Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(2): 159-167, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36253549

RESUMO

The human gut bacterial genotoxin colibactin is a possible key driver of colorectal cancer (CRC) development. Understanding colibactin's biological effects remains difficult owing to the instability of the proposed active species and the complexity of the gut microbiota. Here, we report small molecule boronic acid inhibitors of colibactin biosynthesis. Designed to mimic the biosynthetic precursor precolibactin, these compounds potently inhibit the colibactin-activating peptidase ClbP. Using biochemical assays and crystallography, we show that they engage the ClbP binding pocket, forming a covalent bond with the catalytic serine. These inhibitors reproduce the phenotypes observed in a clbP deletion mutant and block the genotoxic effects of colibactin on eukaryotic cells. The availability of ClbP inhibitors will allow precise, temporal control over colibactin production, enabling further study of its contributions to CRC. Finally, application of our inhibitors to related peptidase-encoding pathways highlights the power of chemical tools to probe natural product biosynthesis.


Assuntos
Microbioma Gastrointestinal , Policetídeos , Humanos , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Escherichia coli/metabolismo , Policetídeos/química , Peptídeo Hidrolases/química
2.
Chem Res Toxicol ; 37(2): 340-360, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38194517

RESUMO

Air pollution, tobacco smoke, and red meat are associated with renal cell cancer (RCC) risk in the United States and Western Europe; however, the chemicals that form DNA adducts and initiate RCC are mainly unknown. Aristolochia herbaceous plants are used for medicinal purposes in Asia and worldwide. They are a significant risk factor for upper tract urothelial carcinoma (UTUC) and RCC to a lesser extent. The aristolochic acid (AA) 8-methoxy-6-nitrophenanthro-[3,4-d]-1,3-dioxolo-5-carboxylic acid (AA-I), a component of Aristolochia herbs, contributes to UTUC in Asian cohorts and in Croatia, where AA-I exposure occurs from ingesting contaminated wheat flour. The DNA adduct of AA-I, 7-(2'-deoxyadenosin-N6-yl)-aristolactam I, is often detected in patients with UTUC, and its characteristic A:T-to-T:A mutational signature occurs in oncogenes and tumor suppressor genes in AA-associated UTUC. Identifying DNA adducts in the renal parenchyma and pelvis caused by other chemicals is crucial to gaining insights into unknown RCC and UTUC etiologies. We employed untargeted screening with wide-selected ion monitoring tandem mass spectrometry (wide-SIM/MS2) with nanoflow liquid chromatography/Orbitrap mass spectrometry to detect DNA adducts formed in rat kidneys and liver from a mixture of 13 environmental, tobacco, and dietary carcinogens that may contribute to RCC. Twenty DNA adducts were detected. DNA adducts of 3-nitrobenzanthrone (3-NBA), an atmospheric pollutant, and AA-I were the most abundant. The nitrophenanthrene moieties of 3-NBA and AA-I undergo reduction to their N-hydroxy intermediates to form 2'-deoxyguanosine (dG) and 2'-deoxyadenosine (dA) adducts. We also discovered a 2'-deoxycytidine AA-I adduct and dA and dG adducts of 10-methoxy-6-nitro-phenanthro-[3,4-d]-1,3-dioxolo-5-carboxylic acid (AA-III), an AA-I isomer and minor component of the herbal extract assayed, signifying AA-III is a potent kidney DNA-damaging agent. The roles of AA-III, other nitrophenanthrenes, and nitroarenes in renal DNA damage and human RCC warrant further study. Wide-SIM/MS2 is a powerful scanning technology in DNA adduct discovery and cancer etiology characterization.


Assuntos
Ácidos Aristolóquicos , Carcinoma de Células Renais , Carcinoma de Células de Transição , Neoplasias Renais , Neoplasias da Bexiga Urinária , Ratos , Animais , Humanos , Adutos de DNA , Carcinoma de Células Renais/patologia , Carcinoma de Células de Transição/patologia , Farinha/análise , Neoplasias da Bexiga Urinária/patologia , Triticum , Ácidos Aristolóquicos/química , DNA , Rim/patologia , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/patologia , Fígado/química , Ácidos Carboxílicos , Carcinógenos/química
3.
Chem Res Toxicol ; 36(5): 769-781, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37017527

RESUMO

The tobacco-specific nitrosamine N'-nitrosonornicotine (NNN) and its close analogue 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) are classified as "carcinogenic to humans" (Group 1) by the International Agency for Research on Cancer. The currently used biomarker to monitor NNN exposure is urinary total NNN (free NNN plus its N-glucuronide). However, total NNN does not provide information about the extent of metabolic activation of NNN as related to its carcinogenicity. Targeted analysis of the major metabolites of NNN in laboratory animals recently led to the identification of N'-nitrosonornicotine-1N-oxide (NNN-N-oxide), a unique metabolite detected in human urine that is specifically formed from NNN. To further investigate NNN urinary metabolites that hold promise as new biomarkers for monitoring NNN exposure, uptake, and/or metabolic activation, we conducted a comprehensive profiling of NNN metabolites in the urine of F344 rats treated with NNN or [pyridine-d4]NNN. Using our optimized high-resolution mass spectrometry (HRMS)-based isotope-labeling method, 46 putative metabolites were identified with robust MS evidence. Out of the 46 candidates, all known major NNN metabolites were identified and structurally confirmed by comparing them to their isotopically labeled standards. More importantly, putative metabolites considered to be exclusively formed from NNN were also identified. The two new representative metabolites─4-(methylthio)-4-(pyridin-3-yl)butanoic acid (23, MPBA) and N-acetyl-S-(5-(pyridin-3-yl)-1H-pyrrol-2-yl)-l-cysteine (24, Py-Pyrrole-Cys-NHAc) ─were identified by comparing them to synthetic standards that were fully characterized by nuclear magnetic resonance and HRMS. They are hypothesized to be formed by NNN α-hydroxylation pathways and thus represent the first potential biomarkers to specifically monitor the uptake plus metabolic activation of NNN in tobacco users.


Assuntos
Nitrosaminas , Ratos , Humanos , Animais , Ratos Endogâmicos F344 , Nitrosaminas/química , Carcinógenos/metabolismo , Espectrometria de Massas , Óxidos
4.
Chem Res Toxicol ; 36(11): 1666-1682, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862059

RESUMO

Exogenous compounds and metabolites derived from therapeutics, microbiota, or environmental exposures directly interact with endogenous metabolic pathways, influencing disease pathogenesis and modulating outcomes of clinical interventions. With few spectral library references, the identification of covalently modified biomolecules, secondary metabolites, and xenobiotics is a challenging task using global metabolomics profiling approaches. Numerous liquid chromatography-coupled mass spectrometry (LC-MS) small molecule analytical workflows have been developed to curate global profiling experiments for specific compound groups of interest. These workflows exploit shared structural moiety, functional groups, or elemental composition to discover novel and undescribed compounds through nontargeted small molecule discovery pipelines. This Review introduces the concept of structure-oriented LC-MS discovery methodology and aims to highlight common approaches employed for the detection and characterization of covalently modified biomolecules, secondary metabolites, and xenobiotics. These approaches represent a combination of instrument-dependent and computational techniques to rapidly curate global profiling experiments to detect putative ions of interest based on fragmentation patterns, predictable phase I or phase II metabolic transformations, or rare elemental composition. Application of these methods is explored for the detection and identification of novel and undescribed biomolecules relevant to the fields of toxicology, pharmacology, and drug discovery. Continued advances in these methods expand the capacity for selective compound discovery and characterization that promise remarkable insights into the molecular interactions of exogenous chemicals with host biochemical pathways.


Assuntos
Espectrometria de Massas em Tandem , Xenobióticos , Cromatografia Líquida , Descoberta de Drogas , Exposição Ambiental
5.
Chem Res Toxicol ; 36(8): 1278-1289, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37490747

RESUMO

DNA alkylating drugs have been used as frontline medications to treat cancer for decades. Their chemical reaction with DNA leads to the blockage of DNA replication, which impacts cell replication. While this impacts rapidly dividing cancerous cells, this process is not selective and results in highly variable and often severe side effects in patients undergoing alkylating-drug based therapies. The development of biomarkers to identify patients who effectively respond with tolerable toxicities vs patients who develop serious side effects is needed. Cyclophosphamide (CPA) is a commonly used chemotherapeutic drug and lacks biomarkers to evaluate its therapeutic effect and toxicity. Upon administration, CPA is metabolically activated and converted to phosphoramide mustard and acrolein, which are responsible for its efficacy and toxicity, respectively. Previous studies have explored the detection of the major DNA adduct of CPA, the interstrand DNA-DNA cross-link G-NOR-G, finding differences in the cross-link amount between Fanconi Anemia and non-Fanconi Anemia patients undergoing chemotherapy treatment. In this study, we take advantage of our DNA adductomic approach to comprehensively profile CPA's and its metabolites' reactions with DNA in vitro and in patients undergoing CPA-based chemotherapy. This investigation led to the detection of 40 DNA adducts in vitro and 20 DNA adducts in patients treated with CPA. Moreover, acrolein-derived DNA adducts were quantified in patient samples. The results suggest that CPA-DNA damage is very complex, and an evaluation of DNA adduct profiles is necessary when evaluating the relationship between CPA-DNA damage and patient outcome.


Assuntos
Anemia , Adutos de DNA , Humanos , Acroleína/farmacologia , Ciclofosfamida/efeitos adversos , Alquilantes , Dano ao DNA , DNA/química , Espectrometria de Massas , Cromatografia Líquida
6.
Chem Res Toxicol ; 36(2): 305-312, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36719849

RESUMO

We developed a liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry (LC-NSI-HRMS/MS) method for simultaneous quantitative analysis of 5 oral cell DNA adducts associated with cigarette smoking: (8R/S)-3-(2'-deoxyribos-1'-yl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2-a]purine-10(3H)-one (γ-OH-Acr-dGuo, 1) from acrolein; (6S,8S and 6R,8R)-3-(2'-deoxyribos-1'-yl)-5,6,7,8-tetrahydro-8-hydroxy-6-methylpyrimido[1,2-a]purine-10(3H)-one [(6S,8S)γ-OH-Cro-dGuo, 2; and (6R,8R)γ-OH-Cro-dGuo, 3] from crotonaldehyde; 1,N6-etheno-dAdo (4) from acrylonitrile, vinyl chloride, lipid peroxidation, and inflammation; and 8-oxo-dGuo (5) from oxidative damage. Oral cell DNA was isolated in the presence of glutathione to prevent artifact formation. Clear LC-NSI-HRMS/MS chromatograms were obtained allowing quantitation of each adduct using the appropriately labeled internal standards. The accuracy and precision of the method were validated, and the assay limit of quantitation was 5 fmol/µmol dGuo for adducts 1-4 and 20 fmol/µmol for adduct 5. The assay was applied to 80 buccal cell samples selected from those collected in the Shanghai Cohort Study: 40 from current smokers and 40 from never smokers. Significant differences were found in all adduct levels between smokers and nonsmokers. Levels of 8-oxo-dGuo (5) were at least 3000 times greater than those of the other adducts in both smokers and nonsmokers, and the difference between amounts of this adduct in smokers versus nonsmokers, while significant (P = 0.013), was not as great as the differences of the other DNA adducts between smokers and nonsmokers (P-values all less than 0.001). No significant relationship of adduct levels to risk of lung cancer incidence was found. This study provides a new LC-NSI-HRMS/MS methodology for the quantitation of diverse DNA adducts resulting from exposure to the α,ß-unsaturated aldehydes acrolein and crotonaldehyde, inflammation, and oxidative damage which are all associated with carcinogenesis. We anticipate application of this assay in ongoing studies of the molecular epidemiology of cancers of the lung and oral cavity related to cigarette smoking.


Assuntos
Fumar Cigarros , Adutos de DNA , Humanos , Espectrometria de Massas em Tandem , Acroleína/química , 8-Hidroxi-2'-Desoxiguanosina , Estudos de Coortes , Espectrometria de Massas por Ionização por Electrospray/métodos , China , Cromatografia Líquida , Purinas , Inflamação , Cromatografia Líquida de Alta Pressão/métodos
7.
Carcinogenesis ; 43(5): 437-444, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35239969

RESUMO

DNA adducts are central in the mechanism of carcinogenesis by genotoxic agents. We compared levels of a DNA adduct of acrolein, a genotoxic carcinogen found in e-cigarette vapor, in oral cell DNA of e-cigarette users and non-users of any tobacco or nicotine product. e-Cigarette users and non-users visited our clinic once monthly for 6 months, and oral brushings and urine samples were collected. For this study, we analyzed oral cell DNA adducts from three monthly visits in e-cigarette users and non-users as confirmed by urinary cyanoethyl mercapturic acid and total nicotine equivalents. DNA was isolated from the oral brushings and analyzed by a validated liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry method for the acrolein DNA adduct 8R/S-3-(2'-deoxyribos-1'-yl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2-a]purine-10-(3H)-one (γ-OH-Acr-dGuo). The median value of this DNA adduct in the e-cigarette users was 179 fmol/µmol dGuo (range 5.0 - 793 fmol/µmol dGuo) while that for non-users was 21.0 fmol/µmol dGuo (range 5.0 - 539 fmol/µmol dGuo), P = 0.001. These results demonstrate for the first time that e-cigarette users have elevated levels of a carcinogen-DNA adduct in their oral cells.


Assuntos
Adutos de DNA , Sistemas Eletrônicos de Liberação de Nicotina , Acroleína/química , Acroleína/toxicidade , Carcinógenos/análise , Carcinógenos/toxicidade , Cromatografia Líquida de Alta Pressão , DNA , Nicotina , Espectrometria de Massas por Ionização por Electrospray/métodos
8.
Chem Res Toxicol ; 35(11): 2025-2036, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36356054

RESUMO

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent lung carcinogen present in tobacco products, and exposure to it is likely one of the factors contributing to the development of lung cancer in cigarette smokers. To exert its carcinogenic effects, NNK must be metabolically activated into highly reactive species generating a wide spectrum of DNA damage. We have identified a new class of DNA adducts, DNA-RNA cross-links found for the first time in NNK-treated mice lung DNA using our improved high-resolution accurate mass segmented full scan data-dependent neutral loss MS3 screening strategy. The levels of these DNA-RNA cross-links were found to be significantly higher in NNK-treated mice compared to the corresponding controls, which is consistent with higher levels of formaldehyde due to NNK metabolism as compared to endogenous levels. We hypothesize that this DNA-RNA cross-linking occurs through reaction with NNK-generated formaldehyde and speculate that this phenomenon has broad implications for NNK-induced carcinogenesis. The structures of these cross-links were characterized using high-resolution LC-MS2 and LC-MS3 accurate mass spectral analysis and comparison to a newly synthesized standard. Taken together, our data demonstrate a previously unknown link between DNA-RNA cross-link adducts and NNK and provide a unique opportunity to further investigate how these novel NNK-derived DNA-RNA cross-links contribute to carcinogenesis in the future.


Assuntos
Carcinogênese , RNA , Camundongos , Animais , Carcinogênese/induzido quimicamente , Transformação Celular Neoplásica , DNA , Formaldeído/toxicidade , Camundongos Endogâmicos , Pulmão
9.
Chem Res Toxicol ; 35(2): 275-282, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35050609

RESUMO

Many chemotherapeutic drugs exert their cytotoxicity through the formation of DNA modifications (adducts), which interfere with DNA replication, an overactive process in rapidly dividing cancer cells. Side effects from the therapy are common, however, because these drugs also affect rapidly dividing noncancerous cells. Hypoxia-activated prodrugs (HAPs) have been developed to reduce these side effects as they preferentially activate in hypoxic environments, a hallmark of solid tumors. CP-506 is a newly developed DNA-alkylating HAP designed to exert strong activity under hypoxia. The resulting CP-506-DNA adducts can be used to elucidate the cellular and molecular effects of CP-506 and its selectivity toward hypoxic conditions. In this study, we characterize the profile of adducts resulting from the reaction of CP-506 and its metabolites CP-506H and CP-506M with DNA. A total of 39 putative DNA adducts were detected in vitro using our high-resolution/accurate-mass (HRAM) liquid chromatography tandem mass spectrometry (LC-MS3) adductomics approach. Validation of these results was achieved using a novel strategy involving 15N-labeled DNA. A targeted MS/MS approach was then developed for the detection of the 39 DNA adducts in five cancer cell lines treated with CP-506 under normoxic and hypoxic conditions to evaluate the selectivity toward hypoxia. Out of the 39 DNA adducts initially identified, 15 were detected, with more adducts observed from the two reactive metabolites and in cancer cells treated under hypoxia. The presence of these adducts was then monitored in xenograft mouse models bearing MDA-MB-231, BT-474, or DMS114 tumors treated with CP-506, and a relative quantitation strategy was used to compare the adduct levels across samples. Eight adducts were detected in all xenograft models, and MDA-MB-231 showed the highest adduct levels. These results suggest that CP-506-DNA adducts can be used to better understand the mechanism of action and monitor the efficacy of CP-506 in vivo, as well as highlight a new role of DNA adductomics in supporting the clinical development of DNA-alkylating drugs.


Assuntos
Adutos de DNA/análise , DNA Bacteriano/análise , DNA/análise , Hipóxia/tratamento farmacológico , Pró-Fármacos/química , Animais , Bovinos , Feminino , Humanos , Hipóxia/metabolismo , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Células Tumorais Cultivadas
10.
Chem Res Toxicol ; 35(10): 1914-1922, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35998368

RESUMO

The Multiethnic Cohort Study has demonstrated that the risk for lung cancer in cigarette smokers among three ethnic groups is highest in Native Hawaiians, intermediate in Whites, and lowest in Japanese Americans. We hypothesized that differences in levels of DNA adducts in oral cells of cigarette smokers would be related to these differing risks of lung cancer. Therefore, we used liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry to quantify the acrolein-DNA adduct (8R/S)-3-(2'-deoxyribos-1'-yl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2-a]purine-10(3H)-one (γ-OH-Acr-dGuo, 1) and the lipid peroxidation-related DNA adduct 1,N6-etheno-dAdo (εdAdo, 2) in DNA obtained by oral rinse from 101 Native Hawaiians, 101 Whites, and 79 Japanese Americans. Levels of urinary biomarkers of nicotine, acrolein, acrylonitrile, and a mixture of crotonaldehyde, methyl vinyl ketone, and methacrolein were also quantified. Whites had significantly higher levels of γ-OH-Acr-dGuo than Japanese Americans and Native Hawaiians after adjusting for age and sex. There was no significant difference in levels of this DNA adduct between Japanese Americans and Native Hawaiians, which is not consistent with the high lung cancer risk of Native Hawaiians. Levels of εdAdo were modestly higher in Whites and Native Hawaiians than in Japanese Americans. The lower level of DNA adducts in the oral cells of Japanese American cigarette smokers than Whites is consistent with their lower risk for lung cancer. The higher levels of εdAdo, but not γ-OH-Acr-dGuo, in Native Hawaiian versus Japanese American cigarette smokers suggest that lipid peroxidation and related processes may be involved in their high risk for lung cancer, but further studies are required.


Assuntos
Acrilonitrila , Neoplasias Pulmonares , Produtos do Tabaco , Acroleína/química , Estudos de Coortes , DNA , Adutos de DNA , Etnicidade , Humanos , Peroxidação de Lipídeos , Neoplasias Pulmonares/urina , Nicotina/urina , Purinas , Fumantes , Fumar
11.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614051

RESUMO

Organoids are 3D cultures that to some extent reproduce the structure, composition and function of the mammalian tissues from which they derive, thereby creating in vitro systems with more in vivo-like characteristics than 2D monocultures. Here, the ability of human organoids derived from normal gastric, pancreas, liver, colon and kidney tissues to metabolise the environmental carcinogen benzo[a]pyrene (BaP) was investigated. While organoids from the different tissues showed varied cytotoxic responses to BaP, with gastric and colon organoids being the most susceptible, the xenobiotic-metabolising enzyme (XME) genes, CYP1A1 and NQO1, were highly upregulated in all organoid types, with kidney organoids having the highest levels. Furthermore, the presence of two key metabolites, BaP-t-7,8-dihydrodiol and BaP-tetrol-l-1, was detected in all organoid types, confirming their ability to metabolise BaP. BaP bioactivation was confirmed both by the activation of the DNA damage response pathway (induction of p-p53, pCHK2, p21 and γ-H2AX) and by DNA adduct formation. Overall, pancreatic and undifferentiated liver organoids formed the highest levels of DNA adducts. Colon organoids had the lowest responses in DNA adduct and metabolite formation, as well as XME expression. Additionally, high-throughput RT-qPCR explored differences in gene expression between organoid types after BaP treatment. The results demonstrate the potential usefulness of organoids for studying environmental carcinogenesis and genetic toxicology.


Assuntos
Benzo(a)pireno , Adutos de DNA , Organoides , Humanos , Ativação Metabólica , Benzo(a)pireno/toxicidade , Citocromo P-450 CYP1A1/metabolismo , Adutos de DNA/metabolismo , Fígado/metabolismo , Organoides/efeitos dos fármacos , Organoides/metabolismo
13.
Anal Chem ; 93(14): 5754-5762, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33797876

RESUMO

Development of high-resolution/accurate mass liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS) methodology enables the characterization of covalently modified DNA induced by interaction with genotoxic agents in complex biological samples. Constant neutral loss monitoring of 2'-deoxyribose or the nucleobases using data-dependent acquisition represents a powerful approach for the unbiased detection of DNA modifications (adducts). The lack of available bioinformatics tools necessitates manual processing of acquired spectral data and hampers high throughput application of these techniques. To address this limitation, we present an automated workflow for the detection and curation of putative DNA adducts by using diagnostic fragmentation filtering of LC-MS/MS experiments within the open-source software MZmine. The workflow utilizes a new feature detection algorithm, DFBuilder, which employs diagnostic fragmentation filtering using a user-defined list of fragmentation patterns to reproducibly generate feature lists for precursor ions of interest. The DFBuilder feature detection approach readily fits into a complete small-molecule discovery workflow and drastically reduces the processing time associated with analyzing DNA adductomics results. We validate our workflow using a mixture of authentic DNA adduct standards and demonstrate the effectiveness of our approach by reproducing and expanding the results of a previously published study of colibactin-induced DNA adducts. The reported workflow serves as a technique to assess the diagnostic potential of novel fragmentation pattern combinations for the unbiased detection of chemical classes of interest.


Assuntos
Adutos de DNA , Espectrometria de Massas em Tandem , Cromatografia Líquida , DNA , Software
14.
Chem Res Toxicol ; 34(3): 723-732, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33629582

RESUMO

Tobacco smoke is a complex mixture of chemicals, many of which are toxic and carcinogenic. Hazard assessments of tobacco smoke exposure have predominantly focused on either single chemical exposures or the more complex mixtures of tobacco smoke or its fractions. There are fewer studies exploring interactions between specific tobacco smoke chemicals. Aldehydes such as formaldehyde and acetaldehyde were hypothesized to enhance the carcinogenic properties of the human carcinogen, 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) through a variety of mechanisms. This hypothesis was tested in the established NNK-induced A/J mouse lung tumor model. A/J mice were exposed to NNK (intraperitoneal injection, 0, 2.5, or 7.5 µmol in saline) in the presence or absence of acetaldehyde (0 or 360 ppmv) or formaldehyde (0 or 17 ppmv) for 3 h in a nose-only inhalation chamber, and lung tumors were counted 16 weeks later. Neither aldehyde by itself induced lung tumors. However, mice receiving both NNK and acetaldehyde or formaldehyde had more adenomas with dysplasia or progression than those receiving only NNK, suggesting that aldehydes may increase the severity of NNK-induced lung adenomas. The aldehyde coexposure did not affect the levels of NNK-derived DNA adduct levels. Similar studies tested the ability of a 3 h nose-only carbon dioxide (0, 5, 10, or 15%) coexposure to influence lung adenoma formation by NNK. While carbon dioxide alone was not carcinogenic, it significantly increased the number of NNK-derived lung adenomas without affecting NNK-derived DNA damage. These studies indicate that the chemicals in tobacco smoke work together to form a potent lung carcinogenic mixture.


Assuntos
Aldeídos/toxicidade , Dióxido de Carbono/toxicidade , Carcinógenos/toxicidade , Neoplasias Pulmonares/induzido quimicamente , Nitrosaminas/toxicidade , Administração por Inalação , Aldeídos/administração & dosagem , Aldeídos/química , Animais , Dióxido de Carbono/administração & dosagem , Dióxido de Carbono/química , Carcinógenos/administração & dosagem , Carcinógenos/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Neoplasias Pulmonares/metabolismo , Camundongos , Estrutura Molecular , Nitrosaminas/administração & dosagem , Nicotiana/química
15.
BMC Vet Res ; 17(1): 378, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876121

RESUMO

BACKGROUND: Both human and veterinary cancer chemotherapy are undergoing a paradigm shift from a "one size fits all" approach to more personalized, patient-oriented treatment strategies. Personalized chemotherapy is dependent on the identification and validation of biomarkers that can predict treatment outcome and/or risk of toxicity. Many cytotoxic chemotherapy agents, including doxorubicin, base their mechanism of action by interaction with DNA and disruption of normal cellular processes. We developed a high-resolution/accurate-mass liquid chromatography-mass spectrometry DNA screening approach for monitoring doxorubicin-induced DNA modifications (adducts) in vitro and in vivo. We used, for the first time, a new strategy involving the use of isotope-labeled DNA, which greatly facilitates adduct discovery. The overall goal of this work was to identify doxorubicin-DNA adducts to be used as biomarkers to predict drug efficacy for use in veterinary oncology. RESULTS: We used our novel mass spectrometry approach to screen for adducts in purified DNA exposed to doxorubicin. This initial in vitro screening identified nine potential doxorubicin-DNA adduct masses, as well as an intense signal corresponding to DNA-intercalated doxorubicin. Two of the adduct masses, together with doxorubicin and its metabolite doxorubicinol, were subsequently detected in vivo in liver DNA extracted from mice exposed to doxorubicin. Finally, the presence of these adducts and analytes was explored in the DNA isolated from dogs undergoing treatment with doxorubicin. The previously identified nine DOX-DNA adducts were not detected in these preliminary three samples collected seven days post-treatment, however intercalated doxorubicin and doxorubicinol were detected. CONCLUSIONS: This work sets the stage for future evaluation of doxorubicin-DNA adducts and doxorubicin-related molecules as candidate biomarkers to personalize chemotherapy protocols for canine cancer patients. It demonstrates our ability to combine in one method the analysis of DNA adducts and DNA-intercalated doxorubicin and doxorubicinol. The last two analytes interestingly, were persistent in samples from canine patients undergoing doxorubicin chemotherapy seven days after treatment. The presence of doxorubicin in all samples suggests a role for it as a promising biomarker for use in veterinary chemotherapy. Future studies will involve the analysis of more samples from canine cancer patients to elucidate optimal timepoints for monitoring intercalated doxorubicin and doxorubicin-DNA adducts and the correlation of these markers with therapy outcome.


Assuntos
Doenças do Cão , Doxorrubicina , Neoplasias , Animais , Biomarcadores , DNA , Adutos de DNA , Doenças do Cão/tratamento farmacológico , Cães , Doxorrubicina/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/veterinária
16.
Chem Res Toxicol ; 33(8): 2197-2207, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32635726

RESUMO

Cigarette smoking is an important source of human exposure to toxicants and carcinogens and contributes significantly to cancer morbidity and mortality worldwide. Acrolein, a widespread environmental pollutant, is present in relatively high amounts in cigarette smoke and can react directly with DNA to form DNA adducts, which serve as important biomarkers for the assessment of exposure to acrolein and its potential role in smoking related cancer. Etheno-DNA adducts are promutagenic DNA lesions that can derive from exogenous chemicals as well as endogenous sources, including lipid peroxidation. In this study, we developed a combined method for the quantitation of (6R/S)-3-(2'-deoxyribos-1'-yl)-5,6,7,8,-tetrahydro-6-hydroxypyrimido[1,2-a]purine-10(3H)-one (α-OH-Acr-dGuo), (8R/S)-3-(2'-deoxyribos-1'-yl)-5,6,7,8,-tetrahydro-8-hydroxypyrimido[1,2-a]purine-10(3H)-one (γ-OH-Acr-dGuo), 1,N6-etheno-dAdo (εdAdo), and 3,N4-etheno-dCyd (εdCyd) adducts in oral rinse and cytobrush DNA from smokers and nonsmokers by liquid chromatography-nanoelelctrospray ionization-high-resolution tandem mass spectrometry (LC-NSI-HRMS/MS). For oral rinse samples, there was a statistically significant difference between the levels of α-OH-Acr-dGuo, γ-OH-Acr-dGuo, εdAdo, and εdCyd in smokers (12.1 ± 17.9, 163 ± 227, 182 ± 568, and 194 ± 400 adducts/109 nucleotides, respectively) and nonsmokers (1.85 ± 2.08, 5.95 ± 4.23, 7.69 ± 11.7, and 6.07 ± 10.9 adducts/109 nucleotides, respectively). For cytobrush samples, there was a statistically significant difference between the levels of γ-OH-Acr-dGuo and εdAdo in smokers (259 ± 540 and 82.9 ± 271 adducts/109 nucleotides, respectively) and nonsmokers (7.37 ± 5.09 and 16.2 ± 30.2 adducts/109 nucleotides, respectively) but not for α-OH-Acr-dGuo and εdCyd. Our results demonstrate that oral mucosa cells are an excellent source of material for evaluating DNA adducts to be used as biomarkers of tobacco smoke exposure and molecular changes potentially related to cancer.


Assuntos
Acroleína/análise , Adutos de DNA/análise , Adulto , Linhagem Celular , Cromatografia Líquida , Humanos , Estrutura Molecular , não Fumantes , Fumantes , Espectrometria de Massas em Tandem
17.
Chem Res Toxicol ; 33(8): 2087-2098, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32293874

RESUMO

African American (AA) smokers are at a higher risk of developing lung cancer compared to whites. The variations in the metabolism of nicotine and tobacco-derived carcinogens in these groups were reported previously with the levels of nicotine metabolites and carcinogen-derived metabolites measured using targeted approaches. While useful, these targeted strategies are not able to detect global metabolic changes for use in predicting the detrimental effects of tobacco use and ultimately lung cancer susceptibility among smokers. To address this limitation, we have performed global untargeted metabolomics profiling in urine of AA and white smokers to characterize the pattern of metabolites, identify differentially regulated pathways, and correlate these profiles with the observed variations in lung cancer risk between these two populations. Urine samples from AA (n = 30) and white (n = 30) smokers were used for metabolomics analysis acquired in both positive and negative electrospray ionization modes. LC-MS data were uploaded onto the cloud-based XCMS online (http://xcmsonline.scripps.edu) platform for retention time correction, alignment, feature detection, annotation, statistical analysis, data visualization, and automated systems biology pathway analysis. The latter identified global differences in the metabolic pathways in the two groups including the metabolism of carbohydrates, amino acids, nucleotides, fatty acids, and nicotine. Significant differences in the nicotine degradation pathway (cotinine glucuronidation) in the two groups were observed and confirmed using a targeted LC-MS/MS approach. These results are consistent with previous studies demonstrating AA smokers with lower glucuronidation capacity compared to whites. Furthermore, the d-glucuronate degradation pathway was found to be significantly different between the two populations, with lower amounts of the putative metabolites detected in AA compared to whites. We hypothesize that the differential regulation of the d-glucuronate degradation pathway is a consequence of the variations in the glucuronidation capacity observed in the two groups. Other pathways including the metabolism of amino acids, nucleic acids, and fatty acids were also identified, however, the biological relevance and implications of these differences across ethnic groups need further investigation. Overall, the applied metabolomics approach revealed global differences in the metabolic networks and endogenous metabolites in AA and whites, which could be used and validated as a new potential panel of biomarkers that could be used to predict lung cancer susceptibility among smokers in population-based studies.


Assuntos
Neoplasias Pulmonares/metabolismo , Metabolômica , Nicotina/metabolismo , Adulto , Cromatografia Líquida , Etnicidade , Humanos , Neoplasias Pulmonares/urina , Pessoa de Meia-Idade , Estrutura Molecular , Nicotina/análise , Fatores de Risco , Fumantes , Espectrometria de Massas em Tandem
18.
J Am Chem Soc ; 141(29): 11489-11496, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31251062

RESUMO

Certain commensal and pathogenic bacteria produce colibactin, a small-molecule genotoxin that causes interstrand cross-links in host cell DNA. Although colibactin alkylates DNA, the molecular basis for cross-link formation is unclear. Here, we report that the colibactin biosynthetic enzyme ClbL is an amide bond-forming enzyme that links aminoketone and ß-keto thioester substrates in vitro and in vivo. The substrate specificity of ClbL strongly supports a role for this enzyme in terminating the colibactin NRPS-PKS assembly line and incorporating two electrophilic cyclopropane warheads into the final natural product scaffold. This proposed transformation was supported by the detection of a colibactin-derived cross-linked DNA adduct. Overall, this work provides a biosynthetic explanation for colibactin's DNA cross-linking activity and paves the way for further study of its chemical structure and biological roles.


Assuntos
Amidoidrolases/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptídeos/metabolismo , Policetídeos/metabolismo , Amidoidrolases/química , Domínio Catalítico , Ciclopropanos/química , Ciclopropanos/metabolismo , DNA Bacteriano/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Mutação , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Especificidade por Substrato
19.
Chem Res Toxicol ; 32(2): 318-325, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30644728

RESUMO

Acrolein, the simplest α,ß-unsaturated aldehyde, is present in relatively large quantities in cigarette smoke, and several studies have raised the possibility of it being a major etiological agent for smoking-related lung cancer. Acrolein reacts directly with DNA to form primarily Acr-dGuo adducts, which serve as important biomarkers for the assessment of exposure to acrolein and its potential role in smoking-related lung cancer. In this study, we developed an ultrasensitive and low-artifact method using liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry to quantitate Acr-dGuo adducts in normal lung tissue DNA obtained at surgery from lung cancer patients who never smoked and from those who continued smoking until surgery, as confirmed by urinary total cotinine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol. This provides a direct comparison of Acr-dGuo levels in human lung tissue as a result of cigarette smoking versus other etiological causes. There was no significant difference between the total Acr-dGuo levels in smokers (28.5 ± 14.9 adducts/109 nucleotides) and nonsmokers (25.0 ± 10.7 adducts/109 nucleotides), suggesting rapid removal of acrolein by glutathione conjugation and other detoxification mechanisms. Our results do not support the hypothesis that acrolein is a major etiological agent for cigarette smoking-related DNA damage.


Assuntos
Acroleína/química , Adutos de DNA/análise , DNA/química , Pulmão/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Acroleína/toxicidade , Cromatografia Líquida de Alta Pressão , Dano ao DNA/efeitos dos fármacos , Humanos , não Fumantes , Fumantes
20.
Chem Res Toxicol ; 32(4): 773-783, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30740971

RESUMO

The tobacco-specific carcinogens N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) require metabolic activation to exert their carcinogenicity. NNN and NNK are metabolized to the same reactive diazonium ions, which alkylate DNA forming pyridyloxobutyl (POB) DNA base and phosphate adducts. We have characterized the formation of both POB DNA base and phosphate adducts in NNK-treated rats and the formation of POB DNA base adducts in NNN-treated rats. However, POB DNA phosphate adducts in NNN-treated rats are still uncharacterized. In this study, we quantified the levels of POB DNA phosphate adducts in tissues of rats chronically treated with ( S)-NNN or ( R)-NNN for 10, 30, 50, and 70 weeks during a carcinogenicity study. The highest amounts of POB DNA phosphate adducts were observed in the esophagus of the ( S)-NNN-treated rats, with a maximum level of 5400 ± 317 fmol/mg DNA at 50 weeks. The abundance of POB DNA phosphate adducts in the esophagus was consistent with the results of the carcinogenicity study showing that the esophagus was the primary site of tumor formation from treatment with ( S)-NNN. Compared to the ( R)-NNN group, the levels of POB DNA phosphate adducts were higher in the oral mucosa, esophagus, and liver, while lower in the nasal mucosa of the ( S)-NNN-treated rats. Among 10 combinations of all isomers of POB DNA phosphate adducts, Ap(POB)C and combinations with thymidine predominated across all the rat tissues examined. In the primary target tissue, esophageal mucosa, Ap(POB)C accounted for ∼20% of total phosphate adducts in the ( S)-NNN treatment group throughout the 70 weeks, with levels ranging from 780 ± 194 to 1010 ± 700 fmol/mg DNA. The results of this study showed that POB DNA phosphate adducts were present in high levels and persisted in target tissues of rats chronically treated with ( S)- or ( R)-NNN. These results improve our understanding of DNA damage during NNN-induced carcinogenesis. The predominant POB DNA phosphate isomers observed, such as Ap(POB)C, may serve as biomarkers for monitoring chronic exposure of tobacco-specific nitrosamines in humans.


Assuntos
Adutos de DNA/análise , Nitrosaminas/metabolismo , Fosfatos/análise , Piridinas/análise , Animais , Adutos de DNA/metabolismo , Hidrólise , Masculino , Espectrometria de Massas , Estrutura Molecular , Nitrosaminas/administração & dosagem , Nitrosaminas/química , Fosfatos/metabolismo , Piridinas/metabolismo , Ratos , Ratos Endogâmicos F344 , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa