(VI) concentrations were measured in the fall and winter seasons with mean values (S.D) of 5.30 (2.16) ng/m3 and 2.26 (1.80) ng/m3, respectively. Insoluble Cr(VI) levels were 4.80 (1.96) and 2.19 (1.75) ng/m3 for the fall and winter, respectively. The total and insoluble Cr(VI) concentrations in the fall season were significantly higher than in winter, likely due to the higher rate of Cr(III) oxidation in the presence of ozone and ROS in fall compared to the rate of Cr(VI) reduction in the presence of VOCs at higher temperatures. On average, total Cr(VI) constituted 34.49% of the total Cr concentrations suggesting that the dominant valence state of Cr in the atmosphere is Cr(III). The previous reference values of exposure to Cr(VI) must be revisited by taking into account the insoluble Cr(VI) concentration since it is more prevalent in the atmosphere compared to soluble Cr(VI). The influence of the chromium plants as potential sources was not obvious in this study.


Assuntos
Cromo , Ozônio , Carcinógenos , Cromo/análise , Cazaquistão , Oxirredução , Projetos Piloto , Espécies Reativas de Oxigênio
12.
Nanomaterials (Basel) ; 12(10)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35630907

RESUMO

Tin(IV) oxide (SnO2) nanostructures, which possess larger surface areas for transporting electron carriers, have been used as an electron transport layer (ETL) in perovskite solar cells (PSCs). However, the reported power conversion efficiencies (PCEs) of this type of PSCs show a large variation. One of the possible reasons for this phenomenon is the low reproducibility of SnO2 nanostructures if they are prepared by different research groups using various growth methods. This work focuses on the morphological study of SnO2 nanostructures grown by a solvothermal method. The growth parameters including growth pressure, substrate orientation, DI water-to-ethanol ratios, types of seed layer, amount of acetic acid, and growth time have been systematically varied. The SnO2 nanomorphology exhibits a different degree of sensitivity and trends towards each growth factor. A surface treatment is also required for solvothermally grown SnO2 nanomaterials for improving photovoltaic performance of PSCs. The obtained results in this work provide the research community with an insight into the general trend of morphological changes in SnO2 nanostructures influenced by different solvothermal growth parameters. This information can guide the researchers to prepare more reproducible solvothermally grown SnO2 nanomaterials for future application in devices.

13.
PLoS One ; 16(10): e0258692, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34653235

RESUMO

The microtubule-binding protein tau has been the center of researches concerning Alzheimer's disease (AD) due to several clinical trials of ß-amyloid therapies failing recently. The availability of the tau fibril structure from AD brain enables computational modeling studies to calculate binding affinities with different ligands. In this study, the tau paired helical filaments (PHF-Tau) (PDB ID: 5O3L) was used as receptor and interactions with the lipids: 3-alpha-cholesterol; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; and C18:1 sphingomyelin, were explored with molecular docking, molecular dynamics, and natural bond orbital analysis. Docking sites upon solvation of the protein with transferable interatomic potential-3 points reveal the amphipathic nature of PHF-Tau and molecular dynamics simulations show that the embedded phosphocholine at the tail side gives high potential energy values with some amino acids forming H-bond interactions.


Assuntos
Lipídeos de Membrana/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo , Colesterol/metabolismo , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfatidilcolinas/metabolismo , Estrutura Secundária de Proteína , Esfingomielinas/metabolismo
14.
Chem Commun (Camb) ; 56(81): 12190-12193, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32914788

RESUMO

We demonstrated a solvothermally prepared cost-effective, mesoporous, and high surface area nanostructured flower-shaped CuCo2S4 counter-electrode for dye-sensitized solar cells. The new counter electrode exhibited comparable results with a traditional Pt-based counter electrode, 7.56% vs. 7.42%, respectively. The electrochemical analysis demonstrated superior electrocatalytic activity of the product, which was stable even after 6 months of aging.

15.
Methods Appl Fluoresc ; 8(4): 045007, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33021222

RESUMO

There is an increasing need for the development of probes for the detection of hexavalent chromium since it is a known carcinogen, which can cause adverse effects on human health. Metal-organic frameworks (MOFs) have shown successful detection and removal of hazardous substances from aqueous media. This work presents the use of simple organic ligands such as 3-pyridinecarboxaldehyde and trimesic acid with Zn(II) ion to fabricate a new MOF that exhibits sensitive and selective luminescence quenching response towards CrO4 2- and Cr2O7 2- species in aqueous solution. The MOF showed a detection limit of 0.67 µM (0.078 ppm) as CrO4 2- species and 1.91 µM (0.41 ppm) as Cr2O7 2- species. Results reveal that the as-synthesized MOF could serve as a good luminescent sensor for CrO4 2- and Cr2O7 2- species in the contaminated aqueous phase.

16.
Dalton Trans ; 48(5): 1732-1746, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30637425

RESUMO

A series of iminophosphinite POCN pincer Ni(ii) complexes, (POCN)NiMe and (POCN)NiLn(BX4) (L = CH3CN, n = 0, 1; X = F, Ph, C6F5), have been developed and subjected to catalytic hydrosilylation of alkenes, aldehydes and ketones and hydroboration of carbonyl compounds. The stoichiometric reactivity of (POCN)NiMe and (POCN)Ni(BF4) with PhSiH3 and HBPin suggests that catalytic reactions proceed via the hydride intermediate (POCN)NiH. With regard to reactions with HBPin, efficient and mild hydroboration of a variety of carbonyl compounds, including highly chemoselective hydroboration of benzaldehyde in the presence of other common potent reductive functional groups, such as alkenes, alkynes, esters, amides, nitriles, nitro compounds and even ketones, and the first example of base metal catalyzed hydroboration of amides, including mild direct hydroborative reduction of primary and secondary amides to borylated amines were demonstrated for (POCN)NiMe.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 173: 361-368, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27689543

RESUMO

Two spiro-like organic dyes linked at the thiophene bridge (KS-11 and KS-12) together with the original rod-shaped D-π-A configuration (C1) were designed, synthesized, and characterized based on their electronic structure, and determine the photophysical and photovoltaic properties for its application in dye-sensitized solar cells. Compared to C1, the double D-π-A spiro-like configuration, which consists of two separated light-harvesting moieties, was found to be beneficial to photocurrent generation provided that they are separated properly to prevent intramolecular exciton annihilation. This was observed when KS-11, which is linked at the ß-position of the thiophene moiety of D-π-A, was compared with KS-12, where the two D-π-A are linked with an additional thiophene using a α-ß linkage. The results show that KS-12 produced a 20% and 17% increase in photovoltaic efficiency under simulated AM 1.5G solar irradiation compared to KS-11 and C1, respectively. This increase in photovoltaic performance is credited mostly to the reduction of recombination effects and the increase in the density of states at the semiconductor surface due to high dye loading and better charge-transfer properties.

18.
Sci Rep ; 7(1): 16577, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29185453

RESUMO

YAP is a downstream nuclear transcription factor of Hippo pathway which plays an essential role in development, cell growth, organ size and homeostasis. It was previously identified that elevation of YAP in genomics of genetic engineered mouse (GEM) model of prostate cancer is associated with Pten/Trp53 inactivation and ARF elevation hypothesizing the essential crosstalk of AKT/mTOR/YAP with ARF in prostate cancer. However, the detailed function and trafficking of YAP in cancer cells remains unclear. Using GEM microarray model, we found ARF dysregulates Hippo and Wnt pathways. In particular, ARF knockdown reduced non-nuclear localization of YAP which led to an increase in F-actin. Mechanistically, ARF knockdown suppressed protein turnover of ß-catenin/YAP, and therefore enhanced the activity of AKT and phosphorylation of YAP. Moreover, we found tea-derived carbon dots can interact with ARF in nucleus that may further lead to the non-nuclear localization of YAP. Thus, we reported a novel crosstalk of ARF/ß-catenin dysregulated YAP in Hippo pathway and a new approach to stimulate ARF-mediated signaling to inhibit nuclear YAP using nanomaterials implicating an innovative avenue for treatment of cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carbono/química , Nanotecnologia/métodos , Fosfoproteínas/metabolismo , Chá/química , Animais , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p19/genética , Inibidor de Quinase Dependente de Ciclina p19/metabolismo , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Via de Sinalização Hippo , Masculino , Camundongos , Microscopia Confocal , Neoplasias da Próstata/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , Proteínas de Sinalização YAP
19.
J Nanosci Nanotechnol ; 16(1): 581-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27398491

RESUMO

The PVdF-HFP nanofiber membranes with different molecular weight were prepared by electrospinning technique and were investigated as solid state electrolyte membranes in quasi solid state dye sensitized solar cells (QS-DSSC). The homogeneously distributed and fully interconnected nanofibers were obtained for all of the prepared PVdF-HFP electrospun membranes and the average fiber diameters of fabricated membranes were dependent upon the molecular weight of polymer. The thermal stability of electrospun PVdF-HFP membrane was decreased with a decrement of molecular weight, specifying the high heat transfer area of small diameter nanofibers. The QS-DSSC fabricated with the lower molecular weight PVdF-HFP electrospun nanofiber membrane exhibited the power conversion efficiency of 1 = 5.38%, which is superior over the high molecular weight membranes and is comparable with the liquid electrolyte. Furthermore, the electrospun PVdF-HFP membrane exhibited long-term durability over the liquid electrolyte, owing to the higher adsorption and retention efficiencies of liquid electrolyte in its highly porous and interconnected nanofibers. Thus the proposed electrospun PVdF-HFP membrane effectively tackled the volatilization and leakage of liquid electrolyte and provided good photoconversion efficiency associated with an excellent stability, which constructs the prepared electrospun membranes as credible solid state candidates for the application of QS-DSSCs.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 140: 382-91, 2015 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25617849

RESUMO

The use of theoretical techniques in the structural development of dye-sensitized solar cells helps in the efficient screening of the dyes. To properly rationalize the dye's design process, benchmark calculations were conducted using long-range corrected exchange-correlation (xc) functionals with varying separation parameters to be able to predict the excited-state energies of triphenylamine-based dyes, namely: PPS, PSP, and PSS, wherein they differ at the π-conjugated bridge using thiophene and/or phenyl moieties. The results show that LC-ωPBE xc functional with an optimized parameter provided better correlation with the experimental results compared to the other functionals. The relative shifts of the absorption spectra, light harvesting efficiency, normal dipole moments, as well as the ionization potentials and electron affinities of the dyes were well-correlated with the experimental data. A new set of dyes was designed in an effort to increase its solar cell efficiency that was patterned after PSS with an additional donor moiety such as fluorene, cyclopentaindole, and pyrene attached asymmetrically at the triphenylamine ring. Among the newly designed dyes, analogs that contain 4-phenyl-1,2,3,4-tetrahydrocyclopenta[b]indole (I) and pyrido[2,3,4-5-imn]phenanthridine-5,10(4H,9H)-dione (P2) as the additional donor moiety produced the best photophysical properties and charge-transfer characteristics for a promising dye for solar cell applications.


Assuntos
Aminas/química , Derivados de Benzeno/química , Corantes/química , Fontes de Energia Elétrica , Energia Solar , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa