Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
EMBO J ; 42(11): e111926, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071525

RESUMO

Roots are highly plastic organs enabling plants to adapt to a changing below-ground environment. In addition to abiotic factors like nutrients or mechanical resistance, plant roots also respond to temperature variation. Below the heat stress threshold, Arabidopsis thaliana seedlings react to elevated temperature by promoting primary root growth, possibly to reach deeper soil regions with potentially better water saturation. While above-ground thermomorphogenesis is enabled by thermo-sensitive cell elongation, it was unknown how temperature modulates root growth. We here show that roots are able to sense and respond to elevated temperature independently of shoot-derived signals. This response is mediated by a yet unknown root thermosensor that employs auxin as a messenger to relay temperature signals to the cell cycle. Growth promotion is achieved primarily by increasing cell division rates in the root apical meristem, depending on de novo local auxin biosynthesis and temperature-sensitive organization of the polar auxin transport system. Hence, the primary cellular target of elevated ambient temperature differs fundamentally between root and shoot tissues, while the messenger auxin remains the same.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas
2.
Metab Eng ; 82: 193-200, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387676

RESUMO

Diterpenoids form a diverse group of natural products, many of which are or could become pharmaceuticals or industrial chemicals. The modular character of diterpene biosynthesis and the promiscuity of the enzymes involved make combinatorial biosynthesis a promising approach to generate libraries of diverse diterpenoids. Here, we report on the combinatorial assembly in yeast of ten diterpene synthases producing (+)-copalyl diphosphate-derived backbones and four cytochrome P450 oxygenases (CYPs) in diverse combinations. This resulted in the production of over 200 diterpenoids. Based on literature and chemical database searches, 162 of these compounds can be considered new-to-Nature. The CYPs accepted most substrates they were given but remained regioselective with few exceptions. Our results provide the basis for the systematic exploration of the diterpenoid chemical space in yeast using sequence databases.


Assuntos
Produtos Biológicos , Diterpenos , Saccharomyces cerevisiae/genética , Diterpenos/química , Sistema Enzimático do Citocromo P-450/genética
3.
Plant J ; 107(4): 1072-1083, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34098589

RESUMO

Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most abundant phospholipids in membranes. The biosynthesis of phospholipids occurs mainly via the Kennedy pathway. Recent studies have shown that through this pathway, choline (Cho) moieties are synthesized through the methylation of phosphoethanolamine (PEtn) to phosphocholine (PCho) by phospho-base N-methyltransferase. In Arabidopsis thaliana, the phosphoethanolamine/phosphocholine phosphatase1 (PECP1) is described as an enzyme that regulates the synthesis of PCho by decreasing the PEtn level during phosphate starvation to avoid the energy-consuming methylation step. By homology search, we identified a gene (At4g29530) encoding a putative PECP1 homolog from Arabidopsis with a currently unknown biological function in planta. We found that At4g29530 is not induced by phosphate starvation, and is mainly expressed in leaves and flowers. The analysis of null mutants and overexpression lines revealed that PEtn, rather than PCho, is the substrate in vivo, as in PECP1. Hydrophilic interaction chromatography-coupled mass spectrometry analysis of head group metabolites shows an increased PEtn level and decreased ethanolamine level in null mutants. At4g29530 null mutants have an early flowering phenotype, which is corroborated by a higher PC/PE ratio. Furthermore, we found an increased PCho level. The choline level was not changed, so the results corroborate that the PEtn-dependent pathway is the main route for the generation of Cho moieties. We assume that the PEtn-hydrolyzing enzyme participates in fine-tuning the metabolic pathway, and helps prevent the energy-consuming biosynthesis of PCho through the methylation pathway.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/fisiologia , Monoéster Fosfórico Hidrolases/genética , Arabidopsis/genética , Etanolaminas/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Plantas Geneticamente Modificadas
4.
Plant J ; 106(4): 1008-1023, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629456

RESUMO

Nucleotide-binding domain-leucine-rich repeat-type immune receptors (NLRs) protect plants against pathogenic microbes through intracellular detection of effector proteins. However, this comes at a cost, as NLRs can also induce detrimental autoimmunity in genetic interactions with foreign alleles. This may occur when independently evolved genomes are combined in inter- or intraspecific crosses, or when foreign alleles are introduced by mutagenesis or transgenesis. Most autoimmunity-inducing NLRs are encoded within highly variable NLR gene clusters with no known immune functions, which were termed autoimmune risk loci. Whether risk NLRs differ from sensor NLRs operating in natural pathogen resistance and how risk NLRs are activated in autoimmunity is unknown. Here, we analyzed the DANGEROUS MIX2 risk locus, a major autoimmunity hotspot in Arabidopsis thaliana. By gene editing and heterologous expression, we show that a single gene, DM2h, is necessary and sufficient for autoimmune induction in three independent cases of autoimmunity in accession Landsberg erecta. We focus on autoimmunity provoked by an EDS1-yellow fluorescent protein (YFP)NLS fusion protein to characterize DM2h functionally and determine features of EDS1-YFPNLS activating the immune receptor. Our data suggest that risk NLRs function in a manner reminiscent of sensor NLRs, while autoimmunity-inducing properties of EDS1-YFPNLS in this context are unrelated to the protein's functions as an immune regulator. We propose that autoimmunity, at least in some cases, may be caused by spurious, stochastic interactions of foreign alleles with coincidentally matching risk NLRs.


Assuntos
Arabidopsis/genética , Imunidade Inata/genética , Proteínas NLR/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Arabidopsis/imunologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autoimunidade/genética , Fusão Gênica , Genes Reporter , Loci Gênicos , Proteínas NLR/genética , Nicotiana/genética , Nicotiana/imunologia
5.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269869

RESUMO

Drought dramatically affects crop productivity worldwide. For legumes this effect is especially pronounced, as their symbiotic association with rhizobia is highly-sensitive to dehydration. This might be attributed to the oxidative stress, which ultimately accompanies plants' response to water deficit. Indeed, enhanced formation of reactive oxygen species in root nodules might result in up-regulation of lipid peroxidation and overproduction of reactive carbonyl compounds (RCCs), which readily modify biomolecules and disrupt cell functions. Thus, the knowledge of the nodule carbonyl metabolome dynamics is critically important for understanding the drought-related losses of nitrogen fixation efficiency and plant productivity. Therefore, here we provide, to the best of our knowledge, for the first time a comprehensive overview of the pea root nodule carbonyl metabolome and address its alterations in response to polyethylene glycol-induced osmotic stress as the first step to examine the changes of RCC patterns in drought treated plants. RCCs were extracted from the nodules and derivatized with 7-(diethylamino)coumarin-3-carbohydrazide (CHH). The relative quantification of CHH-derivatives by liquid chromatography-high resolution mass spectrometry with a post-run correction for derivative stability revealed in total 194 features with intensities above 1 × 105 counts, 19 of which were down- and three were upregulated. The upregulation of glyceraldehyde could accompany non-enzymatic conversion of glyceraldehyde-3-phosphate to methylglyoxal. The accumulation of 4,5-dioxovaleric acid could be the reason for down-regulation of porphyrin metabolism, suppression of leghemoglobin synthesis, inhibition of nitrogenase and degradation of legume-rhizobial symbiosis in response to polyethylene glycol (PEG)-induced osmotic stress effect. This effect needs to be confirmed with soil-based drought models.


Assuntos
Fabaceae , Rhizobium , Fabaceae/metabolismo , Gliceraldeído , Fixação de Nitrogênio , Pressão Osmótica , Pisum sativum/metabolismo , Polietilenoglicóis/metabolismo , Polietilenoglicóis/farmacologia , Rhizobium/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Simbiose
6.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806786

RESUMO

In plant ecology, biochemical analyses of bryophytes and vascular plants are often conducted on dried herbarium specimen as species typically grow in distant and inaccessible locations. Here, we present an automated in silico compound classification framework to annotate metabolites using an untargeted data independent acquisition (DIA)-LC/MS-QToF-sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH) ecometabolomics analytical method. We perform a comparative investigation of the chemical diversity at the global level and the composition of metabolite families in ten different species of bryophytes using fresh samples collected on-site and dried specimen stored in a herbarium for half a year. Shannon and Pielou's diversity indices, hierarchical clustering analysis (HCA), sparse partial least squares discriminant analysis (sPLS-DA), distance-based redundancy analysis (dbRDA), ANOVA with post-hoc Tukey honestly significant difference (HSD) test, and the Fisher's exact test were used to determine differences in the richness and composition of metabolite families, with regard to herbarium conditions, ecological characteristics, and species. We functionally annotated metabolite families to biochemical processes related to the structural integrity of membranes and cell walls (proto-lignin, glycerophospholipids, carbohydrates), chemical defense (polyphenols, steroids), reactive oxygen species (ROS) protection (alkaloids, amino acids, flavonoids), nutrition (nitrogen- and phosphate-containing glycerophospholipids), and photosynthesis. Changes in the composition of metabolite families also explained variance related to ecological functioning like physiological adaptations of bryophytes to dry environments (proteins, peptides, flavonoids, terpenes), light availability (flavonoids, terpenes, carbohydrates), temperature (flavonoids), and biotic interactions (steroids, terpenes). The results from this study allow to construct chemical traits that can be attributed to biogeochemistry, habitat conditions, environmental changes and biotic interactions. Our classification framework accelerates the complex annotation process in metabolomics and can be used to simplify biochemical patterns. We show that compound classification is a powerful tool that allows to explore relationships in both molecular biology by "zooming in" and in ecology by "zooming out". The insights revealed by our framework allow to construct new research hypotheses and to enable detailed follow-up studies.


Assuntos
Briófitas/química , Biologia Computacional , Metabolômica , Compostos Fitoquímicos/química , Compostos Fitoquímicos/classificação , Biodiversidade , Briófitas/classificação , Briófitas/genética , Análise por Conglomerados , Biologia Computacional/métodos , Metaboloma , Metabolômica/métodos , Filogenia
7.
Plant Cell ; 29(5): 960-983, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28408661

RESUMO

Glandular trichomes are metabolic cell factories with the capacity to produce large quantities of secondary metabolites. Little is known about the connection between central carbon metabolism and metabolic productivity for secondary metabolites in glandular trichomes. To address this gap in our knowledge, we performed comparative metabolomics, transcriptomics, proteomics, and 13C-labeling of type VI glandular trichomes and leaves from a cultivated (Solanum lycopersicum LA4024) and a wild (Solanum habrochaites LA1777) tomato accession. Specific features of glandular trichomes that drive the formation of secondary metabolites could be identified. Tomato type VI trichomes are photosynthetic but acquire their carbon essentially from leaf sucrose. The energy and reducing power from photosynthesis are used to support the biosynthesis of secondary metabolites, while the comparatively reduced Calvin-Benson-Bassham cycle activity may be involved in recycling metabolic CO2 Glandular trichomes cope with oxidative stress by producing high levels of polyunsaturated fatty acids, oxylipins, and glutathione. Finally, distinct mechanisms are present in glandular trichomes to increase the supply of precursors for the isoprenoid pathways. Particularly, the citrate-malate shuttle supplies cytosolic acetyl-CoA and plastidic glycolysis and malic enzyme support the formation of plastidic pyruvate. A model is proposed on how glandular trichomes achieve high metabolic productivity.


Assuntos
Solanum lycopersicum/metabolismo , Tricomas/metabolismo , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Solanum lycopersicum/genética , Fotossíntese/genética , Fotossíntese/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Tricomas/genética
8.
Int J Mol Sci ; 21(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952342

RESUMO

Protein glycation is usually referred to as an array of non-enzymatic post-translational modifications formed by reducing sugars and carbonyl products of their degradation. The resulting advanced glycation end products (AGEs) represent a heterogeneous group of covalent adducts, known for their pro-inflammatory effects in mammals, and impacting on pathogenesis of metabolic diseases and ageing. In plants, AGEs are the markers of tissue ageing and response to environmental stressors, the most prominent of which is drought. Although water deficit enhances protein glycation in leaves, its effect on seed glycation profiles is still unknown. Moreover, the effect of drought on biological activities of seed protein in mammalian systems is still unstudied with respect to glycation. Therefore, here we address the effects of a short-term drought on the patterns of seed protein-bound AGEs and accompanying alterations in pro-inflammatory properties of seed protein in the context of seed metabolome dynamics. A short-term drought, simulated as polyethylene glycol-induced osmotic stress and applied at the stage of seed filling, resulted in the dramatic suppression of primary seed metabolism, although the secondary metabolome was minimally affected. This was accompanied with significant suppression of NF-kB activation in human SH-SY5Y neuroblastoma cells after a treatment with protein hydrolyzates, isolated from the mature seeds of drought-treated plants. This effect could not be attributed to formation of known AGEs. Most likely, the prospective anti-inflammatory effect of short-term drought is related to antioxidant effect of unknown secondary metabolite protein adducts, or down-regulation of unknown plant-specific AGEs due to suppression of energy metabolism during seed filling.


Assuntos
Secas , Metabolômica/métodos , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Sementes/metabolismo , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético , Cromatografia Gasosa-Espectrometria de Massas , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Humanos , NF-kappa B/metabolismo , Estresse Fisiológico
9.
New Phytol ; 224(2): 886-901, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31074884

RESUMO

In nature, beneficial and pathogenic fungi often simultaneously colonise plants. Despite substantial efforts to understand the composition of natural plant-microbe communities, the mechanisms driving such multipartite interactions remain largely unknown. Here we address how the interaction between the beneficial root endophyte Serendipita vermifera and the pathogen Bipolaris sorokiniana affects fungal behaviour and determines barley host responses using a gnotobiotic soil-based split-root system. Fungal confrontation in soil resulted in induction of B. sorokiniana genes involved in secondary metabolism and a significant repression of genes encoding putative effectors. In S. vermifera, genes encoding hydrolytic enzymes were strongly induced. This antagonistic response was not activated during the tripartite interaction in barley roots. Instead, we observed a specific induction of S. vermifera genes involved in detoxification and redox homeostasis. Pathogen infection but not endophyte colonisation resulted in substantial host transcriptional reprogramming and activation of defence. In the presence of S. vermifera, pathogen infection and disease symptoms were significantly reduced despite no marked alterations of the plant transcriptional response. The activation of stress response genes and concomitant repression of putative effector gene expression in B. sorokiniana during confrontation with the endophyte suggest a reduction of the pathogen's virulence potential before host plant infection.


Assuntos
Ascomicetos/fisiologia , Basidiomycota/fisiologia , Hordeum/microbiologia , Raízes de Plantas/microbiologia , Antibiose , Regulação Fúngica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/imunologia , Doenças das Plantas/microbiologia , Microbiologia do Solo
10.
Plant J ; 91(1): 70-84, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28370892

RESUMO

To maintain homeostasis in the face of intrinsic and extrinsic insults, cells have evolved elaborate quality control networks to resolve damage at multiple levels. Interorganellar communication is a key requirement for this maintenance, however the underlying mechanisms of this communication have remained an enigma. Here we integrate the outcome of transcriptomic, proteomic, and metabolomics analyses of genotypes including ceh1, a mutant with constitutively elevated levels of both the stress-specific plastidial retrograde signaling metabolite methyl-erythritol cyclodiphosphate (MEcPP) and the defense hormone salicylic acid (SA), as well as the high MEcPP but SA deficient genotype ceh1/eds16, along with corresponding controls. Integration of multi-omic analyses enabled us to delineate the function of MEcPP from SA, and expose the compartmentalized role of this retrograde signaling metabolite in induction of distinct but interdependent signaling cascades instrumental in adaptive responses. Specifically, here we identify strata of MEcPP-sensitive stress-response cascades, among which we focus on selected pathways including organelle-specific regulation of jasmonate biosynthesis; simultaneous induction of synthesis and breakdown of SA; and MEcPP-mediated alteration of cellular redox status in particular glutathione redox balance. Collectively, these integrated multi-omic analyses provided a vehicle to gain an in-depth knowledge of genome-metabolism interactions, and to further probe the extent of these interactions and delineate their functional contributions. Through this approach we were able to pinpoint stress-mediated transcriptional and metabolic signatures and identify the downstream processes modulated by the independent or overlapping functions of MEcPP and SA in adaptive responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glutationa/metabolismo , Metabolômica/métodos , Oxilipinas/metabolismo , Proteômica/métodos , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transcriptoma/genética
11.
J Exp Bot ; 69(3): 467-481, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29294054

RESUMO

A universal plant response to phosphorus deprivation is the up-regulation of a diverse array of phosphatases. As reported recently, the AtPECP1 gene encodes a phosphatase with in vitro substrate specificity for phosphoethanolamine and phosphocholine. The putative substrates suggested that AtPECP1 is related to phospholipid metabolism; however, the biological function of AtPECP1 is as yet not understood. In addition, whereas lipid remodelling processes as part of the phosphorus starvation response have been extensively studied, knowledge of the polar head group metabolism and its regulation is lacking. We found that AtPECP1 is expressed in the cytosol and exerts by far its strongest activity in roots of phosphate-starved plants. We established a novel LC-MS/MS-based method for the quantitative and simultaneous measurement of the head group metabolites. The analysis of Atpecp1 null mutants and overexpression lines revealed that phosphoethanolamine, but not phosphocholine is the substrate of AtPECP1 in vivo. The impact on head group metabolite levels is greatest in roots of both loss-of-function and gain-of-function transgenic lines, indicating that the biological role of AtPECP1 is mainly restricted to roots. We suggest that phosphoethanolamine hydrolysis by AtPECP1 during Pi starvation is required to down-regulate the energy-consuming biosynthesis of phosphocholine through the methylation pathway.


Assuntos
Arabidopsis/genética , Cromatografia Líquida/métodos , Fosfatos/deficiência , Monoéster Fosfórico Hidrolases/genética , Raízes de Plantas/metabolismo , Espectrometria de Massas em Tandem/métodos , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Regulação para Baixo , Etanolamina/metabolismo , Etanolaminas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilcolina/metabolismo
12.
Int J Mol Sci ; 19(5)2018 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-29734799

RESUMO

The relatively new research discipline of Eco-Metabolomics is the application of metabolomics techniques to ecology with the aim to characterise biochemical interactions of organisms across different spatial and temporal scales. Metabolomics is an untargeted biochemical approach to measure many thousands of metabolites in different species, including plants and animals. Changes in metabolite concentrations can provide mechanistic evidence for biochemical processes that are relevant at ecological scales. These include physiological, phenotypic and morphological responses of plants and communities to environmental changes and also interactions with other organisms. Traditionally, research in biochemistry and ecology comes from two different directions and is performed at distinct spatiotemporal scales. Biochemical studies most often focus on intrinsic processes in individuals at physiological and cellular scales. Generally, they take a bottom-up approach scaling up cellular processes from spatiotemporally fine to coarser scales. Ecological studies usually focus on extrinsic processes acting upon organisms at population and community scales and typically study top-down and bottom-up processes in combination. Eco-Metabolomics is a transdisciplinary research discipline that links biochemistry and ecology and connects the distinct spatiotemporal scales. In this review, we focus on approaches to study chemical and biochemical interactions of plants at various ecological levels, mainly plant⁻organismal interactions, and discuss related examples from other domains. We present recent developments and highlight advancements in Eco-Metabolomics over the last decade from various angles. We further address the five key challenges: (1) complex experimental designs and large variation of metabolite profiles; (2) feature extraction; (3) metabolite identification; (4) statistical analyses; and (5) bioinformatics software tools and workflows. The presented solutions to these challenges will advance connecting the distinct spatiotemporal scales and bridging biochemistry and ecology.


Assuntos
Ecologia , Metabolômica/tendências , Plantas/genética , Plantas/metabolismo
13.
J Biol Chem ; 291(14): 7621-36, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26786108

RESUMO

Glycation is the reaction of carbonyl compounds (reducing sugars and α-dicarbonyls) with amino acids, lipids, and proteins, yielding early and advanced glycation end products (AGEs). The AGEs can be formed via degradation of early glycation intermediates (glycoxidation) and by interaction with the products of monosaccharide autoxidation (autoxidative glycosylation). Although formation of these potentially deleterious compounds is well characterized in animal systems and thermally treated foods, only a little information about advanced glycation in plants is available. Thus, the knowledge of the plant AGE patterns and the underlying pathways of their formation are completely missing. To fill this gap, we describe the AGE-modified proteome ofBrassica napusand characterize individual sites of advanced glycation by the methods of liquid chromatography-based bottom-up proteomics. The modification patterns were complex but reproducible: 789 AGE-modified peptides in 772 proteins were detected in two independent experiments. In contrast, only 168 polypeptides contained early glycated lysines, which did not resemble the sites of advanced glycation. Similar observations were made withArabidopsis thaliana The absence of the early glycated precursors of the AGE-modified protein residues indicated autoxidative glycosylation, but not glycoxidation, as the major pathway of AGE formation. To prove this assumption and to identify the potential modifying agents, we estimated the reactivity and glycative potential of plant-derived sugars using a model peptide approach and liquid chromatography-mass spectrometry-based techniques. Evaluation of these data sets together with the assessed tissue carbohydrate contents revealed dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, ribulose, erythrose, and sucrose as potential precursors of plant AGEs.


Assuntos
Brassica napus/metabolismo , Glicoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Brassica napus/genética , Glicoproteínas/genética , Glicosilação , Proteínas de Plantas/genética , Proteoma/genética , Proteômica
14.
Anal Chem ; 88(16): 8082-90, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27452369

RESUMO

The identification of metabolites by mass spectrometry constitutes a major bottleneck which considerably limits the throughput of metabolomics studies in biomedical or plant research. Here, we present a novel approach to analyze metabolomics data from untargeted, data-independent LC-MS/MS measurements. By integrated analysis of MS(1) abundances and MS/MS spectra, the identification of regulated metabolite families is achieved. This approach offers a global view on metabolic regulation in comparative metabolomics. We implemented our approach in the web application "MetFamily", which is freely available at http://msbi.ipb-halle.de/MetFamily/ . MetFamily provides a dynamic link between the patterns based on MS(1)-signal intensity and the corresponding structural similarity at the MS/MS level. Structurally related metabolites are annotated as metabolite families based on a hierarchical cluster analysis of measured MS/MS spectra. Joint examination with principal component analysis of MS(1) patterns, where this annotation is preserved in the loadings, facilitates the interpretation of comparative metabolomics data at the level of metabolite families. As a proof of concept, we identified two trichome-specific metabolite families from wild-type tomato Solanum habrochaites LA1777 in a fully unsupervised manner and validated our findings based on earlier publications and with NMR.


Assuntos
Metaboloma , Metabolômica , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Solanum lycopersicum/metabolismo , Espectroscopia de Ressonância Magnética , Folhas de Planta/metabolismo , Análise de Componente Principal , Espectrometria de Massas em Tandem , Interface Usuário-Computador
15.
J Exp Bot ; 67(22): 6283-6295, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27856706

RESUMO

Among the environmental alterations accompanying oncoming climate changes, drought is the most important factor influencing crop plant productivity. In plants, water deficit ultimately results in the development of oxidative stress and accumulation of osmolytes (e.g. amino acids and carbohydrates) in all tissues. Up-regulation of sugar biosynthesis in parallel to the increasing overproduction of reactive oxygen species (ROS) might enhance protein glycation, i.e. interaction of carbonyl compounds, reducing sugars and α-dicarbonyls with lysyl and arginyl side-chains yielding early (Amadori and Heyns compounds) and advanced glycation end-products (AGEs). Although the constitutive plant protein glycation patterns were characterized recently, the effects of environmental stress on AGE formation are unknown so far. To fill this gap, we present here a comprehensive in-depth study of the changes in Arabidopsis thaliana advanced glycated proteome related to osmotic stress. A 3 d application of osmotic stress revealed 31 stress-specifically and 12 differentially AGE-modified proteins, representing altogether 56 advanced glycation sites. Based on proteomic and metabolomic results, in combination with biochemical, enzymatic and gene expression analysis, we propose monosaccharide autoxidation as the main stress-related glycation mechanism, and glyoxal as the major glycation agent in plants subjected to drought.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Pressão Osmótica , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Desidratação , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Monossacarídeos/metabolismo , Oxirredução , Proteoma/metabolismo , Transcriptoma
16.
Acta Neuropathol ; 126(5): 763-80, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24005892

RESUMO

Fluctuations in oxygen tension during tissue remodeling impose a major metabolic challenge in human tumors. Stem-like tumor cells in glioblastoma, the most common malignant brain tumor, possess extraordinary metabolic flexibility, enabling them to initiate growth even under non-permissive conditions. We identified a reciprocal metabolic switch between the pentose phosphate pathway (PPP) and glycolysis in glioblastoma stem-like (GS) cells. Expression of PPP enzymes is upregulated by acute oxygenation but downregulated by hypoxia, whereas glycolysis enzymes, particularly those of the preparatory phase, are regulated inversely. Glucose flux through the PPP is reduced under hypoxia in favor of flux through glycolysis. PPP enzyme expression is elevated in human glioblastomas compared to normal brain, especially in highly proliferative tumor regions, whereas expression of parallel preparatory phase glycolysis enzymes is reduced in glioblastomas, except for strong upregulation in severely hypoxic regions. Hypoxia stimulates GS cell migration but reduces proliferation, whereas oxygenation has opposite effects, linking the metabolic switch to the "go or grow" potential of the cells. Our findings extend Warburg's observation that tumor cells predominantly utilize glycolysis for energy production, by suggesting that PPP activity is elevated in rapidly proliferating tumor cells but suppressed by acute severe hypoxic stress, favoring glycolysis and migration to protect cells against hypoxic cell damage.


Assuntos
Glioma/metabolismo , Glicólise/fisiologia , Células-Tronco Neoplásicas/metabolismo , Oxigênio/metabolismo , Via de Pentose Fosfato/fisiologia , Animais , Apoptose/fisiologia , Hipóxia Celular/fisiologia , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
17.
Polymers (Basel) ; 14(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36433133

RESUMO

In agriculture, chitosan has become popular as a metabolic enhancer; however, no deep information has been obtained yet regarding its mechanisms on vegetative tissues. This work was conducted to test the impact of chitosan applied at different plant growth stages on plant development, physiology, and response to wounding as well as fruit shape and composition. Five concentrations of chitosan were tested on tomato. The most effective chitosan doses that increased leaf number, leaf area, plant biomass, and stomatal conductance were 0.75 and 1 mg mL-1. Chitosan (1 mg mL-1) applied as foliar spray increased the levels of jasmonoyl-isoleucine and abscisic acid in wounded roots. The application of this dose at vegetative and flowering stages increased chlorophyll fluorescence (Fv/Fm) values, whereas application at the fruit maturation stage reduced the Fv/Fm values. This decline was positively correlated with fruit shape and negatively correlated with the pH and the content of soluble sugars, lycopene, total flavonoids, and nitrogen in fruits. Moreover, the levels of primary metabolites derived from glycolysis, such as inositol phosphate, lactic acid, and ascorbic acid, increased in response to treatment of plants with 1 mg mL-1- chitosan. Thus, chitosan application affects various plant processes by influencing stomata aperture, cell division and expansion, fruit maturation, mineral assimilation, and defense responses.

18.
Water Res ; 42(14): 3579-90, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18662823

RESUMO

Gas-water phase transfer associated with the dissolution of trapped gas in porous media is a key process that occurs during pulsed gas sparging operations in contaminated aquifers. Recently, we applied a numerical model that was experimentally validated for abiotic situations, where multi-species kinetic inter-phase mass transfer and dissolved gas transport occurred during pulsed gas penetration-dissolution events [Balcke, G.U., Meenken, S., Hoefer, C. and Oswald, S.E., 2007. Kinetic gas-water transfer and gas accumulation in porous media during pulsed oxygen sparging. Environmental Science & Technology 41(12), 4428-4434]. Here we extend the model by using a reactive term to describe dissolved oxygen demand reactions via the formation of a reaction product, and to study the effects of such an aerobic degradation process on gas-water mass transfer and dissolution of trapped gas in porous media. As a surrogate for microbial oxygen reduction, first-order oxygen demand reactions were based on the measured oxidation of alkaline pyrogallol in column experiments. This reaction allows for adjusting the rate to values close to expected biodegradation rates and detection of the reaction product. The experiments and model consistently demonstrated accelerated oxygen gas-water mass transfer with increasing oxygen demand rates associated with an influence on the partitioning of other gases. Thus, as the oxygen demand accelerates, less gas phase residues, consisting mainly of nitrogen, are observed, which is in general beneficial to the performance of field biosparging operations. Model results additionally predict how oxygen demand influences oxygen mass transfer for a range of biodegradation rates. A typical field case scenario was simulated to illustrate the observed coupling of oxygen consumption and gas bubble dissolution. The model provides a tool to improve understanding of trapped gas behavior in porous media and contributes to a model-assisted biosparging.


Assuntos
Oxigênio/química , Água/química , Biodegradação Ambiental , Simulação por Computador , Cinética , Modelos Químicos , Estrutura Molecular , Oxirredução , Pirogalol/química , Fatores de Tempo , Poluentes Químicos da Água/química , Poluição Química da Água/prevenção & controle
19.
Front Plant Sci ; 9: 255, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29545815

RESUMO

Strigolactones (SLs) are apocarotenoid phytohormones synthesized from carotenoid precursors. They are produced most abundantly in roots for exudation into the rhizosphere to cope with mineral nutrient starvation through support of root symbionts. Abscisic acid (ABA) is another apocarotenoid phytohormone synthesized in roots, which is involved in responses to abiotic stress. Typically low carotenoid levels in roots raise the issue of precursor supply for the biosynthesis of these two apocarotenoids in this organ. Increased ABA levels upon abiotic stress in Poaceae roots are known to be supported by a particular isoform of phytoene synthase (PSY), catalyzing the rate-limiting step in carotenogenesis. Here we report on novel PSY3 isogenes from Medicago truncatula (MtPSY3) and Solanum lycopersicum (SlPSY3) strongly expressed exclusively upon root interaction with symbiotic arbuscular mycorrhizal (AM) fungi and moderately in response to phosphate starvation. They belong to a widespread clade of conserved PSYs restricted to dicots (dPSY3) distinct from the Poaceae-PSY3s involved in ABA formation. An ancient origin of dPSY3s and a potential co-evolution with the AM symbiosis is discussed in the context of PSY evolution. Knockdown of MtPSY3 in hairy roots of M. truncatula strongly reduced SL and AM-induced C13 α-ionol/C14 mycorradicin apocarotenoids. Inhibition of the reaction subsequent to phytoene synthesis revealed strongly elevated levels of phytoene indicating induced flux through the carotenoid pathway in roots upon mycorrhization. dPSY3 isogenes are coregulated with upstream isogenes and downstream carotenoid cleavage steps toward SLs (D27, CCD7, CCD8) suggesting a combined carotenoid/apocarotenoid pathway, which provides "just in time"-delivery of precursors for apocarotenoid formation.

20.
J Plant Physiol ; 208: 70-83, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27889524

RESUMO

Drought is one of the most important environmental stressors resulting in increasing losses of crop plant productivity all over the world. Therefore, development of new approaches to increase the stress tolerance of crop plants is strongly desired. This requires precise and adequate modeling of drought stress. As this type of stress manifests itself as a steady decrease in the substrate water potential (ψw), agar plates infused with polyethylene glycol (PEG) are the perfect experimental tool: they are easy in preparation and provide a constantly reduced ψw, which is not possible in soil models. However, currently, this model is applicable only to seedlings and cannot be used for evaluation of stress responses in mature plants, which are obviously the most appropriate objects for drought tolerance research. To overcome this limitation, here we introduce a PEG-based agar infusion model suitable for 6-8-week-old A. thaliana plants, and characterize, to the best of our knowledge for the first time, the early drought stress responses of adult plants grown on PEG-infused agar. We describe essential alterations in the primary metabolome (sugars and related compounds, amino acids and polyamines) accompanied by qualitative and quantitative changes in protein patterns: up to 87 unique stress-related proteins were annotated under drought stress conditions, whereas further 84 proteins showed a change in abundance. The obtained proteome patterns differed slightly from those reported for seedlings and soil-based models.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Metaboloma , Proteoma , Água/metabolismo , Ágar , Arabidopsis/crescimento & desenvolvimento , Metabolômica , Polietilenoglicóis , Proteômica , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa